MA2321—Analysis in Several Variables School of Mathematics, Trinity College Michaelmas Term 2017 Lecture 5 (October 5, 2017)

David R. Wilkins

3. Open and Closed Sets in Euclidean Spaces

3.1. Open Sets in Euclidean Spaces

Definition

Given a point **p** of \mathbb{R}^n and a non-negative real number *r*, the open ball $B(\mathbf{p}, r)$ in \mathbb{R}^n of radius *r* about **p** is defined to be the subset of \mathbb{R}^n defined so that

$$B(\mathbf{p},r) = \{\mathbf{x} \in \mathbb{R}^n : |\mathbf{x} - \mathbf{p}| < r\}.$$

(Thus $B(\mathbf{p}, r)$ is the set consisting of all points of \mathbb{R}^n that lie within a sphere of radius r centred on the point \mathbf{p} .)

The open ball $B(\mathbf{p}, r)$ of radius r about a point \mathbf{p} of \mathbb{R}^n is bounded by the *sphere* of radius r about \mathbf{p} . This sphere is the set

$$\{\mathbf{x} \in \mathbb{R}^n : |\mathbf{x} - \mathbf{p}| = r\}.$$

Definition

A subset V of \mathbb{R}^n is said to be an *open set* (in \mathbb{R}^n) if, given any point \mathbf{p} of V, there exists some strictly positive real number δ such that $B(\mathbf{p}, \delta) \subset V$, where $B(\mathbf{p}, \delta)$ is the open ball in \mathbb{R}^n of radius δ about the point \mathbf{p} , defined so that

$$B(\mathbf{p},\delta) = \{\mathbf{x} \in \mathbb{R}^n : |\mathbf{x} - \mathbf{p}| < \delta\}.$$

Let $H = \{(x, y, z) \in \mathbb{R}^3 : z > c\}$, where *c* is some real number. Then *H* is an open set in \mathbb{R}^3 . Indeed let **p** be a point of *H*. Then $\mathbf{p} = (u, v, w)$, where w > c. Let $\delta = w - c$. If the distance from a point (x, y, z) to the point (u, v, w) is less than δ then $|z - w| < \delta$, and hence z > c, so that $(x, y, z) \in H$. Thus $B(\mathbf{p}, \delta) \subset H$, and therefore *H* is an open set. The previous example can be generalized. Given any integer i between 1 and n, and given any real number c_i , the sets

$$\{(x_1, x_2, \ldots, x_n) \in \mathbb{R}^n : x_i > c_i\}$$

and

$$\{(x_1, x_2, \ldots, x_n) \in \mathbb{R}^n : x_i < c_i\}$$

are open sets in \mathbb{R}^n .

Let

$$V = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 < 9\}.$$

Then the subset V of \mathbb{R}^3 is the open ball of radius 3 in \mathbb{R}^3 about the origin. This open ball is an open set. Indeed let \mathbf{x} be a point of V. Then $|\mathbf{x}| < 3$. Let $\delta = 3 - |\mathbf{x}|$. Then $\delta > 0$. Moreover if \mathbf{y} is a point of \mathbb{R}^3 that satisfies $|\mathbf{y} - \mathbf{x}| < \delta$ then

$$|\mathbf{y}| = |\mathbf{x} + (\mathbf{y} - \mathbf{x})| \le |\mathbf{x}| + |\mathbf{y} - \mathbf{x}| < |\mathbf{x}| + \delta = 3,$$

and therefore $\mathbf{y} \in V$. This proves that V is an open set.

More generally, an open ball of any positive radius about any point of a Euclidean space \mathbb{R}^n of any dimension *n* is an open set in that Euclidean space. A more general result is proved below (see Lemma 3.1).

3. Open and Closed Sets in Euclidean Spaces (continued)

3.2. Open Sets in Subsets of Euclidean Spaces

Definition

Let X be a subset of \mathbb{R}^n . Given a point **p** of X and a non-negative real number r, the open ball $B_X(\mathbf{p}, r)$ in X of radius r about **p** is defined to be the subset of X defined so that

$$B_X(\mathbf{p},r) = \{\mathbf{x} \in X : |\mathbf{x} - \mathbf{p}| < r\}.$$

(Thus $B_X(\mathbf{p}, r)$ is the set consisting of all points of X that lie within a sphere of radius r centred on the point \mathbf{p} .)

Definition

Let X be a subset of \mathbb{R}^n . A subset V of X is said to be *open* in X if, given any point **p** of V, there exists some strictly positive real number δ such that $B_X(\mathbf{p}, \delta) \subset V$, where $B_X(\mathbf{p}, \delta)$ is the open ball in X of radius δ about on the point **p**. The empty set \emptyset is also defined to be an open set in X.

Let U be an open set in \mathbb{R}^n . Then for any subset X of \mathbb{R}^n , the intersection $U \cap X$ is open in X. (This follows directly from the definitions.) Thus for example, let S^2 be the unit sphere in \mathbb{R}^3 , given by

$$S^2 = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 = 1\}$$

and let N be the subset of S^2 given by

$$N = \{(x, y, z) \in \mathbb{R}^n : x^2 + y^2 + z^2 = 1 \text{ and } z > 0\}.$$

Then N is open in S^2 , since $N = H \cap S^2$, where H is the open set in \mathbb{R}^3 given by

$$H = \{(x, y, z) \in \mathbb{R}^3 : z > 0\}.$$

Note that N is not itself an open set in \mathbb{R}^3 . Indeed the point (0,0,1) belongs to N, but, for any $\delta > 0$, the open ball (in \mathbb{R}^3) of radius δ about (0,0,1) contains points (x, y, z) for which $x^2 + y^2 + z^2 \neq 1$. Thus the open ball of radius δ about the point (0,0,1) is not a subset of N.

