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1. The Real Number System (continued)

1.7. Absolute Values of Real Numbers

Let x be a real number. The absolute value |x | of x is defined so
that

|x | =

{
x if x ≥ 0;
−x if x < 0;

Lemma 1.1

Let u and v be real numbers. Then |u + v | ≤ |u|+ |v | and
|uv | = |u| |v |.



1. The Real Number System (continued)

Proof
Let u and v be real numbers. Then

−|u| ≤ u ≤ |u| and − |v | ≤ v ≤ |v |.

On adding inequalities, we find that

−(|u|+ |v |) = −|u| − |v | ≤ u + v ≤ |u|+ |v |,

and thus

u + v ≤ |u|+ |v | and − (u + v) ≤ |u|+ |v |.

Now the value of |u + v | is equal to at least one of the numbers
u + v and −(u + v). It follows that

|u + v | ≤ |u|+ |v |

for all real numbers u and v .
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Next we note that |u| |v | is the product of one or other of the
numbers u and −u with one or other of the numbers v and −v ,
and therefore its value is equal either to uv or to −uv . Because
both |u| |v | and |uv | are non-negative, we conclude that
|uv | = |u| |v |, as required.



1. The Real Number System (continued)

Lemma 1.2

Let u and v be real numbers. Then
∣∣∣|u| − |v |∣∣∣ ≤ |u − v |.

Proof
It follows from Lemma 1.1 that

|u| = |v + (u − v)| ≤ |v |+ |u − v |.

Therefore |u| − |v | ≤ |u − v |. Interchanging u and v , we find also
that

|v | − |u| ≤ |v − u| = |u − v |.

Now
∣∣∣|u|− |v |∣∣∣ is equal to one or other of the real numbers |u|− |v |

and |v | − |u|. It follows that
∣∣∣|u| − |v |∣∣∣ ≤ |u − v |, as required.



1. The Real Number System (continued)

1.8. Convergence of Infinite Sequences of Real Numbers

An infinite sequence x1, x2, x3, . . . of real numbers associates to
each positive integer j a corresponding real number xj .

Definition

An infinite sequence x1, x2, x3, . . . of real numbers is said to
converge to some real number p if and only if the following
criterion is satisfied:

given any strictly positive real number ε, there exists
some positive integer N such that |xj − p| < ε for all
positive integers j satisfying j ≥ N.

If an infinite sequence x1, x2, x3, . . . of real numbers converges to
some real number p, then p is said to be the limit of the sequence,
and we can indicate the convergence of the infinite sequence to p
by writing ‘xj → p as j → +∞’, or by writing ‘ lim

j→+∞
xj = p’.
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Let x and p be real numbers, and let ε be a strictly positive real
number. Then |x − p| < ε if and only if both x − p < ε and
p − x < ε. It follows that |x − p| < ε if and only if
p − ε < x < p + ε. The condition |x − p| < ε essentially requires
that the value of the real number x should agree with p to within
an error of at most ε. An infinite sequence x1, x2, x3, . . . of real
numbers converges to some real number p if and only if, given any
positive real number ε, there exists some positive integer N such
that p − ε < xj < p + ε for all positive integers j satisfying j ≥ N.
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Definition

We say that an infinite sequence x1, x2, x3, . . . of real numbers is
bounded above if there exists some real number B such that
xj ≤ B for all positive integers j . Similarly we say that this
sequence is bounded below if there exists some real number A such
that xj ≥ A for all positive integers j . A sequence is said to be
bounded if it is bounded above and bounded below. Thus a
sequence is bounded if and only if there exist real numbers A
and B such that A ≤ xj ≤ B for all positive integers j .



1. The Real Number System (continued)

Lemma 1.3

Every convergent sequence of real numbers is bounded.

Proof
Let x1, x2, x3, . . . be a sequence of real numbers converging to
some real number p. On applying the formal definition of
convergence (with ε = 1), we deduce the existence of some
positive integer N such that p − 1 < xj < p + 1 for all j ≥ N. But
then A ≤ xj ≤ B for all positive integers j , where A is the
minimum of x1, x2, . . . , xN−1 and p − 1, and B is the maximum of
x1, x2, . . . , xN−1 and p + 1.



1. The Real Number System (continued)

Proposition 1.4

Let x1, x2, x3, . . . and y1, y2, y3, be convergent infinite sequences
of real numbers. Then the sum and difference of these sequences
are convergent, and

lim
j→+∞

(xj + yj) = lim
j→+∞

xj + lim
j→+∞

yj ,

lim
j→+∞

(xj − yj) = lim
j→+∞

xj − lim
j→+∞

yj .

