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3. Open and Closed Sets in Euclidean Spaces

3. Open and Closed Sets in Euclidean Spaces

3.1. Open Sets in Euclidean Spaces

Definition

Given a point p of Rn and a non-negative real number r , the open
ball B(p, r) in Rn of radius r about p is defined to be the subset
of Rn defined so that

B(p, r) = {x ∈ Rn : |x− p| < r}.

(Thus B(p, r) is the set consisting of all points of Rn that lie
within a sphere of radius r centred on the point p.)

The open ball B(p, r) of radius r about a point p of Rn is bounded
by the sphere of radius r about p. This sphere is the set

{x ∈ Rn : |x− p| = r}.



3. Open and Closed Sets in Euclidean Spaces (continued)

Definition

A subset V of Rn is said to be an open set (in Rn) if, given any
point p of V , there exists some strictly positive real number δ such
that B(p, δ) ⊂ V , where B(p, δ) is the open ball in Rn of radius δ
about the point p, defined so that

B(p, δ) = {x ∈ Rn : |x− p| < δ}.



3. Open and Closed Sets in Euclidean Spaces (continued)

Example
Let H = {(x , y , z) ∈ R3 : z > c}, where c is some real number.
Then H is an open set in R3. Indeed let p be a point of H. Then
p = (u, v ,w), where w > c . Let δ = w − c . If the distance from a
point (x , y , z) to the point (u, v ,w) is less than δ then
|z − w | < δ, and hence z > c , so that (x , y , z) ∈ H. Thus
B(p, δ) ⊂ H, and therefore H is an open set.



3. Open and Closed Sets in Euclidean Spaces (continued)

The previous example can be generalized. Given any integer i
between 1 and n, and given any real number ci , the sets

{(x1, x2, . . . , xn) ∈ Rn : xi > ci}

and
{(x1, x2, . . . , xn) ∈ Rn : xi < ci}

are open sets in Rn.



3. Open and Closed Sets in Euclidean Spaces (continued)

Example
Let

V = {(x , y , z) ∈ R3 : x2 + y2 + z2 < 9}.

Then the subset V of R3 is the open ball of radius 3 in R3 about
the origin. This open ball is an open set. Indeed let x be a point of
V . Then |x| < 3. Let δ = 3− |x|. Then δ > 0. Moreover if y is a
point of R3 that satisfies |y − x| < δ then

|y| = |x + (y − x)| ≤ |x|+ |y − x| < |x|+ δ = 3,

and therefore y ∈ V . This proves that V is an open set.

More generally, an open ball of any positive radius about any point
of a Euclidean space Rn of any dimension n is an open set in that
Euclidean space. A more general result is proved below (see
Lemma 3.1).



3. Open and Closed Sets in Euclidean Spaces (continued)

3.2. Open Sets in Subsets of Euclidean Spaces

Definition

Let X be a subset of Rn. Given a point p of X and a non-negative
real number r , the open ball BX (p, r) in X of radius r about p is
defined to be the subset of X defined so that

BX (p, r) = {x ∈ X : |x− p| < r}.

(Thus BX (p, r) is the set consisting of all points of X that lie
within a sphere of radius r centred on the point p.)



3. Open and Closed Sets in Euclidean Spaces (continued)

Definition

Let X be a subset of Rn. A subset V of X is said to be open in X
if, given any point p of V , there exists some strictly positive real
number δ such that BX (p, δ) ⊂ V , where BX (p, δ) is the open ball
in X of radius δ about on the point p. The empty set ∅ is also
defined to be an open set in X .



3. Open and Closed Sets in Euclidean Spaces (continued)

Example
Let U be an open set in Rn. Then for any subset X of Rn, the
intersection U ∩ X is open in X . (This follows directly from the
definitions.) Thus for example, let S2 be the unit sphere in R3,
given by

S2 = {(x , y , z) ∈ R3 : x2 + y2 + z2 = 1}

and let N be the subset of S2 given by

N = {(x , y , z) ∈ Rn : x2 + y2 + z2 = 1 and z > 0}.

Then N is open in S2, since N = H ∩ S2, where H is the open set
in R3 given by

H = {(x , y , z) ∈ R3 : z > 0}.



3. Open and Closed Sets in Euclidean Spaces (continued)

Note that N is not itself an open set in R3. Indeed the point
(0, 0, 1) belongs to N, but, for any δ > 0, the open ball (in R3) of
radius δ about (0, 0, 1) contains points (x , y , z) for which
x2 + y2 + z2 6= 1. Thus the open ball of radius δ about the point
(0, 0, 1) is not a subset of N.



