MA2321—Analysis in Several Variables School of Mathematics, Trinity College Michaelmas Term 2017 Lecture 3 (September 28, 2017)

David R. Wilkins

2. Convergence in Euclidean Spaces

2.1. Basic Properties of Vectors and Norms

We denote by \mathbb{R}^n the set consisting of all *n*-tuples (x_1, x_2, \ldots, x_n) of real numbers. The set \mathbb{R}^n represents *n*-dimensional *Euclidean* space (with respect to the standard Cartesian coordinate system). Let **x** and **y** be elements of \mathbb{R}^n , where

$$\mathbf{x} = (x_1, x_2, \dots, x_n), \quad \mathbf{y} = (y_1, y_2, \dots, y_n),$$

and let λ be a real number. We define

$$\begin{aligned} \mathbf{x} + \mathbf{y} &= (x_1 + y_1, x_2 + y_2, \dots, x_n + y_n), \\ \mathbf{x} - \mathbf{y} &= (x_1 - y_1, x_2 - y_2, \dots, x_n - y_n), \\ \lambda \mathbf{x} &= (\lambda x_1, \lambda x_2, \dots, \lambda x_n), \\ \mathbf{x} \cdot \mathbf{y} &= x_1 y_1 + x_2 y_2 + \dots + x_n y_n, \\ |\mathbf{x}| &= \sqrt{x_1^2 + x_2^2 + \dots + x_n^2}. \end{aligned}$$

The quantity $\mathbf{x} \cdot \mathbf{y}$ is the scalar product (or inner product) of \mathbf{x} and \mathbf{y} , and the quantity $|\mathbf{x}|$ is the Euclidean norm of \mathbf{x} . Note that $|\mathbf{x}|^2 = \mathbf{x} \cdot \mathbf{x}$. The Euclidean distance between two points \mathbf{x} and \mathbf{y} of \mathbb{R}^n is defined to be the Euclidean norm $|\mathbf{y} - \mathbf{x}|$ of the vector $\mathbf{y} - \mathbf{x}$.

Proposition 2.1

(Schwarz's Inequality) Let \mathbf{x} and \mathbf{y} be elements of \mathbb{R}^n . Then $|\mathbf{x} \cdot \mathbf{y}| \leq |\mathbf{x}| |\mathbf{y}|$.

Proof

We note that $|\lambda \mathbf{x} + \mu \mathbf{y}|^2 \ge 0$ for all real numbers λ and μ . But

$$|\lambda \mathbf{x} + \mu \mathbf{y}|^2 = (\lambda \mathbf{x} + \mu \mathbf{y}) \cdot (\lambda \mathbf{x} + \mu \mathbf{y}) = \lambda^2 |\mathbf{x}|^2 + 2\lambda \mu \mathbf{x} \cdot \mathbf{y} + \mu^2 |\mathbf{y}|^2.$$

Therefore $\lambda^2 |\mathbf{x}|^2 + 2\lambda \mu \mathbf{x} \cdot \mathbf{y} + \mu^2 |\mathbf{y}|^2 \ge 0$ for all real numbers λ and μ . In particular, suppose that $\lambda = |\mathbf{y}|^2$ and $\mu = -\mathbf{x} \cdot \mathbf{y}$. We conclude that

$$|\boldsymbol{y}|^4|\boldsymbol{x}|^2-2|\boldsymbol{y}|^2(\boldsymbol{x}\cdot\boldsymbol{y})^2+(\boldsymbol{x}\cdot\boldsymbol{y})^2|\boldsymbol{y}|^2\geq 0,$$

so that $\left(|{\bf x}|^2|{\bf y}|^2-({\bf x}\cdot{\bf y})^2\right)|{\bf y}|^2\geq 0.$ Thus if ${\bf y}\neq {\bf 0}$ then $|{\bf y}|>0,$ and hence

$$|\mathbf{x}|^2 |\mathbf{y}|^2 - (\mathbf{x} \cdot \mathbf{y})^2 \ge 0.$$

But this inequality is trivially satisfied when $\mathbf{y} = \mathbf{0}$. Thus $|\mathbf{x} \cdot \mathbf{y}| \le |\mathbf{x}| |\mathbf{y}|$, as required.