Proof
Throughout this proof let p = lim

j→+∞
xj and q = lim

j→+∞
yj . It

follows directly from the definition of limits that lim
j→+∞

(−yj) = −q.
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Let some strictly positive real number ε be given. We must show
that there exists some positive integer N such that
|xj + yj − (p + q)| < ε whenever j ≥ N. Now xj → p as j → +∞,
and therefore, given any strictly positive real number ε1, there
exists some positive integer N1 with the property that |xj − p| < ε1
whenever j ≥ N1. In particular, there exists a positive integer N1

with the property that |xj − p| < 1
2ε whenever j ≥ N1. (To see

this, let ε1 = 1
2ε.) Similarly there exists some positive integer N2

such that |yj − q| < 1
2ε whenever j ≥ N2. Let N be the maximum

of N1 and N2. If j ≥ N then

|xj + yj − (p + q)| = |(xj − p) + (yj − q)| ≤ |xj − p|+ |yj − q|
< 1

2ε + 1
2ε = ε.

Thus xj + yj → p + q as j → +∞.

On replacing yj by −yj for all positive integers j , and using the
result that −yj → −q as j → +∞, we see that Thus
xj − yj → p − q as j → +∞, as required.
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Lemma 1.5

Let x1, x2, x3, . . . be a convergent infinite sequence of real numbers,
and let c be a real number. Then

lim
j→+∞

(cxj) = c lim
j→+∞

xj .

Proof
Let some strictly positive real number ε be given. Then a strictly
positive real number ε1 can be chosen so that |c| ε1 ≤ ε. There
then exists some positive integer N such that |xj − p| < ε1
whenever j ≥ N, where p = lim

j→+∞
xj . But then

|cxj − cp| < |c | ε1 ≤ ε

whenever j ≥ N. We conclude that lim
j→+∞

cxj = cp, as

required.
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Proposition 1.6

Let x1, x2, x3, . . . and y1, y2, y3, be convergent infinite sequences
of real numbers. Then the product of these sequences is
convergent, and

lim
j→+∞

(xjyj) =

(
lim

j→+∞
xj

)(
lim

j→+∞
yj

)
.

Proof
Let uj = xj − p and vj = yj − q for all positive integers j where
p = lim

j→+∞
xj and q = lim

j→+∞
yj . Then

lim
j→+∞

(ujvj) = lim
j→+∞

(xjyj − xjq − pyj + pq)

= lim
j→+∞

(xjyj)− q lim
j→+∞

xj − p lim
j→+∞

yj + pq

= lim
j→+∞

(xjyj)− pq.
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Let some strictly positive real number ε be given. It follows from
the definition of limits that lim

j→+∞
uj = 0 and lim

j→+∞
vj = 0.

Therefore there exist positive integers N1 and N2 such that
|uj | <

√
ε whenever j ≥ N1 and |vj | <

√
ε whenever j ≥ N2. Let N

be the maximum of N1 and N2. If j ≥ N then |ujvj | < ε. Thus
lim

j→+∞
ujvj = 0, and therefore lim

j→+∞
(xjyj)− pq = 0. The result

follows.
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Proposition 1.7

Let x1, x2, x3, . . . and y1, y2, y3, be convergent infinite sequences
of real numbers, where yj 6= 0 for all positive integers j and

lim
j→+∞

yj 6= 0. Then the quotient of the sequences (xj) and (yj) is

convergent, and

lim
j→+∞

xj
yj

=

lim
j→+∞

xj

lim
j→+∞

yj
.



1. The Real Number System (continued)

Proof
Let p = lim

j→+∞
xj and Let q = lim

j→+∞
yj . Then

xj
yj
− p

q
=

qxj − pyj
qyj

for all positive integers j . Now there exists some positive
integer N1 such that |yj − q| < 1

2 |q| whenever j ≥ N1. Then
|yj | ≥ 1

2 |q| whenever j ≥ N1, and therefore∣∣∣∣xjyj − p

q

∣∣∣∣ ≤ 2

|q|2
|qxj − pyj |

whenever j ≥ N1.
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Let some strictly positive real number ε be given. Applying
Lemma 1.5 and Proposition 1.4, we find that

lim
j→+∞

(qxj − pyj) = q lim
j→+∞

xj − p lim
j→+∞

yj = qp − pq = 0.

