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1. The Real Number System (continued)

1.7. Absolute Values of Real Numbers
Let x be a real number. The absolute value |x| of x is defined so

that
x| = X if x> 0;
]l —x ifx<O0;

Let u and v be real numbers. Then |u+ v| < |u| + |v| and
|luv| = |u| [v].




1. The Real Number System (continued)

Proof
Let v and v be real numbers. Then

—lul <u<|ul and —|v|<v < |y
On adding inequalities, we find that
~(Jul + V) = —lul = V] < u+v < Ju] + |v],
and thus
ut+v<|ul+|v] and —(u+v)<|ul+]v]

Now the value of |u + v| is equal to at least one of the numbers
u+ v and —(u+ v). It follows that

ut v <ful+]|v|

for all real numbers u and v.



1. The Real Number System (continued)

Next we note that |u| |v| is the product of one or other of the
numbers u and —u with one or other of the numbers v and —v,
and therefore its value is equal either to uv or to —uv. Because
both |u| |v| and |uv| are non-negative, we conclude that

|uv| = |u| |v]|, as required. |}



1. The Real Number System (continued)

Let u and v be real numbers. Then ’|u| - |v|’ < |u-—v|.

Proof
It follows from Lemma 1.1 that

uf = v+ (u=v)| < |v[+]u—v]

Therefore |u| — |v| < |u — v|. Interchanging u and v, we find also
that
v = ful < v —ul = |u—v].

Now ‘|u| - |v\‘ is equal to one or other of the real numbers |u| — |v|

and |v| — |ul|. It follows that ’]u! - |v\‘ < |u—v|, as required. |}



1. The Real Number System (continued)

1.8. Convergence of Infinite Sequences of Real Numbers

An infinite sequence x1, x2, x3, ... of real numbers associates to
each positive integer j a corresponding real number x;.

Definition

An infinite sequence x, X2, X3, . .. of real numbers is said to
converge to some real number p if and only if the following
criterion is satisfied:
given any strictly positive real number ¢, there exists
some positive integer N such that |x;j — p| < € for all
positive integers j satisfying j > N.

If an infinite sequence xi, X2, x3, . .. of real numbers converges to
some real number p, then p is said to be the /imit of the sequence,
and we can indicate the convergence of the infinite sequence to p

by writing ‘x; — p as j — +o0’, or by writing * lim x; = p’.
J—+00



1. The Real Number System (continued)

Let x and p be real numbers, and let € be a strictly positive real
number. Then |x — p| < ¢ if and only if both x — p < ¢ and

p— x < e. It follows that |x — p| < ¢ if and only if

p—¢e < x < p+e. The condition |x — p| < € essentially requires
that the value of the real number x should agree with p to within
an error of at most €. An infinite sequence xi, X2, x3, ... of real
numbers converges to some real number p if and only if, given any
positive real number g, there exists some positive integer N such
that p — e < x; < p + ¢ for all positive integers j satisfying j > N.



1. The Real Number System (continued)

Definition

We say that an infinite sequence xi, x2, X3, ... of real numbers is
bounded above if there exists some real number B such that

x; < B for all positive integers j. Similarly we say that this
sequence is bounded below if there exists some real number A such
that x; > A for all positive integers j. A sequence is said to be
bounded if it is bounded above and bounded below. Thus a
sequence is bounded if and only if there exist real numbers A

and B such that A < x; < B for all positive integers j.




1. The Real Number System (continued)

Every convergent sequence of real numbers is bounded.

Proof

Let x1, x2, x3, . .. be a sequence of real numbers converging to
some real number p. On applying the formal definition of
convergence (with ¢ = 1), we deduce the existence of some
positive integer N such that p—1 < x; < p+1forall j > N. But
then A < x; < B for all positive integers j, where A is the
minimum of x1,xo,...,xy—_1 and p — 1, and B is the maximum of

X1,X2,...,xy—1 and p+ 1. I



1. The Real Number System (continued)

Proposition 1.4

Let x1,x2,x3,... and y1, y2,y3, be convergent infinite sequences
of real numbers. Then the sum and difference of these sequences
are convergent, and

lim (x;+y;) = |lim x;+ lim
J._H_OO(j Yj) PRIV LW Y
lim (x; —y;)) = |lim xi— lim y;.
j—H—oo( e yJ) Jj—+o0 d j—>+ooyj
Proof
Throughout this proof let p = |lim x; and g = lim y;. It
j=+oo jotoo

follows directly from the definition of limits that lim (—y;) = —
J—+0o0



1. The Real Number System (continued)

Let some strictly positive real number ¢ be given. We must show
that there exists some positive integer N such that

