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9 Topologies, Compactness, and the Multidi-

mensional Heine-Borel Theorem

9.1 Open Sets in Subsets of Euclidean Spaces

Let X be a subset of n-dimensional Euclidean space Rn. A subset U of X is
said to be open in X if, given any point u of U , there exists some positive
real number δ such that

{x ∈ X : |x− u| < δ} ⊂ U.

Lemma 9.1 Let X be a subset of Rn, and let U be a subset of X. Then
U is open in X if and only if there exists some open set V in Rn for which
U = V ∩X.

Proof First suppose that U = V ∩X for some open set V in Rn. Let u ∈ U .
Then the definition of open sets in Rn ensures that there exists some positive
real number δ such that

{x ∈ Rn : |x− u| < δ} ⊂ V.

Then
{x ∈ X : |x− u| < δ} ⊂ U.

This shows that U is open in X.
Conversely suppose that the subset U of X is open in X. For each point u

of U there exists some positive real number δu such that

{x ∈ X : |x− u| < δu} ⊂ U.

For each u ∈ U , let B(u, δu) denote the open ball in Rn of radius δu about
the point u, so that

B(u, δu) = {x ∈ Rn : |x− u| < δu}

for all u ∈ U , and let V be the union of all the open balls B(u, δu) as u
ranges over all the points of U . Then V is an open set in Rn. Indeed every
open ball in Rn is an open set (Lemma 6.13), and any union of open sets
in Rn is itself an open set (Proposition 6.15). The set V is a union of open
balls. It is therefore a union of open sets, and so must itself be an open set.

Now B(u, δu) ∩ X ⊂ U . for all u ∈ U . Also every point of V belongs
to B(u, δu) for at least one point u of U . It follows that V ∩ X ⊂ U . But
u ∈ B(u, δu) and B(u, δu) ∈ V for all u ∈ U , and therefore U ⊂ V , and thus
U ⊂ V ∩X. It follows that U = V ∩X, as required.
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9.2 Topological Spaces

Definition A topological space X consists of a set X together with a collec-
tion of subsets, referred to as open sets, such that the following conditions
are satisfied:—

(i) the empty set ∅ and the whole set X are open sets,

(ii) the union of any collection of open sets is itself an open set,

(iii) the intersection of any finite collection of open sets is itself an open set.

The collection consisting of all the open sets in a topological space X is
referred to as a topology on the set X.

Remark If it is necessary to specify explicitly the topology on a topological
space then one denotes by (X, τ) the topological space whose underlying set
is X and whose topology is τ . However if no confusion will arise then it is
customary to denote this topological space simply by X.

It follows from Proposition 6.15 that if X is a subset of n-dimensional
Euclidean space then the collection of subsets of X that are open in X is
a topology on X. We refer to this topology as the usual topology on X. A
subset U of X is open with respect to the usual topology on X if and only if,
given any point u of U , there exists some positive real number δ such that

{x ∈ X : |x− u| < δ} ⊂ U.

Definition A topological space X is said to be a Hausdorff space if and only
if it satisfies the following Hausdorff Axiom:

• if x and y are distinct points of X then there exist open sets U and V
such that x ∈ U , y ∈ V and U ∩ V = ∅.

Any subset of a Euclidean space is a Hausdorff space. Indeed let X be
a subset of a Euclidean space Rn, and let x and y be distinct points of X.
Let δ = 1

2
|x− y|. Then the open balls of radius δ about the points x and y

are open sets in X containing x and y respectively whose intersection is the
empty set.

Let X be a topological space with topology τ , and let A be a subset of X.
Let τA be the collection of all subsets of A that are of the form V ∩ A for
V ∈ τ . Then τA is a topology on the set A. (It is a straightforward exercise
to verify that the topological space axioms are satisfied.) The topology τA
on A is referred to as the subspace topology on A.
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Any subset of a Hausdorff space is itself a Hausdorff space (with respect
to the subspace topology).

Euclidean space Rn of dimension n is a topological space with the usual
topology. It follows from Lemma 9.1 that the usual topology on any subset X
of Rn is the subspace topology on that subset.

Definition A function f :X → Y from a topological space X to a topological
space Y is said to be continuous if f−1(V ) is an open set in X for every open
set V in Y , where

f−1(V ) = {x ∈ X : f(x) ∈ V }.

A continuous function from X to Y is often referred to as a map from X
to Y .