3. Open and Closed Sets in Euclidean Spaces (continued)

Lemma 3.1

Let X be a subset of Rn, and let p be a point of X . Then, for any
positive real number r , the open ball BX (p, r) in X of radius r
about p is open in X .

Proof
Let x be an element of BX (p, r). We must show that there exists
some δ > 0 such that BX (x, δ) ⊂ BX (p, r). Let δ = r − |x− p|.
Then δ > 0, since |x− p| < r . Moreover if y ∈ BX (x, δ) then

|y − p| ≤ |y − x|+ |x− p| < δ + |x− p| = r ,

by the Triangle Inequality, and hence y ∈ BX (p, r). Thus
BX (x, δ) ⊂ BX (p, r). This shows that BX (p, r) is an open set, as
required.



3. Open and Closed Sets in Euclidean Spaces (continued)

Lemma 3.2

Let X be a subset of Rn, and let p be a point of X . Then, for any
non-negative real number r , the set {x ∈ X : |x− p| > r} is an
open set in X .

Proof
Let x be a point of X satisfying |x− p| > r , and let y be any point
of X satisfying |y − x| < δ, where δ = |x− p| − r . Then

|x− p| ≤ |x− y|+ |y − p|,

by the Triangle Inequality, and therefore

|y − p| ≥ |x− p| − |y − x| > |x− p| − δ = r .

Thus BX (x, δ) is contained in the given set. The result follows.



3. Open and Closed Sets in Euclidean Spaces (continued)

Proposition 3.3

Let X be a subset of Rn. The collection of open sets in X has the
following properties:—

(i) the empty set ∅ and the whole set X are both open in X ;

(ii) the union of any collection of open sets in X is itself open in
X ;

(iii) the intersection of any finite collection of open sets in X is
itself open in X .



3. Open and Closed Sets in Euclidean Spaces (continued)

Proof
The empty set ∅ is an open set by convention. Moreover the
definition of an open set is satisfied trivially by the whole set X .
This proves (i).
Let A be any collection of open sets in X , and let U denote the
union of all the open sets belonging to A. We must show that U is
itself open in X . Let x ∈ U. Then x ∈ V for some set V belonging
to the collection A. It follows that there exists some δ > 0 such
that BX (x, δ) ⊂ V . But V ⊂ U, and thus BX (x, δ) ⊂ U. This
shows that U is open in X . This proves (ii).



3. Open and Closed Sets in Euclidean Spaces (continued)

Finally let V1,V2,V3, . . . ,Vk be a finite collection of subsets of X
that are open in X , and let V denote the intersection
V1 ∩ V2 ∩ · · · ∩ Vk of these sets. Let x ∈ V . Now x ∈ Vj for
j = 1, 2, . . . , k , and therefore there exist strictly positive real
numbers δ1, δ2, . . . , δk such that BX (x, δj) ⊂ Vj for j = 1, 2, . . . , k.
Let δ be the minimum of δ1, δ2, . . . , δk . Then δ > 0. (This is
where we need the fact that we are dealing with a finite collection
of sets.) Now BX (x, δ) ⊂ BX (x, δj) ⊂ Vj for j = 1, 2, . . . , k, and
thus BX (x, δ) ⊂ V . Thus the intersection V of the sets
V1,V2, . . . ,Vk is itself open in X . This proves (iii).



3. Open and Closed Sets in Euclidean Spaces (continued)

Example
The set {(x , y , z) ∈ R3 : x2 + y2 + z2 < 4 and z > 1} is an open
set in R3, since it is the intersection of the open ball of radius 2
about the origin with the open set {(x , y , z) ∈ R3 : z > 1}.



3. Open and Closed Sets in Euclidean Spaces (continued)

Example
The set {(x , y , z) ∈ R3 : x2 + y2 + z2 < 4 or z > 1} is an open set
in R3, since it is the union of the open ball of radius 2 about the
origin with the open set {(x , y , z) ∈ R3 : z > 1}.



3. Open and Closed Sets in Euclidean Spaces (continued)

Example
The set

{(x , y , z) ∈ R3 : (x − n)2 + y2 + z2 < 1
4 for some n ∈ Z}

is an open set in R3, since it is the union of the open balls of
radius 1

2 about the points (n, 0, 0) for all integers n.



3. Open and Closed Sets in Euclidean Spaces (continued)

Example
For each positive integer k , let

Vk = {(x , y , z) ∈ R3 : k2(x2 + y2 + z2) < 1}.

Now each set Vk is an open ball of radius 1/k about the origin,
and is therefore an open set in R3. However the intersection of the
sets Vk for all positive integers k is the set {(0, 0, 0)}, and thus the
intersection of the sets Vk for all positive integers k is not itself an
open set in R3. This example demonstrates that infinite
intersections of open sets need not be open.
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