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4. Limits and Continuity for Functions of Several Variables

4.1. Continuity of Functions of Several Real Variables

Definition

Let X and Y be a subsets of Rm and Rn respectively. A function
f : X → Y from X to Y is said to be continuous at a point p of X
if and only if the following criterion is satisfied:—

given any strictly positive real number ε, there exists
some strictly positive real number δ such that
|f (x)− f (p)| < ε whenever x ∈ X satisfies |x− p| < δ.

The function f : X → Y is said to be continuous on X if and only
if it is continuous at every point p of X .
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4. Limits and Continuity for Functions of Several Variables (continued)

Lemma 4.1

Let X , Y and Z be subsets of Rm, Rn and Rk respectively, and let
f : X → Y and g : Y → Z be functions satisfying f (X ) ⊂ Y .
Suppose that f is continuous at some point p of X and that g is
continuous at f (p). Then the composition function g ◦ f : X → Z
is continuous at p.

Proof
Let ε > 0 be given. Then there exists some η > 0 such that
|g(y)− g(f (p))| < ε for all y ∈ Y satisfying |y − f (p)| < η. But
then there exists some δ > 0 such that |f (x)− f (p)| < η for all
x ∈ X satisfying |x− p| < δ. It follows that
|g(f (x))− g(f (p))| < ε for all x ∈ X satisfying |x− p| < δ, and
thus g ◦ f is continuous at p, as required.
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Lemma 4.2

Let X and Y be a subsets of Rm and Rn respectively, and let
f : X → Y be a continuous function from X to Y . Let
x1, x2, x3, . . . be a sequence of points of X which converges to
some point p of X . Then the sequence f (x1), f (x2), f (x3), . . .
converges to f (p).

Proof
Let ε > 0 be given. Then there exists some δ > 0 such that
|f (x)− f (p)| < ε for all x ∈ X satisfying |x− p| < δ, since the
function f is continuous at p. Also there exists some positive
integer N such that |xj − p| < δ whenever j ≥ N, since the
sequence x1, x2, x3, . . . converges to p. Thus if j ≥ N then
|f (xj)− f (p)| < ε. Thus the sequence f (x1), f (x2), f (x3), . . .
converges to f (p), as required.
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4. Limits and Continuity for Functions of Several Variables (continued)

Let X and Y be a subsets of Rm and Rn respectively, and let
f : X → Y be a function from X to Y . Then

f (x) = (f1(x), f2(x), . . . , fn(x))

for all x ∈ X , where f1, f2, . . . , fn are functions from X to R,
referred to as the components of the function f .



4. Limits and Continuity for Functions of Several Variables (continued)

Proposition 4.3

Let X and Y be a subsets of Rm and Rn respectively, and let
p ∈ X . A function f : X → Y is continuous at the point p if and
only if its components are all continuous at p.

Proof
Note that the ith component fi of f is given by fi = πi ◦ f , where
πi : Rn → R is the continuous function which maps
(y1, y2, . . . , yn) ∈ Rn onto its ith coordinate yi . Now any
composition of continuous functions is continuous, by Lemma 4.1.
Thus if f is continuous at p, then so are the components of f .
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Conversely suppose that the components of f are continuous at
p ∈ X . Let ε > 0 be given. Then there exist positive real numbers
δ1, δ2, . . . , δn such that |fi (x)− fi (p)| < ε/

√
n for x ∈ X satisfying

|x− p| < δi . Let δ be the minimum of δ1, δ2, . . . , δn. If x ∈ X
satisfies |x− p| < δ then

|f (x)− f (p)|2 =
n∑

i=1

|fi (x)− fi (p)|2 < ε2,

and hence |f (x)− f (p)| < ε. Thus the function f is continuous at
p, as required.
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Lemma 4.4

The functions s : R2 → R and m : R2 → R defined by
s(x , y) = x + y and m(x , y) = xy are continuous.

Proof
Let (u, v) ∈ R2. We first show that s : R2 → R is continuous at
(u, v). Let ε > 0 be given. Let δ = 1

2ε. If (x , y) is any point of R2

whose distance from (u, v) is less than δ then |x − u| < δ and
|y − v | < δ, and hence

|s(x , y)− s(u, v)| = |x + y − u − v | ≤ |x − u|+ |y − v | < 2δ = ε.

This shows that s : R2 → R is continuous at (u, v).
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Next we show that m : R2 → R is continuous at (u, v). Now

m(x , y)−m(u, v) = xy−uv = (x−u)(y−v)+u(y−v)+(x−u)v .

for all points (x , y) of R2. Thus if the distance from (x , y) to
(u, v) is less than δ then |x − u| < δ and |y − v | < δ, and hence
|m(x , y)−m(u, v)| < δ2 + (|u|+ |v |)δ. Let ε > 0 be given. If
δ > 0 is chosen to be the minimum of 1 and ε/(1 + |u|+ |v |) then
δ2 + (|u|+ |v |)δ < (1 + |u|+ |v |)δ < ε, and thus
|m(x , y)−m(u, v)| < ε for all points (x , y) of R2 whose distance
from (u, v) is less than δ. This shows that m : R2 → R is
continuous at (u, v).
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Proposition 4.5

Let X be a subset of Rn, and let f : X → R and g : X → R be
continuous functions from X to R. Then the functions f + g ,
f − g and f · g are continuous. If in addition g(x) 6= 0 for all
x ∈ X then the quotient function f /g is continuous.