It follows from Proposition 6.19 that the definition of continuity for func-
tions between topological spaces generalizes the standard definition of conti-
nuity for functions between subsets of Euclidean spaces.

It is an easy exercise to prove from the definition of continuity for func-
tions between topological spaces that any composition of continuous func-
tions is continuous.

Let f :X → Y be a continuous function between topological spaces X
and Y . Then f−1(G) is closed in X for all closed sets G in Y . Indeed if G is
a closed set in Y then the complement Y \G of Y in G is an open set in Y .
The continuity of f :X → Y ensures that f−1(Y \ G) is closed in X. But it
is straightforward to verify that f−1(Y \ G) = X − f−1(G). It follows that
f−1(G) is closed in X.

Definition Let X and Y be topological spaces. A function h:X → Y is said
to be a homeomorphism if and only if the following conditions are satisfied:

• the function h:X → Y is both injective and surjective (so that the
function h:X → Y has a well-defined inverse h−1:Y → X),

• the function h:X → Y and its inverse h−1:Y → X are both continuous.

Two topological spaces X and Y are said to be homeomorphic if there exists
a homeomorphism h:X → Y from X to Y .

If h:X → Y is a homeomorphism between topological spaces X and Y
then h induces a one-to-one correspondence between the open sets of X and
the open sets of Y . Thus the topological spaces X and Y can be regarded
as being identical as topological spaces.
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9.3 Compact Topological Spaces

Let X be a topological space, and let A be a subset of X. A collection of
subsets of X in X is said to cover A if and only if every point of A belongs to
at least one of these subsets. In particular, an open cover of X is collection
of open sets in X that covers X.

If U and V are open covers of some topological space X then V is said to
be a subcover of U if and only if every open set belonging to V also belongs
to U .

Definition A topological space X is said to be compact if and only if every
open cover of X possesses a finite subcover.

Lemma 9.2 Let X be a topological space. A subset A of X is compact (with
respect to the subspace topology on A) if and only if, given any collection U
of open sets in X covering A, there exists a finite collection V1, V2, . . . , Vr of
open sets belonging to U such that A ⊂ V1 ∪ V2 ∪ · · · ∪ Vr.

Proof A subset B of A is open in A (with respect to the subspace topology
on A) if and only if B = A∩V for some open set V in X. The desired result
therefore follows directly from the definition of compactness.

Lemma 9.3 Let A be a closed subset of some compact topological space X.
Then A is compact.

Proof Let U be any collection of open sets in X covering A. On adjoining
the open set X \ A to U , we obtain an open cover of X. This open cover
of X possesses a finite subcover, since X is compact. Moreover A is covered
by the open sets in the collection U that belong to this finite subcover. It
follows from Lemma 9.2 that A is compact, as required.

Lemma 9.4 Let f :X → Y be a continuous function between topological
spaces X and Y , and let A be a compact subset of X. Then f(A) is a
compact subset of Y .

Proof Let V be a collection of open sets in Y which covers f(A). Then A is
covered by the collection of all open sets of the form f−1(V ) for some V ∈ V .
It follows from the compactness of A that there exists a finite collection
V1, V2, . . . , Vk of open sets belonging to V such that

A ⊂ f−1(V1) ∪ f−1(V2) ∪ · · · ∪ f−1(Vk).

But then f(A) ⊂ V1 ∪ V2 ∪ · · · ∪ Vk. This shows that f(A) is compact.

153



Lemma 9.5 Let f :X → R be a continuous real-valued function on a com-
pact topological space X. Then f is bounded above and below on X.

Proof For each positive integer m let

Um = {x ∈ X : −m < f(x) < m}.

Then Um = f−1((−m,m)), where (−m,m) is the open interval in R con-
sisting of all real numbers t that satisfy −m < t < m. It follows from the
definition of continuity for functions between topological space that Um is
open in X for all positive integers k. Now, given any point x of X, there
exists some positive integer m such that −m < f(x) < m. It follows that
the open sets U1, U2, U3, . . . cover the compact space X. The definition of
compactness ensures the existence of a finite subcover Um1 , Um2 , . . . , Umk

,
where m1,m2, . . . ,mk are positive integers. Let M be the maximum of
m1,m2, . . . ,mk. Then −M < f(x) < M for all x ∈ X. The result fol-
lows.

