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3. Open and Closed Sets in Euclidean Spaces (continued)

Proposition 3.4

Let X be a subset of Rn, and let U be a subset of X . Then U is
open in X if and only if there exists some open set V in Rn for
which U = V ∩ X.

Proof
First suppose that U = V ∩ X for some open set V in Rn. Let
u ∈ U. Then the definition of open sets in Rn ensures that there
exists some positive real number δ such that

{x ∈ Rn : |x− u| < δ} ⊂ V .

Then
{x ∈ X : |x− u| < δ} ⊂ U.

This shows that U is open in X .



3. Open and Closed Sets in Euclidean Spaces (continued)

Conversely suppose that the subset U of X is open in X . For each
point u of U there exists some positive real number δu such that

{x ∈ X : |x− u| < δu} ⊂ U.

For each u ∈ U, let B(u, δu) denote the open ball in Rn of radius
δu about the point u, so that

B(u, δu) = {x ∈ Rn : |x− u| < δu}

for all u ∈ U, and let V be the union of all the open balls B(u, δu)
as u ranges over all the points of U. Then V is an open set in Rn.



3. Open and Closed Sets in Euclidean Spaces (continued)

Indeed every open ball in Rn is an open set (Lemma 3.1), and any
union of open sets in Rn is itself an open set (Proposition 3.3).
The set V is a union of open balls. It is therefore a union of open
sets, and so must itself be an open set.

Now B(u, δu) ∩ X ⊂ U. for all u ∈ U. Also every point of V
belongs to B(u, δu) for at least one point u of U. It follows that
V ∩X ⊂ U. But u ∈ B(u, δu) and B(u, δu) ⊂ V for all u ∈ U, and
therefore U ⊂ V , and thus U ⊂ V ∩ X . It follows that
U = V ∩ X , as required.



3. Open and Closed Sets in Euclidean Spaces (continued)

3.3. Convergence of Sequences and Open Sets

Lemma 3.5

A sequence x1, x2, x3, . . . of points in Rn converges to a point p if
and only if, given any open set U which contains p, there exists
some positive integer N such that xj ∈ U for all j satisfying j ≥ N.

Proof
Suppose that the sequence x1, x2, x3, . . . has the property that,
given any open set U which contains p, there exists some positive
integer N such that xj ∈ U whenever j ≥ N. Let ε > 0 be given.
The open ball B(p, ε) of radius ε about p is an open set by
Lemma 3.1. Therefore there exists some positive integer N such
that xj ∈ B(p, ε) whenever j ≥ N. Thus |xj − p| < ε whenever
j ≥ N. This shows that the sequence converges to p.



3. Open and Closed Sets in Euclidean Spaces (continued)

Conversely, suppose that the sequence x1, x2, x3, . . . converges
to p. Let U be an open set which contains p. Then there exists
some ε > 0 such that the open ball B(p, ε) of radius ε about p is a
subset of U. Thus there exists some ε > 0 such that U contains all
points x of X that satisfy |x− p| < ε. But there exists some
positive integer N with the property that |xj − p| < ε whenever
j ≥ N, since the sequence converges to p. Therefore xj ∈ U
whenever j ≥ N, as required.



3. Open and Closed Sets in Euclidean Spaces (continued)

3.4. Closed Sets in Euclidean Spaces

Let X be a subset of Rn. A subset F of X is said to be closed in X
if and only if its complement X \ F in X is open in X . (Recall that
X \ F = {x ∈ X : x 6∈ F}.)

Example
The sets {(x , y , z) ∈ R3 : z ≥ c}, {(x , y , z) ∈ R3 : z ≤ c}, and
{(x , y , z) ∈ R3 : z = c} are closed sets in R3 for each real
number c , since the complements of these sets are open in R3.

Example
Let X be a subset of Rn, and let x0 be a point of X . Then the sets
{x ∈ X : |x− x0| ≤ r} and {x ∈ X : |x− x0| ≥ r} are closed for
each non-negative real number r . In particular, the set {x0}
consisting of the single point x0 is a closed set in X . (These results
follow immediately using Lemma 3.1 and Lemma 3.2 and the
definition of closed sets.)



3. Open and Closed Sets in Euclidean Spaces (continued)

Let A be some collection of subsets of a set X . Then

X \
⋃
S∈A

S =
⋂
S∈A

(X \ S), X \
⋂
S∈A

S =
⋃
S∈A

(X \ S)

(i.e., the complement of the union of some collection of subsets of
X is the intersection of the complements of those sets, and the
complement of the intersection of some collection of subsets of X
is the union of the complements of those sets).



3. Open and Closed Sets in Euclidean Spaces (continued)

Indeed let A be some collection of subsets of a set X , and let x be
a point of X . Then

x ∈ X \
⋃
S∈A

S ⇐⇒ x 6∈
⋃
S∈A

S

⇐⇒ for all S ∈ A, x 6∈ S

⇐⇒ for all S ∈ A, x ∈ X \ S
⇐⇒ x ∈

⋂
S∈A

(X \ S),

and therefore
X \

⋃
S∈A

S =
⋂
S∈A

(X \ S).



3. Open and Closed Sets in Euclidean Spaces (continued)

Again let x be a point of X . Then

x ∈ X \
⋂
S∈A

S ⇐⇒ x 6∈
⋂
S∈A

S

⇐⇒ there exists S ∈ A for which x 6∈ S

⇐⇒ there exists S ∈ A for which x ∈ X \ S
⇐⇒ x ∈

⋃
S∈A

(X \ S),

and therefore
X \

⋂
S∈A

S =
⋃
S∈A

(X \ S).

The following result therefore follows directly from Proposition 3.3.



3. Open and Closed Sets in Euclidean Spaces (continued)

Proposition 3.6

Let X be a subset of Rn. The collection of closed sets in X has the
following properties:—

(i) the empty set ∅ and the whole set X are both closed in X ;

(ii) the intersection of any collection of closed sets in X is itself
closed in X ;

(iii) the union of any finite collection of closed sets in X is itself
closed in X .



3. Open and Closed Sets in Euclidean Spaces (continued)

Lemma 3.7

Let X be a subset of Rn, and let F be a subset of X which is
closed in X . Let x1, x2, x3, . . . be a sequence of points of F which
converges to a point p of X . Then p ∈ F .

Proof
The complement X \ F of F in X is open, since F is closed.
Suppose that p were a point belonging to X \ F . It would then
follow from Lemma 3.5 that xj ∈ X \ F for all values of j greater
than some positive integer N, contradicting the fact that xj ∈ F
for all j . This contradiction shows that p must belong to F , as
required.



3. Open and Closed Sets in Euclidean Spaces (continued)

3.5. Closed Sets and Limit Points

Lemma 3.8

A subset F of n-dimensional Euclidean space Rn is closed in Rn if
and only if it contains its limit points.

Proof
Let F be a closed set in Rn and let p be a limit point of F . It
follows from Lemma 2.5 that there exists an infinite sequence of
points of F that converges to the point p. It then follows from
Lemma 3.7 that p ∈ F . Thus if the set F is closed then it contains
its limit points.



3. Open and Closed Sets in Euclidean Spaces (continued)

Conversely let F be a subset of Rn that contains its limit points.
Let p ∈ Rn \ F . Then p is not a limit point of F . It follows from
the definition of limit points that there exists some positive real
number δ for which

{x ∈ F : 0 < |x− p| < δ} = ∅.

It then follows from this that the open ball in Rn of radius δ about
the point p is contained in the complement of F . We conclude
therefore that the complement of F in Rn is open in Rn, and thus
F is closed in Rn, as required.
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