Proposition 2.2

(Triangle Inequality) Let x and y be elements of \mathbb{R}^n . Then $|\mathbf{x} + \mathbf{y}| \le |\mathbf{x}| + |\mathbf{y}|$.

Proof

Using Schwarz's Inequality, we see that

$$\begin{aligned} |\mathbf{x} + \mathbf{y}|^2 &= (\mathbf{x} + \mathbf{y}).(\mathbf{x} + \mathbf{y}) = |\mathbf{x}|^2 + |\mathbf{y}|^2 + 2\mathbf{x} \cdot \mathbf{y} \\ &\leq |\mathbf{x}|^2 + |\mathbf{y}|^2 + 2|\mathbf{x}||\mathbf{y}| = (|\mathbf{x}| + |\mathbf{y}|)^2. \end{aligned}$$

The result follows directly.

It follows immediately from the Triangle Inequality (Proposition 2.2) that

$$|\mathbf{z} - \mathbf{x}| \leq |\mathbf{z} - \mathbf{y}| + |\mathbf{y} - \mathbf{x}|$$

for all points \mathbf{x} , \mathbf{y} and \mathbf{z} of \mathbb{R}^n . This important inequality expresses the geometric fact that the length of any triangle in a Euclidean space is less than or equal to the sum of the lengths of the other two sides.

2. Convergence in Euclidean Spaces (continued)

2.2. Convergence of Sequences in Euclidean Spaces

Definition

A sequence $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \ldots$ of points in \mathbb{R}^n is said to *converge* to a point \mathbf{p} if and only if the following criterion is satisfied:—

given any real number ε satisfying $\varepsilon > 0$ there exists some positive integer N such that $|\mathbf{x}_j - \mathbf{p}| < \varepsilon$ whenever $j \ge N$.

We refer to \mathbf{p} as the *limit* $\lim_{j \to +\infty} \mathbf{x}_j$ of the sequence $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \ldots$

Lemma 2.3

Let **p** be a point of \mathbb{R}^n , where $\mathbf{p} = (p_1, p_2, ..., p_n)$. Then a sequence $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, ...$ of points in \mathbb{R}^n converges to **p** if and only if the *i*th components of the elements of this sequence converge to p_i for i = 1, 2, ..., n.

Proof

Let $(\mathbf{x}_j)_i$ denote the *i*th components of \mathbf{x}_j . Then $|(\mathbf{x}_j)_i - p_i| \le |\mathbf{x}_j - \mathbf{p}|$ for i = 1, 2, ..., n and for all positive integers *j*. It follows directly from the definition of convergence that if $\mathbf{x}_j \to \mathbf{p}$ as $j \to +\infty$ then $(\mathbf{x}_j)_i \to p_i$ as $j \to +\infty$. Conversely suppose that, for each integer *i* between 1 and *n*, $(\mathbf{x}_j)_i \to p_i$ as $j \to +\infty$. Let $\varepsilon > 0$ be given. Then there exist positive integers N_1, N_2, \ldots, N_n such that $|(\mathbf{x}_j)_i - p_i| < \varepsilon/\sqrt{n}$ whenever $j \ge N_i$. Let *N* be the maximum of N_1, N_2, \ldots, N_n . If $j \ge N$ then $j \ge N_i$ for $i = 1, 2, \ldots, n$, and therefore

$$|\mathbf{x}_j - \mathbf{p}|^2 = \sum_{i=1}^n ((\mathbf{x}_j)_i - p_i)^2 < n \left(\frac{\varepsilon}{\sqrt{n}}\right)^2 = \varepsilon^2$$

Thus $\mathbf{x}_j \rightarrow \mathbf{p}$ as $j \rightarrow +\infty$, as required.