Proposition 9.6 Let f :X → R be a continuous real-valued function on a
compact topological space X. Then there exist points u and v of X such that
f(u) ≤ f(x) ≤ f(v) for all x ∈ X.

Proof Let m = inf{f(x) : x ∈ X} and M = sup{f(x) : x ∈ X}. There
must exist v ∈ X satisfying f(v) = M , for if f(x) < M for all x ∈ X then
the function x 7→ 1/(M − f(x)) would be a continuous real-valued function
on X that was not bounded above, contradicting Lemma 9.5. Similarly
there must exist u ∈ X satisfying f(u) = m, since otherwise the function
x 7→ 1/(f(x)−m) would be a continuous function on X that was not bounded
above, again contradicting Lemma 9.5. But then f(u) ≤ f(x) ≤ f(v) for all
x ∈ X, as required.

9.4 Compact Subsets of Euclidean Spaces

Proposition 9.7 Let A be a compact subset of n-dimensional Euclidean
space Rn. Then A is closed and bounded in Rn.

Proof The function that sends each x ∈ A to |x| is a continuous function
on A. Every continuous function on a compact topological space is bounded
(Lemma 9.5). It follows that there exists a real number M such that |x| < M
for all x in A. Thus the set A is bounded.

Let p be a point of Rn that does not belong to A, and let f(x) = |x−p).
The function f is continuous on Rn. It therefore follows from Proposition 9.6
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that there is a point q of A such that f(x) ≥ f(q) for all x ∈ A, since A is
compact. Now f(q) > 0, since q 6= p. Let δ satisfy 0 < δ ≤ f(q). Then
the open ball of radius δ about the point p is contained in the complement
of A, since f(x) < f(q) for all points x of this open ball. It follows that the
complement of A is an open set in Rn, and thus A itself is closed in Rn.

We shall prove the converse of Proposition 9.7. The proof will make use
of the following proposition.

Proposition 9.8 Let X be a closed bounded set in n-dimensional Euclidean
space, and let V be an open cover of X. Then there exists a positive real
number δL with the property that, given any point u of X, there exists a
member V of the open cover V for which

{x ∈ X : |x− u| < δL} ⊂ V.

Proof Let
BX(u, δ) = {x ∈ X : |x− u| < δ}

for all u ∈ X and for all positive real numbers δ. Suppose that there did not
exist any positive real number δL with the stated property. Then, given
any positive number δ, there would exist a point u of X for which the
ball BX(u, δ) would not be wholly contained within any open set V be-
longing to the open cover V . Then BX(u, δ) ∩ (X \ V ) 6= ∅ for all mem-
bers V of the open cover V . There would therefore exist an infinite sequence
u1,u2,u3, . . . of points of X with the property that, for all positive inte-
gers j, the open ball BX(uj, 1/j) ∩ (X \ V ) 6= ∅ for all members V of the
open cover V . The sequence u1,u2,u3, . . . would be bounded, because the
set X is bounded. It would then follow from the multidimensional Bolzano-
Weierstrass Theorem (Theorem 6.20) that there would exist a convergent
subsequence uj1 ,uj2 ,uj3 , . . . of u1,u2,u3, . . .. Let p be the limit of this con-
vergent subsequence. Then the point p would then belong to X, because X
is closed (see Lemma 6.18). But then the point p would belong to an open
set V belonging to the open cover V . It would then follow from the defini-
tion of open sets that there would exist a positive real number δ for which
BX(p, 2δ) ⊂ V . Let j = jk for a positive integer k large enough to ensure
that both 1/j < δ and uj ∈ BX(p, δ). The Triangle Inequality would then
ensure that every point of X within a distance 1/j of the point uj would lie
within a distance 2δ of the point p, and therefore

BX(uj, 1/j) ⊂ BX(p, 2δ) ⊂ V.

But B(uj, 1/j) ∩ (X \ V ) 6= ∅ for all members V of the open cover V , and
therefore it would not be possible for this open set to be contained in the
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open set V . Thus the assumption that there is no positive number δL with
the required property has led to a contradiction. Therefore there must exist
some positive number δL with the property that, for all u ∈ X the open ball
BX(u, δL) in X is contained wholly within at least one open set belonging to
the open cover V , as required.

Definition Let X be a subset of n-dimensional Euclidean space, and let V
be an open cover of X. A positive real number δL is said to be a Lebesgue
number for the open cover V if, given any point p of X, there exists some
member V of the open cover V for which

{x ∈ X : |x− p| < δL} ⊂ V.

