MA2321—Analysis in Several Variables School of Mathematics, Trinity College Michaelmas Term 2017 Lecture 6 (October 5, 2017)

David R. Wilkins

Proposition 3.4

Let X be a subset of \mathbb{R}^n , and let U be a subset of X. Then U is open in X if and only if there exists some open set V in \mathbb{R}^n for which $U = V \cap X$.

Proof

First suppose that $U = V \cap X$ for some open set V in \mathbb{R}^n . Let $\mathbf{u} \in U$. Then the definition of open sets in \mathbb{R}^n ensures that there exists some positive real number δ such that

$$\{\mathbf{x} \in \mathbb{R}^n : |\mathbf{x} - \mathbf{u}| < \delta\} \subset V.$$

Then

$$\{\mathbf{x}\in X: |\mathbf{x}-\mathbf{u}|<\delta\}\subset U.$$

This shows that U is open in X.

Conversely suppose that the subset U of X is open in X. For each point **u** of U there exists some positive real number $\delta_{\mathbf{u}}$ such that

$$\{\mathbf{x}\in X: |\mathbf{x}-\mathbf{u}|<\delta_{\mathbf{u}}\}\subset U.$$

For each $\mathbf{u} \in U$, let $B(\mathbf{u}, \delta_{\mathbf{u}})$ denote the open ball in \mathbb{R}^n of radius $\delta_{\mathbf{u}}$ about the point \mathbf{u} , so that

$$B(\mathbf{u}, \delta_{\mathbf{u}}) = \{\mathbf{x} \in \mathbb{R}^n : |\mathbf{x} - \mathbf{u}| < \delta_{\mathbf{u}}\}$$

for all $\mathbf{u} \in U$, and let V be the union of all the open balls $B(\mathbf{u}, \delta_{\mathbf{u}})$ as \mathbf{u} ranges over all the points of U. Then V is an open set in \mathbb{R}^n . Indeed every open ball in \mathbb{R}^n is an open set (Lemma 3.1), and any union of open sets in \mathbb{R}^n is itself an open set (Proposition 3.3). The set V is a union of open balls. It is therefore a union of open sets, and so must itself be an open set.

Now $B(\mathbf{u}, \delta_{\mathbf{u}}) \cap X \subset U$. for all $\mathbf{u} \in U$. Also every point of V belongs to $B(\mathbf{u}, \delta_{\mathbf{u}})$ for at least one point \mathbf{u} of U. It follows that $V \cap X \subset U$. But $\mathbf{u} \in B(\mathbf{u}, \delta_{\mathbf{u}})$ and $B(\mathbf{u}, \delta_{\mathbf{u}}) \subset V$ for all $\mathbf{u} \in U$, and therefore $U \subset V$, and thus $U \subset V \cap X$. It follows that $U = V \cap X$, as required.

3.3. Convergence of Sequences and Open Sets

Lemma 3.5

A sequence $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \ldots$ of points in \mathbb{R}^n converges to a point \mathbf{p} if and only if, given any open set U which contains \mathbf{p} , there exists some positive integer N such that $\mathbf{x}_j \in U$ for all j satisfying $j \ge N$.

Proof

Suppose that the sequence $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \ldots$ has the property that, given any open set U which contains \mathbf{p} , there exists some positive integer N such that $\mathbf{x}_j \in U$ whenever $j \ge N$. Let $\varepsilon > 0$ be given. The open ball $B(\mathbf{p}, \varepsilon)$ of radius ε about \mathbf{p} is an open set by Lemma 3.1. Therefore there exists some positive integer N such that $\mathbf{x}_j \in B(\mathbf{p}, \varepsilon)$ whenever $j \ge N$. Thus $|\mathbf{x}_j - \mathbf{p}| < \varepsilon$ whenever $j \ge N$. This shows that the sequence converges to \mathbf{p} .

Conversely, suppose that the sequence $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \ldots$ converges to \mathbf{p} . Let U be an open set which contains \mathbf{p} . Then there exists some $\varepsilon > 0$ such that the open ball $B(\mathbf{p}, \varepsilon)$ of radius ε about \mathbf{p} is a subset of U. Thus there exists some $\varepsilon > 0$ such that U contains all points \mathbf{x} of X that satisfy $|\mathbf{x} - \mathbf{p}| < \varepsilon$. But there exists some positive integer N with the property that $|\mathbf{x}_j - \mathbf{p}| < \varepsilon$ whenever $j \ge N$, since the sequence converges to \mathbf{p} . Therefore $\mathbf{x}_j \in U$ whenever $j \ge N$, as required.

3.4. Closed Sets in Euclidean Spaces

Let X be a subset of \mathbb{R}^n . A subset F of X is said to be *closed* in X if and only if its complement $X \setminus F$ in X is open in X. (Recall that $X \setminus F = \{\mathbf{x} \in X : \mathbf{x} \notin F\}$.)

Example

The sets $\{(x, y, z) \in \mathbb{R}^3 : z \ge c\}$, $\{(x, y, z) \in \mathbb{R}^3 : z \le c\}$, and $\{(x, y, z) \in \mathbb{R}^3 : z = c\}$ are closed sets in \mathbb{R}^3 for each real number *c*, since the complements of these sets are open in \mathbb{R}^3 .