Proof
Note that f + g = s ◦ h and f · g = m ◦ h, where h : X → R2,
s : R2 → R and m : R2 → R are given by h(x) = (f (x), g(x)),
s(u, v) = u + v and m(u, v) = uv for all x ∈ X and u, v ∈ R. It
follows from Proposition 4.3, Lemma 4.4 and Lemma 4.1 that
f + g and f · g are continuous, being compositions of continuous
functions. Now f − g = f + (−g), and both f and −g are
continuous. Therefore f − g is continuous.
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Now suppose that g(x) 6= 0 for all x ∈ X . Note that 1/g = r ◦ g ,
where r : R \ {0} → R is the reciprocal function, defined by
r(t) = 1/t. Now the reciprocal function r is continuous. Thus the
function 1/g is a composition of continuous functions and is thus
continuous. But then, using the fact that a product of continuous
real-valued functions is continuous, we deduce that f /g is
continuous.
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Example
Consider the function f : R2 \ {(0, 0)} → R2 defined by

f (x , y) =

(
x

x2 + y2
,
−y

x2 + y2

)
.

The continuity of the components of the function f follows from
straightforward applications of Proposition 4.5. It then follows from
Proposition 4.3 that the function f is continuous on R2 \ {(0, 0)}.
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Lemma 4.6

Let X be a subset of Rm, let f : X → Rn be a continuous function
mapping X into Rn, and let |f | : X → R be defined such that
|f |(x) = |f (x)| for all x ∈ X . Then the real-valued function |f | is
continuous on X .

Proof
Let x and p be elements of X . Then

|f (x)| = |(f (x)− f (p)) + f (p)| ≤ |f (x)− f (p)|+ |f (p)|

and

|f (p)| = |(f (p)− f (x)) + f (x)| ≤ |f (x)− f (p)|+ |f (x)|,

and therefore ∣∣∣|f (x)| − |f (p)|
∣∣∣ ≤ |f (x)− f (p)|.



4. Limits and Continuity for Functions of Several Variables (continued)

The result now follows from the definition of continuity, using the
above inequality. Indeed let p be a point of X , and let some
positive real number ε be given. Then there exists a positive real
number δ small enough to ensure that |f (x)− f (p)| < ε for all
x ∈ X satisfying |x− p| < δ. But then∣∣∣|f (x)| − |f (p)|

∣∣∣ ≤ |f (x)− f (p)| < ε

for all x ∈ X satisfying |x− p| < δ, and thus the function |f | is
continuous, as required.
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4.2. Limits of Functions of Several Real Variables

Definition

Let X be a subset of m-dimensional Euclidean space Rm, let
f : X → Rn be a function mapping the set X into n-dimensional
Euclidean space Rn, let p be a limit point of the set X , and let q
be a point in Rn. The point q is said to be the limit of f (x), as x
tends to p in X , if and only if the following criterion is satisfied:—

given any strictly positive real number ε, there exists
some strictly positive real number δ such that
|f (x)− q| < ε whenever x ∈ X satisfies 0 < |x− p| < δ.
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Let X be a subset of m-dimensional Euclidean space Rm, let
f : X → Rn be a function mapping the set X into n-dimensional
Euclidean space Rn, let p be a limit point of the set X , and let q
be a point of Rn. If q is the limit of f (x) as x tends to p in X then
we can denote this fact by writing lim

x→p
f (x) = q.

Proposition 4.7

Let X be a subset of Rm, let p be a limit point of X , and let q be
a point of Rn. A function f : X → Rn has the property that

lim
x→p

f (x) = q

if and only if
lim
x→p

fi (x) = qi

for i = 1, 2, . . . , n, where f1, f2, . . . , fn are the components of the
function f and q = (q1, q2, . . . , qn).
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Proof
Suppose that lim

x→p
f (x) = q. Let i be an integer between 1 and n,

and let some positive real number ε be given. Then there exists
some positive real number δ such that |f (x)− q| < ε whenever
0 < |x− p| < δ. It then follows from the definition of the
Euclidean norm that

|fi (x)− qi | ≤ |f (x)− q| < ε

whenever 0 < |x− p| < δ. Thus if lim
x→p

f (x) = q then

lim
x→p

fi (x) = qi for i = 1, 2, . . . , n.
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Conversely suppose that

lim
x→p

fi (x) = qi

for i = 1, 2, . . . , n. Let ε > 0 be given. Then there exist positive
real numbers δ1, δ2, . . . , δn such that 0 < |fi (x)− qi | < ε/

√
n for

x ∈ X satisfying 0 < |x− p| < δi . Let δ be the minimum of
δ1, δ2, . . . , δn. If x ∈ X satisfies 0 < |x− p| < δ then

|f (x)− q|2 =
n∑

i=1

|fi (x)− qi |2 < ε2,

and hence |f (x)− q| < ε. Thus

lim
x→p

f (x) = q,

as required.
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Proposition 4.8

Let X be a subset of m-dimensional Euclidean space Rm, let
f : X → Rn and g : X → Rn be functions mapping X into
n-dimensional Euclidean space Rn, let p be a limit point of X , and
let q and r be points of Rn. Suppose that

lim
x→p

f (x) = q

and
lim
x→p

g(x) = r.

Then
lim
x→p

(f (x) + g(x)) = q + r.
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Proof
Let some strictly positive real number ε be given. Then there exist
strictly positive real numbers δ1 and δ2 such that

|f (x)− q| < 1
2ε

whenever x ∈ X satisfies 0 < |x− p| < δ1 and

|g(x)− r| < 1
2ε

whenever x ∈ X satisfies 0 < |x− p| < δ2.
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Let δ be the minimum of δ1 and δ2. Then δ > 0, and if x ∈ X
satisfies 0 < |x− p| < δ then

|f (x)− q| < 1
2ε

and
|g(x)− r| < 1

2ε,

and therefore

|f (x) + g(x)− (q + r)| ≤ |f (x)− q|+ |g(x)− r|
< 1

2ε+ 1
2ε = ε.

It follows that
lim
x→p

(f (x) + g(x)) = q + r,

as required.
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