Proposition 9.8 ensures that, given any open cover of a closed bounded
subset of n-dimensional Euclidean space, there exists a positive real number
that is a Lebesgue number for that open cover.

Definition The diameter diam(A) of a bounded subset A of n-dimensional
Euclidean space is defined so that

diam(A) = sup{|x− y| : x,y ∈ A}.

It follows from this definition that diam(A) is the smallest real number K
with the property that |x− y| ≤ K for all x,y ∈ A.

A hypercube in n-dimensional Euclidean space Rn is a subset of Rn of the
form

{(x1, x2, . . . , xn) ∈ Rn : ui ≤ xi ≤ ui + l},

where l is a positive constant that is the length of the edges of the hypercube
and (u1, u2, . . . , un) is the point in Rn at which the Cartesian coordinates
of points in the hypercube attain their minimum values. The diameter of a
hypercube with edges of length l is l

√
n.

Lemma 9.9 Let X be a bounded subset of n-dimensional Euclidean space,
and let δ be a positive real number. Then there exists a finite collection
A1, A2, . . . , As of subsets of X such that the diam(Ai) < δ for i = 1, 2, . . . , s
and

X = A1 ∪ A2 ∪ · · · ∪ Ak.

Proof The set X is bounded, and therefore there exists some positive real
number M such that that if (x1, x2, . . . , xn) ∈ X then −M ≤ xj ≤ M for
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j = 1, 2, . . . , n. Choose k large enough to ensure that 2M/k < δL/
√
n. Then

the large hypercube

{(x1, x2, . . . , xn) ∈ Rn : −M ≤ xj ≤M for j = 1, 2, . . . , n}
can be subdivided into kn hypercubes with edges of length l, where l = 2M/k.
Each of the smaller hypercubes is a set of the form

{(x1, x2, . . . , xn) ∈ Rn : uj ≤ xj ≤ uj + l for j = 1, 2, . . . , n},
where (u1, u2, . . . , un) is the corner of the hypercube at which the Cartesian
coordinates have their minimum values. If p is a point belonging to such a
small hypercube, then all points of the hypercube lie within a distance l

√
n

of the point p. It follows that the small hypercube is wholly contained within
the open ball BRn(p, δL) of radius δ about the point p.

Now the number of small hypercubes resulting from the subdivision is
finite. Let H1, H2, . . . , Hs be a listing of the small hypercubes that intersect
the set X, and let Ai = Hi ∩X. Then diam(Hi) ≤

√
nl < δL and

X = A1 ∪ A2 ∪ · · · ∪ Ak,

as required.

Theorem 9.10 (The Multidimensional Heine-Borel Theorem) A subset of
n-dimensional Euclidean space Rn is compact if and only if it is both closed
and bounded.

Proof It follows from Proposition 9.15 that a compact subset of Rn is both
closed and bounded. We must prove the converse.

Let X be a closed bounded subset of Rn, and let V be an open cover of
X. It follows from Proposition 9.8 that there exists a Lebesgue number δL
for the open cover V . It then follows from Lemma 9.9 that there exist subsets
A1, A2, . . . , As of X such that diam(Ai) < δL for i = 1, 2, . . . , s and

X = A1 ∪ A2 ∪ · · · ∪ As.

We may suppose that Ai is non-empty for i = 1, 2, . . . , s (because if Ai = ∅
then Ai could be deleted from the list). Choose pi ∈ Ai for i = 1, 2, . . . , s.
Then Ai ⊂ BX(pi, δL) for i = 1, 2, . . . , s. The definition of the Lebesgue
number δL then ensures that there exist members V1, V2, . . . , Vs of the open
cover V such that BX(pi, δL) ⊂ Vi for i = 1, 2, . . . , s. Then Ai ⊂ Vi for
i = 1, 2, . . . , s, and therefore

X ⊂ V1 ∪ V2 ∪ · · · ∪ Vs.
Thus V1, V2, . . . , Vs constitute a finite subcover of the open cover U . We
have therefore proved that every closed bounded subset of n-dimensional
Euclidean space is compact, as required.
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9.5 Compact Metric Spaces

Definition A metric space (X, d) consists of a set X together with a distance
function d:X ×X → [0,+∞) on X satisfying the following axioms:

(i) d(x, y) ≥ 0 for all x, y ∈ X,

(ii) d(x, y) = d(y, x) for all x, y ∈ X,

(iii) d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X,

(iv) d(x, y) = 0 if and only if x = y.