Therefore there exists some positive integer N satisfying N ≥ N1

with the property that

|qxj − pyj | < 1
2 |q|

2ε

whenever j ≥ N. But then ∣∣∣∣xjyj − p

q

∣∣∣∣ < ε

whenever j ≥ N. Thus

lim
j→+∞

xj
yj

=
p

q
,

as required.
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1.9. Monotonic Sequences

An infinite sequence x1, x2, x3, . . . of real numbers is said to be
strictly increasing if xj+1 > xj for all positive integers j , strictly
decreasing if xj+1 < xj for all positive integers j , non-decreasing if
xj+1 ≥ xj for all positive integers j , non-increasing if xj+1 ≤ xj for
all positive integers j . A sequence satisfying any one of these
conditions is said to be monotonic; thus a monotonic sequence is
either non-decreasing or non-increasing.
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Theorem 1.8

Any non-decreasing sequence of real numbers that is bounded
above is convergent. Similarly any non-increasing sequence of real
numbers that is bounded below is convergent.

Proof
Let x1, x2, x3, . . . be a non-decreasing sequence of real numbers
that is bounded above. It follows from the Least Upper Bound
Axiom that there exists a least upper bound p for the set
{xj : j ∈ N}. We claim that the sequence converges to p.
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Let some strictly positive real number ε be given. We must show
that there exists some positive integer N such that |xj − p| < ε
whenever j ≥ N. Now p − ε is not an upper bound for the set
{xj : j ∈ N} (since p is the least upper bound), and therefore there
must exist some positive integer N such that xN > p− ε. But then
p − ε < xj ≤ p whenever j ≥ N, since the sequence is
non-decreasing and bounded above by p. Thus |xj − p| < ε
whenever j ≥ N. Therefore xj → p as j → +∞, as required.
If the sequence x1, x2, x3, . . . is non-increasing and bounded below
then the sequence −x1,−x2,−x3, . . . is non-decreasing and
bounded above, and is therefore convergent. It follows that the
sequence x1, x2, x3, . . . is also convergent.
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1.10. Subsequences of Sequences of Real Numbers

Definition

Let x1, x2, x3, . . . be an infinite sequence of real numbers. A
subsequence of this infinite sequence is a sequence of the form
xj1 , xj2 , xj3 , . . . where j1, j2, j3, . . . is an infinite sequence of positive
integers with

j1 < j2 < j3 < · · · .

Let x1, x2, x3, . . . be an infinite sequence of real numbers. The
following sequences are examples of subsequences of the above
sequence:—

x1, x3, x5, x7, . . .

x1, x4, x9, x16, . . .
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Theorem 1.9 (Bolzano-Weierstrass)

Every bounded sequence of real numbers has a convergent
subsequence.

Proof
Let a1, a2, a3, . . . be a bounded sequence of real numbers. We
define a peak index to be a positive integer j with the property
that aj ≥ ak for all positive integers k satisfying k ≥ j . Thus a
positive integer j is a peak index if and only if the jth member of
the infinite sequence a1, a2, a3, . . . is greater than or equal to all
succeeding members of the sequence. Let S be the set of all peak
indices. Then

S = {j ∈ N : aj ≥ ak for all k ≥ j}.
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First let us suppose that the set S of peak indices is infinite.
Arrange the elements of S in increasing order so that
S = {j1, j2, j3, j4, . . .}, where j1 < j2 < j3 < j4 < · · · . It follows
from the definition of peak indices that aj1 ≥ aj2 ≥ aj3 ≥ aj4 ≥ · · · .
Thus aj1 , aj2 , aj3 , . . . is a non-increasing subsequence of the original
sequence a1, a2, a3, . . .. This subsequence is bounded below (since
the original sequence is bounded). It follows from Theorem 1.8
that aj1 , aj2 , aj3 , . . . is a convergent subsequence of the original
sequence.
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Now suppose that the set S of peak indices is finite. Choose a
positive integer j1 which is greater than every peak index. Then j1
is not a peak index. Therefore there must exist some positive
integer j2 satisfying j2 > j1 such that aj2 > aj1 . Moreover j2 is not
a peak index (because j2 is greater than j1 and j1 in turn is greater
than every peak index). Therefore there must exist some positive
integer j3 satisfying j3 > j2 such that aj3 > aj2 . We can continue in
this way to construct (by induction on j) a strictly increasing
subsequence aj1 , aj2 , aj3 , . . . of our original sequence. This
increasing subsequence is bounded above (since the original
sequence is bounded) and thus is convergent, by Theorem 1.8.
This completes the proof of the Bolzano-Weierstrass Theorem.
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