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2. Convergence in Euclidean Spaces

2. Convergence in Euclidean Spaces

2.1. Basic Properties of Vectors and Norms

We denote by Rn the set consisting of all n-tuples (x1, x2, . . . , xn)
of real numbers. The set Rn represents n-dimensional Euclidean
space (with respect to the standard Cartesian coordinate system).
Let x and y be elements of Rn, where

x = (x1, x2, . . . , xn), y = (y1, y2, . . . , yn),

and let λ be a real number. We define

x + y = (x1 + y1, x2 + y2, . . . , xn + yn),

x− y = (x1 − y1, x2 − y2, . . . , xn − yn),

λx = (λx1, λx2, . . . , λxn),

x · y = x1y1 + x2y2 + · · ·+ xnyn,

|x| =
√
x21 + x22 + · · ·+ x2n .
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The quantity x · y is the scalar product (or inner product) of x and
y, and the quantity |x| is the Euclidean norm of x. Note that
|x|2 = x · x. The Euclidean distance between two points x and y of
Rn is defined to be the Euclidean norm |y − x| of the vector y − x.

Proposition 2.1

(Schwarz’s Inequality) Let x and y be elements of Rn. Then
|x · y| ≤ |x||y|.
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Proof
We note that |λx + µy|2 ≥ 0 for all real numbers λ and µ. But

|λx + µy|2 = (λx + µy).(λx + µy) = λ2|x|2 + 2λµx · y + µ2|y|2.

Therefore λ2|x|2 + 2λµx · y + µ2|y|2 ≥ 0 for all real numbers λ and
µ. In particular, suppose that λ = |y|2 and µ = −x · y. We
conclude that

|y|4|x|2 − 2|y|2(x · y)2 + (x · y)2|y|2 ≥ 0,

so that
(
|x|2|y|2 − (x · y)2

)
|y|2 ≥ 0. Thus if y 6= 0 then |y| > 0,

and hence
|x|2|y|2 − (x · y)2 ≥ 0.

But this inequality is trivially satisfied when y = 0. Thus
|x · y| ≤ |x||y|, as required.
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Proposition 2.2

(Triangle Inequality) Let x and y be elements of Rn. Then
|x + y| ≤ |x|+ |y|.

Proof
Using Schwarz’s Inequality, we see that

|x + y|2 = (x + y).(x + y) = |x|2 + |y|2 + 2x · y
≤ |x|2 + |y|2 + 2|x||y| = (|x|+ |y|)2.

The result follows directly.
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It follows immediately from the Triangle Inequality
(Proposition 2.2) that

|z− x| ≤ |z− y|+ |y − x|

for all points x, y and z of Rn. This important inequality expresses
the geometric fact that the length of any triangle in a Euclidean
space is less than or equal to the sum of the lengths of the other
two sides.
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2.2. Convergence of Sequences in Euclidean Spaces

Definition

A sequence x1, x2, x3, . . . of points in Rn is said to converge to a
point p if and only if the following criterion is satisfied:—

given any real number ε satisfying ε > 0 there exists
some positive integer N such that |xj − p| < ε whenever
j ≥ N.

We refer to p as the limit lim
j→+∞

xj of the sequence x1, x2, x3, . . . .
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Lemma 2.3

Let p be a point of Rn, where p = (p1, p2, . . . , pn). Then a
sequence x1, x2, x3, . . . of points in Rn converges to p if and only
if the ith components of the elements of this sequence converge to
pi for i = 1, 2, . . . , n.

Proof
Let (xj)i denote the ith components of xj . Then
|(xj)i − pi | ≤ |xj − p| for i = 1, 2, . . . , n and for all positive
integers j . It follows directly from the definition of convergence
that if xj → p as j → +∞ then (xj)i → pi as j → +∞.
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Conversely suppose that, for each integer i between 1 and n,
(xj)i → pi as j → +∞. Let ε > 0 be given. Then there exist
positive integers N1,N2, . . . ,Nn such that |(xj)i − pi | < ε/

√
n

whenever j ≥ Ni . Let N be the maximum of N1,N2, . . . ,Nn. If
j ≥ N then j ≥ Ni for i = 1, 2, . . . , n, and therefore

|xj − p|2 =
n∑

i=1

((xj)i − pi )
2 < n

(
ε√
n

)2

= ε2.

Thus xj → p as j → +∞, as required.
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2.3. Limit Points of Subsets of Euclidean Spaces

Definition

Let X be a subset of n-dimensional Euclidean space Rn, and let
p ∈ Rn. The point p is said to be a limit point of the set X if,
given any δ > 0, there exists some point x of X such that
0 < |x− p| < δ.
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Lemma 2.4

Let X be a subset of n-dimensional Euclidean space Rn. A point p
is a limit point of the set X if and only if, given any positive real
number δ, the set

{x ∈ X : |x− p| < δ}

is an infinite set.

Proof
Suppose that, given any positive real number δ, the set

{x ∈ X : |x− p| < δ}

is an infinite set. Then, for each positive real number δ, the set
thus determined by δ must consist of more than just the single
point p, and therefore there exists x ∈ X satisfying
0 < |x− p| < δ. Thus p is a limit point of the set X .



2. Convergence in Euclidean Spaces (continued)

Now let p be an arbitrary point of Rn. Suppose that there exists
some positive real number δ0 for which the set

{x ∈ X : |x− p| < δ0}

is finite. If this set does not contain any points of X distinct from
the point p then p is not a limit point of the set X . Otherwise let
δ be the minimum value of |x− p| as x ranges over all points of
the finite set

{x ∈ X : |x− p| < δ0}

that are distinct from p. Then δ > 0, and |x− p| ≥ δ for all x ∈ X
satisfying x 6= p. Thus the point p is not a limit point of the
set X . The result follows.
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Lemma 2.5

Let X be a subset of n-dimensional Euclidean space Rn and let
p ∈ Rn. Then the point p is a limit point of the set X if and only
if there exists an infinite sequence x1, x2, x3, . . . of points of X , all
distinct from the point p, such that lim

j→+∞
xj = p.
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Proof
Suppose that p is a limit point of X . Then, for each positive
integer j , there exists a point xj of X for which 0 < |xj − p| < 1/j .
The points xj satisfying this condition then constitute an infinite
sequence x1, x2, x3, . . . of points of X , all distinct from the point p,
that converge to the point p.

Conversely suppose that p is some point of Rn that is the limit of
some infinite sequence x1, x2, x3, . . . of points of X that are all
distinct from the point p. Let some positive number δ be given.
The definition of convergence ensures that there exists a positive
integer N such that |xj − p| < δ whenever j ≥ N. Moreover
|xj − p| > 0 for all positive integers j . Thus 0 < |xj − p| < δ when
the positive integer j is sufficiently large. Thus the point p is a
limit point of the set X , as required.
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Definition

Let X be a subset of n-dimensional Euclidean space Rn. A point p
of X is said to be an isolated point of X if it is not a limit point of
X .

Let X be a subset of n-dimensional Euclidean space Rn, and let
p ∈ X . It follows immediately from the definition of isolated points
that the point p is an isolated point of the set X if and only if
there exists some strictly positive real number δ for which

{x ∈ X : |x− p| < δ} = {p}.
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