The quantity d(x, y) should be thought of as measuring the distance be-
tween the points x and y. The inequality d(x, z) ≤ d(x, y)+d(y, z) is referred
to as the Triangle Inequality.

An n-dimensional Euclidean space Rn is a metric space with with respect
to the Euclidean distance function d, defined by

d(x,y) = |x− y| =

√√√√ n∑
i=1

(xi − yi)2

for all x,y ∈ Rn. Any subset X of Rn may be regarded as a metric space
whose distance function is the restriction to X of the Euclidean distance
function on Rn defined above.

Definition Let (X, d) be a metric space. Given a point x of X and r ≥ 0,
the open ball BX(x, r) of radius r about x in X is defined by

BX(x, r) = {x′ ∈ X : d(x′, x) < r}.

Definition Let (X, d) be a metric space. A subset V of X is said to be an
open set if and only if the following condition is satisfied:

• given any point v of V there exists some δ > 0 such that BX(v, δ) ⊂ V .

By convention, we regard the empty set ∅ as being an open subset of X.
(The criterion given above is satisfied vacuously in this case.)

Let (X, d) be a metric space. Then ∅ and X itself are open subsets of
X. Every union of open subsets in X is itself an open set in X. Also any
finite intersection of open sets in X is an open set in X. (The proof of these
results is a straightforward generalization of the proof of Proposition 6.15).
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Lemma 9.11 Any open ball in a metric space is an open set.

Proof Let X be a metric space with distance function d let x be a point of
X, and let r be a positive real number. If y ∈ BX(x, r) and if z ∈ BX(y, δ),
where BX(x, r) and BX(y, δ) are the open balls of radius r and δ about the
points x and y respectively, then

d(z, x) ≤ d(z, y) + d(y, x) < d(y, x) + δ.

But d(y, x) < r. It follows that if 0 < δ < r − d(y, x) then BX(y, δ) ⊂
BX(x, r).

Lemma 9.12 All metric spaces are Hausdorff spaces.

Proof Let X be a metric space with distance function d, and let x and
y be points of X, where x 6= y. Let δ = 1

2
d(x, y). Then x ∈ BX(x, δ)

and y ∈ BX(y, δ). Moreover BX(x, δ) ∩ BX(y, δ) = ∅. Indeed were there
to exist some point z in the intersection of BX(x, δ) ∩ BX(y, δ) = ∅ then
d(x, y) ≤ d(x, y)+d(y, z) < 2δ; but this contradicts the choice of δ. The balls
BX(x, δ) and BX(y, δ) are open in X (Lemma 9.11). The result follows.

The following definition of continuity for functions between metric spaces
generalizes that for functions of a real or complex variable.

Proposition 9.13 Let X and Y be metric spaces with distance functions
dX and dY respectively. Then one can prove that a function f :X → Y from
X to Y is continuous (in accordance with the definition of continuity for
functions between topological spaces) if and only if, given any point x of X
and given any positive real number ε, there exists some positive real number
δ such that dY (f(x), f(x′)) < ε for all points x′ of X satisfying dX(x, x′) < δ.

The proof of Proposition 9.13 this result is a straightforward generaliza-
tion of the proof of Proposition 6.19.

Lemma 9.14 Let X be a metric space with distance function d, and let p
be a point of X. Let fp:X → R be the function defined such that fp(x) =
d(x, p) for all x ∈ X. Then the function fp is continuous on X. Moroever
|fp(x)− fp(y)| ≤ d(x, y) for all x, y ∈ X.

Proof Let x and y be points of X. Then

fp(x) = d(x, p) ≤ d(x, y) + d(y, p) = fp(y) + d(x, y)

and therefore fp(x) − fp(y) ≤ d(x, y). Interchanging x and y, we find that
fp(y) − fp(x) ≤ d(x, y). It follows that |fp(x) − fp(y)| ≤ d(x, y) for all
x, y ∈ X. The required result then follows on applying Lemma 9.14.
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Proposition 9.15 Let A be a compact subset of a metric space X. Then A
is closed in X.