2.3. Limit Points of Subsets of Euclidean Spaces

Definition

Let X be a subset of *n*-dimensional Euclidean space \mathbb{R}^n , and let $\mathbf{p} \in \mathbb{R}^n$. The point \mathbf{p} is said to be a *limit point* of the set X if, given any $\delta > 0$, there exists some point \mathbf{x} of X such that $0 < |\mathbf{x} - \mathbf{p}| < \delta$.

Lemma 2.4

Let X be a subset of n-dimensional Euclidean space \mathbb{R}^n . A point **p** is a limit point of the set X if and only if, given any positive real number δ , the set

$$\{\mathbf{x} \in X : |\mathbf{x} - \mathbf{p}| < \delta\}$$

is an infinite set.

Proof

Suppose that, given any positive real number δ , the set

$$\{\mathbf{x} \in X : |\mathbf{x} - \mathbf{p}| < \delta\}$$

is an infinite set. Then, for each positive real number δ , the set thus determined by δ must consist of more than just the single point **p**, and therefore there exists $\mathbf{x} \in X$ satisfying $0 < |\mathbf{x} - \mathbf{p}| < \delta$. Thus **p** is a limit point of the set X.

Now let **p** be an arbitrary point of \mathbb{R}^n . Suppose that there exists some positive real number δ_0 for which the set

$$\{\mathbf{x} \in X : |\mathbf{x} - \mathbf{p}| < \delta_0\}$$

is finite. If this set does not contain any points of X distinct from the point **p** then **p** is not a limit point of the set X. Otherwise let δ be the minimum value of $|\mathbf{x} - \mathbf{p}|$ as **x** ranges over all points of the finite set

$$\{\mathbf{x} \in X : |\mathbf{x} - \mathbf{p}| < \delta_0\}$$

that are distinct from **p**. Then $\delta > 0$, and $|\mathbf{x} - \mathbf{p}| \ge \delta$ for all $\mathbf{x} \in X$ satisfying $\mathbf{x} \neq \mathbf{p}$. Thus the point **p** is not a limit point of the set X. The result follows.

Lemma 2.5

Let X be a subset of n-dimensional Euclidean space \mathbb{R}^n and let $\mathbf{p} \in \mathbb{R}^n$. Then the point \mathbf{p} is a limit point of the set X if and only if there exists an infinite sequence $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \ldots$ of points of X, all distinct from the point \mathbf{p} , such that $\lim_{j \to +\infty} \mathbf{x}_j = \mathbf{p}$.

Proof

Suppose that **p** is a limit point of *X*. Then, for each positive integer *j*, there exists a point \mathbf{x}_j of *X* for which $0 < |\mathbf{x}_j - \mathbf{p}| < 1/j$. The points \mathbf{x}_j satisfying this condition then constitute an infinite sequence $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \ldots$ of points of *X*, all distinct from the point **p**, that converge to the point **p**.

Conversely suppose that **p** is some point of \mathbb{R}^n that is the limit of some infinite sequence $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \ldots$ of points of X that are all distinct from the point **p**. Let some positive number δ be given. The definition of convergence ensures that there exists a positive integer N such that $|\mathbf{x}_j - \mathbf{p}| < \delta$ whenever $j \ge N$. Moreover $|\mathbf{x}_j - \mathbf{p}| > 0$ for all positive integers *j*. Thus $0 < |\mathbf{x}_j - \mathbf{p}| < \delta$ when the positive integer *j* is sufficiently large. Thus the point **p** is a limit point of the set X, as required.

Definition

Let X be a subset of *n*-dimensional Euclidean space \mathbb{R}^n . A point **p** of X is said to be an *isolated point* of X if it is not a limit point of X.

Let X be a subset of *n*-dimensional Euclidean space \mathbb{R}^n , and let $\mathbf{p} \in X$. It follows immediately from the definition of isolated points that the point \mathbf{p} is an isolated point of the set X if and only if there exists some strictly positive real number δ for which

$$\{\mathbf{x} \in X : |\mathbf{x} - \mathbf{p}| < \delta\} = \{\mathbf{p}\}.$$