Ixi + yj — (p+ q)| < € whenever j > N. Now x; — p as j — 400,
and therefore, given any strictly positive real number €1, there
exists some positive integer Ny with the property that |x; — p| < 1
whenever j > Ni. In particular, there exists a positive integer Ny
with the property that |x; — p| < %s whenever j > Nj. (To see
this, let e1 = %5) Similarly there exists some positive integer N»
such that |y; — q| < 3 whenever j > N,. Let N be the maximum
of Ny and Ny. If j > N then

X +yi—(p+a)l = 15—p)+—a)l<Ixi—pl+1y —q|
< %s+%5:5.
Thus x; +y; =+ p+qasj— +oo.

On replacing y; by —y; for all positive integers j, and using the
result that —y; — —q as j — +o00, we see that Thus
Xj—Yyj— p—qasj— +oo, as required. |§



1. The Real Number System (continued)

Let x1, X2, x3, ... be a convergent infinite sequence of real numbers,
and let ¢ be a real number. Then

lim (cx;)=c |lim x;.
j—)—f—oo( J) Jj—+oo J

Proof
Let some strictly positive real number € be given. Then a strictly
positive real number 1 can be chosen so that |c|e1 < e. There
then exists some positive integer N such that |x; — p| < &1
whenever j > N, where p = lim Xx;. But then
Jj—4o0
lexj —cp| < |cler < ¢
whenever j > N. We conclude that lim cx; = cp, as
J—+o00

required. |



1. The Real Number System (continued)

Proposition 1.6

Let x1,x2,x3,... and y1, y2,y3, be convergent infinite sequences
of real numbers. Then the product of these sequences is
convergent, and

li i) = I I
j—)l—Too()gyJ) (J—)ITOOXJ) (J—)I—Tooyj)

Proof
Let uj = x; — p and v; = y; — q for all positive integers j where
p= lim xjand g= lim y;. Then
J—+0o0 J—+o00
lim (ujv;) = lim (x X, +
im (ujv) = lim_(xy; =%q = pyj +pq)

= I|m X lim x; lim y; +
' (6y5) = qJ lim X —p_lim_y;+pq

= I|m X
o (xiyj) —



1. The Real Number System (continued)

Let some strictly positive real number € be given. It follows from

the definition of limits that lim wu; =0and lim v; =0.
J—+0o0 J—+o0

Therefore there exist positive integers N; and N, such that
|uj| < v/€ whenever j > Ny and |vj| < /e whenever j > N>. Let N
be the maximum of Ny and N. If j > N then |ujvj| < e. Thus

lim wujv; =0, and therefore lim (xjy;) — pg = 0. The result
Jj—+oo J—+oo
follows.



1. The Real Number System (continued)

Proposition 1.7

Let x1,x2,x3,... and y1,y»,y3, be convergent infinite sequences
of real numbers, where y; # 0 for all positive integers j and

lim y; # 0. Then the quotient of the sequences (x;) and (y;) is
J—+o0
convergent, and

lim x;
lim 4 —1ore
j—=+oo Y lim y;

Jj—=+o0o




1. The Real Number System (continued)

Proof
Let p= lim x;and Let g= lim y;. Then
Jj—r+o0

Jj—+o0

XN _P_ 9GP

i 9q ayj

for all positive integers j. Now there exists some positive
integer Ny such that |y; — q| < 3|q| whenever j > Nyi. Then
lyj| > 3|q| whenever j > Ny, and therefore

whenever j > Nj.



1. The Real Number System (continued)

Let some strictly positive real number € be given. Applying
Lemma 1.5 and Proposition 1.4, we find that

Nim (gxj — pyj) =q lim xj—p lim yj=qp—pqg=0.
J—+o00 J—+o00 J—+o0o
Therefore there exists some positive integer N satisfying N > N;
with the property that
9% — pyj| < 3lal*e

whenever j > N. But then

x;
2 p’ <e
i q
whenever j > N. Thus
X
lim == B,

as required. ||



1. The Real Number System (continued)

1.9. Monotonic Sequences

An infinite sequence xi, X2, X3, ... of real numbers is said to be
strictly increasing if x;11 > x; for all positive integers j, strictly
decreasing if x;11 < x; for all positive integers j, non-decreasing if
xj+1 > x; for all positive integers j, non-increasing if xj 1 < x; for
all positive integers j. A sequence satisfying any one of these
conditions is said to be monotonic; thus a monotonic sequence is
either non-decreasing or non-increasing.