Proof Let p be a point of X that does not belong to A, and let fp(x) =
d(x, p), where d is the distance function on X. It follows from Proposition 9.6
that there is a point a0 of A such that fp(a) ≥ fp(a0) for all a ∈ A, since A
is compact. Now fp(a0) > 0, since a0 6= p. Let δ satisfy 0 < δ ≤ f(a0). Then
the open ball of radius δ about the point p is contained in the complement of
A, since fp(x) < fp(a0) for all points x of this open ball. It follows that the
complement of A is an open set in X, and thus A itself is closed in X.

Let X be a metric space with distance function d. Given a closed subset A
of X, we denote by d(x,A) the greatest lower bound on the distances from
x to the points of the set A. Thus

d(x,A) = inf{d(x, a) : a ∈ A}.

Lemma 9.16 Let X be a metric space with distance function d, let A be a
closed set in X, and let fA:X → R be defined so that

fA(x) = d(x,A) = inf{d(x, a) : a ∈ A}.

Then the function fA is continuous on X, and

A = {x ∈ X : fA(x) = 0}.

Moreover |fA(x)− fA(y)| ≤ d(x, y) for all x, y ∈ A.

Proof Let x and y be points of X. Then d(x, a) ≥ fA(x) and d(y, a) ≥ fA(y)
for all x ∈ A. Let some positive real number ε be given. Then there exist
points p and q of A such that d(x, p) < fA(x) + ε and d(y, q) < fA(y) + ε.
Then

fA(x) ≤ d(x, q) ≤ d(x, y) + d(y, q) ≤ fA(y) + d(x, y) + ε.

It follows from this that fA(x) − fA(y) < d(x, y) + ε for all positive real
numbers ε, and therefore fA(x)− fA(y) ≤ d(x, y). Similarly fA(y)− fA(x) ≤
d(x, y). Thus |fA(x) − fA(y)| < d(x, y) for all x, y ∈ X. It follows from
Lemma 9.14 that the function fA:X → R is continuous. If x ∈ A then
0 ≤ fA(x) ≤ d(x, x), and d(x, x) = 0, and therefore fA(x) = 0. If x 6∈ A then
there exists some positive real number δ such that the open ball of radius
δ about the point A is contained in the complement of A and therefore
fA(x) ≥ δ > 0. Therefore A point x of X belongs to the subset A if and only
if fA(x) = 0. The result follows.
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Definition Let X be a metric space with distance function d. A subset A
of X is said to be bounded if there exists a non-negative real number K
such that d(x, y) ≤ K for all x, y ∈ A. The smallest real number K with
this property is referred to as the diameter of A, and is denoted by diamA.
(Note that diamA is the supremum of the values of d(x, y) as x and y range
over all points of A.)

Let X be a metric space with distance function d. A subset A of X is
said to be bounded if there exists some non-negative real number K with the
property that d(x, y) ≤ K for all x, y ∈ A.

Definition Let X be a metric space with distance function d. The diameter
diam(A) of a bounded subset A of X is defined so that

diam(A) = sup{d(x, y) : x, y ∈ A}.

Lemma 9.17 (Lebesgue Covering Lemma) Let (X, d) be a compact metric
space. Let U be an open cover of X. Then there exists a positive real num-
ber δL such that every subset of X whose diameter is less than δL is contained
wholly within one of the open sets belonging to the open cover U .

1st Proof The open cover U of X has a finite subcover, because X is
compact. Therefore there exists a finite collection V1, V2, . . . , Vk of open
sets belonging to the open cover U which covers X. Let Ai = X \ Vi for
i = 1, 2, . . . , k, let

fi(x) = d(x,Ai) = inf{d(x, a) : a ∈ Ai}.

for i = 1, 2, . . . , k, and let

F (x) =
k∑

i=1

fi(x) =
k∑

i=1

d(x,Ai).

It follows from Lemma 9.16 that each function fi is a continuous function on
X. Therefore the function F :X → R is a continuous real-valued function on
X.