Lemma 3.1

Let X be a subset of \mathbb{R}^n , and let **p** be a point of X. Then, for any positive real number r, the open ball $B_X(\mathbf{p}, r)$ in X of radius r about **p** is open in X.

Proof

Let **x** be an element of $B_X(\mathbf{p}, r)$. We must show that there exists some $\delta > 0$ such that $B_X(\mathbf{x}, \delta) \subset B_X(\mathbf{p}, r)$. Let $\delta = r - |\mathbf{x} - \mathbf{p}|$. Then $\delta > 0$, since $|\mathbf{x} - \mathbf{p}| < r$. Moreover if $\mathbf{y} \in B_X(\mathbf{x}, \delta)$ then

$$|\mathbf{y} - \mathbf{p}| \le |\mathbf{y} - \mathbf{x}| + |\mathbf{x} - \mathbf{p}| < \delta + |\mathbf{x} - \mathbf{p}| = r,$$

by the Triangle Inequality, and hence $\mathbf{y} \in B_X(\mathbf{p}, r)$. Thus $B_X(\mathbf{x}, \delta) \subset B_X(\mathbf{p}, r)$. This shows that $B_X(\mathbf{p}, r)$ is an open set, as required.

Lemma 3.2

Let X be a subset of \mathbb{R}^n , and let **p** be a point of X. Then, for any non-negative real number r, the set $\{\mathbf{x} \in X : |\mathbf{x} - \mathbf{p}| > r\}$ is an open set in X.

Proof

Let **x** be a point of X satisfying $|\mathbf{x} - \mathbf{p}| > r$, and let **y** be any point of X satisfying $|\mathbf{y} - \mathbf{x}| < \delta$, where $\delta = |\mathbf{x} - \mathbf{p}| - r$. Then

$$|\mathbf{x}-\mathbf{p}| \leq |\mathbf{x}-\mathbf{y}| + |\mathbf{y}-\mathbf{p}|,$$

by the Triangle Inequality, and therefore

$$|\mathbf{y} - \mathbf{p}| \ge |\mathbf{x} - \mathbf{p}| - |\mathbf{y} - \mathbf{x}| > |\mathbf{x} - \mathbf{p}| - \delta = r.$$

Thus $B_X(\mathbf{x}, \delta)$ is contained in the given set. The result follows.

Proposition 3.3

Let X be a subset of \mathbb{R}^n . The collection of open sets in X has the following properties:—

- (i) the empty set \emptyset and the whole set X are both open in X;
- (ii) the union of any collection of open sets in X is itself open in X;
- (iii) the intersection of any finite collection of open sets in X is itself open in X.

Proof

The empty set \emptyset is an open set by convention. Moreover the definition of an open set is satisfied trivially by the whole set *X*. This proves (i).

Let \mathcal{A} be any collection of open sets in X, and let U denote the union of all the open sets belonging to \mathcal{A} . We must show that U is itself open in X. Let $\mathbf{x} \in U$. Then $\mathbf{x} \in V$ for some set V belonging to the collection \mathcal{A} . It follows that there exists some $\delta > 0$ such that $B_X(\mathbf{x}, \delta) \subset V$. But $V \subset U$, and thus $B_X(\mathbf{x}, \delta) \subset U$. This shows that U is open in X. This proves (ii).

Finally let $V_1, V_2, V_3, \ldots, V_k$ be a *finite* collection of subsets of X that are open in X, and let V denote the intersection $V_1 \cap V_2 \cap \cdots \cap V_k$ of these sets. Let $\mathbf{x} \in V$. Now $\mathbf{x} \in V_j$ for $j = 1, 2, \ldots, k$, and therefore there exist strictly positive real numbers $\delta_1, \delta_2, \ldots, \delta_k$ such that $B_X(\mathbf{x}, \delta_j) \subset V_j$ for $j = 1, 2, \ldots, k$. Let δ be the minimum of $\delta_1, \delta_2, \ldots, \delta_k$. Then $\delta > 0$. (This is where we need the fact that we are dealing with a finite collection of sets.) Now $B_X(\mathbf{x}, \delta) \subset B_X(\mathbf{x}, \delta_j) \subset V_j$ for $j = 1, 2, \ldots, k$, and thus $B_X(\mathbf{x}, \delta) \subset V$. Thus the intersection V of the sets V_1, V_2, \ldots, V_k is itself open in X. This proves (iii).

The set $\{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 < 4 \text{ and } z > 1\}$ is an open set in \mathbb{R}^3 , since it is the intersection of the open ball of radius 2 about the origin with the open set $\{(x, y, z) \in \mathbb{R}^3 : z > 1\}$.

The set $\{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 < 4 \text{ or } z > 1\}$ is an open set in \mathbb{R}^3 , since it is the union of the open ball of radius 2 about the origin with the open set $\{(x, y, z) \in \mathbb{R}^3 : z > 1\}$.

The set

$$\{(x, y, z) \in \mathbb{R}^3 : (x - n)^2 + y^2 + z^2 < \frac{1}{4} \text{ for some } n \in \mathbb{Z}\}$$

is an open set in \mathbb{R}^3 , since it is the union of the open balls of radius $\frac{1}{2}$ about the points (n, 0, 0) for all integers n.

For each positive integer k, let

$$V_k = \{(x, y, z) \in \mathbb{R}^3 : k^2(x^2 + y^2 + z^2) < 1\}.$$

Now each set V_k is an open ball of radius 1/k about the origin, and is therefore an open set in \mathbb{R}^3 . However the intersection of the sets V_k for all positive integers k is the set $\{(0,0,0)\}$, and thus the intersection of the sets V_k for all positive integers k is not itself an open set in \mathbb{R}^3 . This example demonstrates that infinite intersections of open sets need not be open.