1. The Real Number System (continued)

Theorem 1.8

Any non-decreasing sequence of real numbers that is bounded
above is convergent. Similarly any non-increasing sequence of real
numbers that is bounded below is convergent.

Proof

Let x1, X2, X3, ... be a non-decreasing sequence of real numbers
that is bounded above. It follows from the Least Upper Bound
Axiom that there exists a least upper bound p for the set

{xj : j € N}. We claim that the sequence converges to p.



1. The Real Number System (continued)

Let some strictly positive real number ¢ be given. We must show
that there exists some positive integer N such that |x; — p| < ¢
whenever j > N. Now p — ¢ is not an upper bound for the set

{xj : j € N} (since p is the least upper bound), and therefore there
must exist some positive integer N such that xy > p —e. But then
p — ¢ < x; < p whenever j > N, since the sequence is
non-decreasing and bounded above by p. Thus |x; — p| < e
whenever j > N. Therefore x; — p as j — 400, as required.

If the sequence xi, X2, X3, . .. is non-increasing and bounded below
then the sequence —xi, —x2, —x3, ... is non-decreasing and
bounded above, and is therefore convergent. It follows that the
sequence xi, X2, X3, . .. is also convergent. |



1. The Real Number System (continued)

1.10. Subsequences of Sequences of Real Numbers

Definition
Let x1, X2, X3, ... be an infinite sequence of real numbers. A
subsequence of this infinite sequence is a sequence of the form
Xj1, Xjp, X3, - - . Where j1, o, j3,... is an infinite sequence of positive
integers with

N<fp<j<--.
Let x1, x2, X3, . .. be an infinite sequence of real numbers. The

following sequences are examples of subsequences of the above
sequence:—

X1, X3, X5, X7, ...

X1, X4, X9, X165 - - -



1. The Real Number System (continued)

Theorem 1.9 (Bolzano-Weierstrass)

Every bounded sequence of real numbers has a convergent
subsequence.

Proof

Let a1, ap, a3, ... be a bounded sequence of real numbers. We
define a peak index to be a positive integer j with the property
that a; > a for all positive integers k satisfying k > j. Thus a
positive integer j is a peak index if and only if the jth member of
the infinite sequence as, as, as, . . . is greater than or equal to all
succeeding members of the sequence. Let S be the set of all peak
indices. Then

S={jeN:a; > a forall k > j}.



1. The Real Number System (continued)

First let us suppose that the set S of peak indices is infinite.
Arrange the elements of S in increasing order so that

S= {jl,jg,j3,j4, .. .}, where j1 < jo < j3 < jg < ---. It follows
from the definition of peak indices that a;, > a;, > a;; > a;, > ---.
Thus aj;, aj,, aj;, . .. is a non-increasing subsequence of the original
sequence ai, az, a3, . ... T his subsequence is bounded below (since
the original sequence is bounded). It follows from Theorem 1.8
that a;,, aj,, aj;,... is a convergent subsequence of the original
sequence.



1. The Real Number System (continued)

Now suppose that the set S of peak indices is finite. Choose a
positive integer j; which is greater than every peak index. Then j;
is not a peak index. Therefore there must exist some positive
integer j> satisfying j> > j1 such that a;, > a;. Moreover j, is not
a peak index (because j, is greater than j; and ji in turn is greater
than every peak index). Therefore there must exist some positive
integer j3 satisfying j3 > j> such that a;; > a;,. We can continue in
this way to construct (by induction on j) a strictly increasing
subsequence aj, aj,, aj,, . . . of our original sequence. This
increasing subsequence is bounded above (since the original
sequence is bounded) and thus is convergent, by Theorem 1.8.
This completes the proof of the Bolzano-Weierstrass Theorem. |}



	The Real Number System
	Absolute Values of Real Numbers
	Convergence of Infinite Sequences of Real Numbers
	Monotonic Sequences
	Subsequences of Sequences of Real Numbers
	The Bolzano-Weierstrass Theorem