Given any point x of X there exists some integer i between 1 and k for
which x ∈ Vi. Then x 6∈ Ai. It follows from Lemma 9.16 that fi(x) > 0.
Therefore F (x) > 0. Thus F (x) is strictly positive for all x ∈ X. It follows
from Proposition 9.6 that there exists some point u of X with the property
that F (x) ≥ F (u) for all x ∈ X. Let δL be a positive real number for which
kδL < F (u).
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Let g(x) = maximum(f1(x), f2(x), . . . , fk(x) for all x ∈ X. Then kδL <
F (u) ≤ F (x) ≤ kg(x) for all x ∈ X. Therefore, given any point x in X,
there exists some integer i between 1 and k for which fi(x) > δL. But then
d(x,Ai) > δL, and therefore the open ball BX(x, δL) of radius δL about the
point x is wholly contained in the open set Vi. Now any non-empty subset
of X of diameter less than δL is contained within BX(x, δ) for any x ∈ L.
Therefore every subset of X of diameter less than δL is wholly contained
within one of the open sets belonging to the open cover U , as required.

2nd Proof Every point of X is contained in at least one of the open sets
belonging to the open cover U . It follows from this that, for each point x of X,
there exists some δx > 0 such that the open ball B(x, 2δx) of radius 2δx about
the point x is contained wholly within one of the open sets belonging to the
open cover U . But then the collection consisting of the open balls B(x, δx)
of radius δx about the points x of X forms an open cover of the compact
space X. Therefore there exists a finite set x1, x2, . . . , xr of points of X such
that

B(x1, δ1) ∪B(x2, δ2) ∪ · · · ∪B(xr, δr) = X,

where δi = δxi
for i = 1, 2, . . . , r. Let δL > 0 be given by

δL = minimum(δ1, δ2, . . . , δr).

Suppose that A is a subset of X whose diameter is less than δL. Let u be a
point of A. Then u belongs to B(xi, δi) for some integer i between 1 and r.
But then it follows that A ⊂ B(xi, 2δi), since, for each point v of A,

d(v, xi) ≤ d(v, u) + d(u, xi) < δL + δi ≤ 2δi.

But B(xi, 2δi) is contained wholly within one of the open sets belonging to
the open cover U . Thus A is contained wholly within one of the open sets
belonging to U , as required.

Definition Let U be an open cover of a compact metric space X. A Lebesgue
number for the open cover U is a positive real number δL such that every
subset of X whose diameter is less than δL is contained wholly within one of
the open sets belonging to the open cover U .

The Lebesgue Covering Lemma thus states that there exists a Lebesgue
number for every open cover of a compact metric space.

Definition Let X and Y be metric spaces with distance functions dX and
dY respectively, and let f :X → Y be a function from X to Y . The function f
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is said to be uniformly continuous on X if and only if, given ε > 0, there
exists some δ > 0 such that dY (f(x), f(x′)) < ε for all points x and x′ of X
satisfying dX(x, x′) < δ. (The value of δ should be independent of both x
and x′.)

Theorem 9.18 Let X and Y be metric spaces. Suppose that X is compact.
Then every continuous function from X to Y is uniformly continuous.

Proof Let dX and dY denote the distance functions for the metric spaces X
and Y respectively. Let f :X → Y be a continuous function from X to Y .
We must show that f is uniformly continuous.

Let ε > 0 be given. For each y ∈ Y , define

Vy = {x ∈ X : dY (f(x), y) < 1
2
ε}.

Note that Vy = f−1
(
BY (y, 1

2
ε)
)
, where BY (y, 1

2
ε) denotes the open ball of

radius 1
2
ε about y in Y . Now the open ball BY (y, 1

2
ε) is an open set in Y ,

and f is continuous. Therefore Vy is open in X for all y ∈ Y . Note that
x ∈ Vf(x) for all x ∈ X.

Now {Vy : y ∈ Y } is an open cover of the compact metric space X. It
follows from the Lebesgue Lemma (Lemma 9.17) that there exists some δ > 0
such that every subset of X whose diameter is less than δ is a subset of some
set Vy. Let x and x′ be points of X satisfying dX(x, x′) < δ. The diameter
of the set {x, x′} is dX(x, x′), which is less than δ. Therefore there exists
some y ∈ Y such that x ∈ Vy and x′ ∈ Vy. But then dY (f(x), y) < 1

2
ε and

dY (f(x′), y) < 1
2
ε, and hence

dY (f(x), f(x′)) ≤ dY (f(x), y) + dY (y, f(x′)) < ε.

This shows that f :X → Y is uniformly continuous, as required.

Definition A metric space X with distance function d is said to be totally
bounded if and only if, given any positive real number δ, there exists a finite
collection A1, A2, . . . , As of subsets of X such that diam(Ai) < δ for i =
1, 2, . . . , s and

X = A1 ∪ A2 ∪ · · · ∪ Ak.