Example

Let X be a subset of \mathbb{R}^n , and let \mathbf{x}_0 be a point of X. Then the sets $\{\mathbf{x} \in X : |\mathbf{x} - \mathbf{x}_0| \le r\}$ and $\{\mathbf{x} \in X : |\mathbf{x} - \mathbf{x}_0| \ge r\}$ are closed for each non-negative real number r. In particular, the set $\{\mathbf{x}_0\}$ consisting of the single point \mathbf{x}_0 is a closed set in X. (These results follow immediately using Lemma 3.1 and Lemma 3.2 and the definition of closed sets.)

Let \mathcal{A} be some collection of subsets of a set X. Then

$$X \setminus \bigcup_{S \in \mathcal{A}} S = \bigcap_{S \in \mathcal{A}} (X \setminus S), \qquad X \setminus \bigcap_{S \in \mathcal{A}} S = \bigcup_{S \in \mathcal{A}} (X \setminus S)$$

(i.e., the complement of the union of some collection of subsets of X is the intersection of the complements of those sets, and the complement of the intersection of some collection of subsets of X is the union of the complements of those sets).

Indeed let A be some collection of subsets of a set X, and let \mathbf{x} be a point of X. Then

$$\mathbf{x} \in X \setminus \bigcup_{S \in \mathcal{A}} S \iff \mathbf{x} \notin \bigcup_{S \in \mathcal{A}} S$$
$$\iff \text{ for all } S \in \mathcal{A}, \mathbf{x} \notin S$$
$$\iff \text{ for all } S \in \mathcal{A}, \mathbf{x} \in X \setminus S$$
$$\iff \mathbf{x} \in \bigcap_{S \in \mathcal{A}} (X \setminus S),$$

and therefore

$$X \setminus \bigcup_{S \in \mathcal{A}} S = \bigcap_{S \in \mathcal{A}} (X \setminus S).$$

Again let \mathbf{x} be a point of X. Then

$$\begin{array}{lll} \mathbf{x} \in X \setminus \bigcap_{S \in \mathcal{A}} S & \Longleftrightarrow & \mathbf{x} \not\in \bigcap_{S \in \mathcal{A}} S \\ & \Leftrightarrow & \text{there exists } S \in \mathcal{A} \text{ for which } \mathbf{x} \notin S \\ & \Leftrightarrow & \text{there exists } S \in \mathcal{A} \text{ for which } \mathbf{x} \in X \setminus S \\ & \Leftrightarrow & \mathbf{x} \in \bigcup_{S \in \mathcal{A}} (X \setminus S), \end{array}$$

and therefore

$$X \setminus \bigcap_{S \in \mathcal{A}} S = \bigcup_{S \in \mathcal{A}} (X \setminus S).$$

The following result therefore follows directly from Proposition 3.3.

Proposition 3.6

Let X be a subset of \mathbb{R}^n . The collection of closed sets in X has the following properties:—

- (i) the empty set \emptyset and the whole set X are both closed in X;
- (ii) the intersection of any collection of closed sets in X is itself closed in X;
- (iii) the union of any finite collection of closed sets in X is itself closed in X.

Lemma 3.7

Let X be a subset of \mathbb{R}^n , and let F be a subset of X which is closed in X. Let $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \ldots$ be a sequence of points of F which converges to a point **p** of X. Then $\mathbf{p} \in F$.

Proof

The complement $X \setminus F$ of F in X is open, since F is closed. Suppose that \mathbf{p} were a point belonging to $X \setminus F$. It would then follow from Lemma 3.5 that $\mathbf{x}_j \in X \setminus F$ for all values of j greater than some positive integer N, contradicting the fact that $\mathbf{x}_j \in F$ for all j. This contradiction shows that \mathbf{p} must belong to F, as required. 3. Open and Closed Sets in Euclidean Spaces (continued)

3.5. Closed Sets and Limit Points

Lemma 3.8

A subset F of n-dimensional Euclidean space \mathbb{R}^n is closed in \mathbb{R}^n if and only if it contains its limit points.

Proof

Let F be a closed set in \mathbb{R}^n and let \mathbf{p} be a limit point of F. It follows from Lemma 2.5 that there exists an infinite sequence of points of F that converges to the point \mathbf{p} . It then follows from Lemma 3.7 that $\mathbf{p} \in F$. Thus if the set F is closed then it contains its limit points.

Conversely let F be a subset of \mathbb{R}^n that contains its limit points. Let $\mathbf{p} \in \mathbb{R}^n \setminus F$. Then \mathbf{p} is not a limit point of F. It follows from the definition of limit points that there exists some positive real number δ for which

$$\{\mathbf{x} \in F : \mathbf{0} < |\mathbf{x} - \mathbf{p}| < \delta\} = \emptyset.$$

It then follows from this that the open ball in \mathbb{R}^n of radius δ about the point **p** is contained in the complement of *F*. We conclude therefore that the complement of *F* in \mathbb{R}^n is open in \mathbb{R}^n , and thus *F* is closed in \mathbb{R}^n , as required.