Lemma 9.9 ensures that every bounded subset of n-dimensional Euclidean
space is totally bounded.

Lemma 9.19 Let X be a metric space that is totally bounded. Suppose that
every open cover of X has a Lebesgue number. Then X is compact.
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Proof Let V be an open cover of X. Then there exists a positive real
number δL that is a Lebesgue number for this open cover. There then exists
a finite collection A1, A2, . . . , Ak of subsets of X such that diam(Ai) < δ for
i = 1, 2, . . . , s and

X = A1 ∪ A2 ∪ · · · ∪ Ak,

because X is totally bounded. The definition of Lebesgue numbers then
ensures that, for each integer i between 1 and k, there exists an open set Vi
belonging to the open cover V such that Ai ⊂ Vi. Then

X ⊂ V1 ∪ V2 ∪ · · · ∪ Vk.

Thus the open cover V has a finite subcover. This proves that X is compact,
as required.

Remark The proof of Lemma 9.19 is an obvious generalization of part of
the proof of the multidimensional Heine-Borel Theorem (Theorem 9.10) given
above.

Definition A metric space X is said to be sequentially compact if every
sequence of points in X has a convergent subsequence.

The multidimensional Bolzano-Weierstrass Theorem (Theorem 6.20) and
Lemma 6.18 together ensure that every closed bounded subset of a Euclidean
space is sequentially compact.

Proposition 9.20 Let X be a sequentially compact metric space. Then,
given any open cover of X, there exists a Lebesgue number for that open
cover.

Proposition 9.8 is a special case of Proposition 9.20, and the proof of the
latter proposition is an obvious generalization of that of the former.

Let X be a metric space with distance function d An infinite sequence
x1, x2, x3, . . . of points in X is said to be a Cauchy sequence if, given any posi-
tive real number ε, there exists some positive integer N such that d(xj, xk) <
ε whenever j ≥ N and k ≥ N .

It can be shown that the three following conditions on a metric space are
equivalent:—

(i) the metric space is compact;

(ii) the metric space is sequentially compact;

(iii) the metric space is complete and totally bounded;

(iv) the metric space is totally bounded and, given any open cover of the
space, there is a Lebesgue number for that open cover.
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9.6 Norms on a Finite-Dimensional Vector Space

Definition A norm ‖.‖ on a real or complex vector space X is a function,
associating to each element x of X a corresponding real number ‖x‖, such
that the following conditions are satisfied:—

(i) ‖x‖ ≥ 0 for all x ∈ X,

(ii) ‖x+ y‖ ≤ ‖x‖+ ‖y‖ for all x, y ∈ X,

(iii) ‖λx‖ = |λ| ‖x‖ for all x ∈ X and for all scalars λ,

(iv) ‖x‖ = 0 if and only if x = 0.

A normed vector space (X, ‖.‖) consists of a a real or complex vector space X,
together with a norm ‖.‖ on X.

Any normed vector space (X, ‖.‖) is a metric space with distance func-
tion d defined so that d(x, y) = ‖x− y‖ for all x, y ∈ X.

In addition to the Euclidean norm, the norms on Rn include the norms
‖.‖1 and ‖.‖sup, where

‖(x1, x2, . . . , xn)‖1 = |x1|+ |x2|+ · · ·+ |xn|

and
‖(x1, x2, . . . , xn)‖sup = maximum(|x1|, |x2|, . . . , |xn|).

Definition Let X and Y be normed vector spaces. A linear transformation
T :X → Y is said to be bounded if there exists some non-negative real num-
ber C with the property that ‖Tx‖ ≤ C‖x‖ for all x ∈ X. If T is bounded,
then the smallest non-negative real number C with this property is referred
to as the operator norm of T , and is denoted by ‖T‖.

A linear transformation between normed vector spaces is continuous if
and only if it is bounded.

Definition Let ‖.‖ and ‖.‖∗ be norms on a real vector space X. The norms
‖.‖ and ‖.‖∗ are said to be equivalent if and only if there exist constants c
and C, where 0 < c ≤ C, such that

c‖x‖ ≤ ‖x‖∗ ≤ C‖x‖

for all x ∈ X.
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If two norms on a real vector space are equivalent to a third norm then
they are equivalent to each other.

Suppose that norms ‖.‖ and ‖.‖∗ be equivalent norms on a real vector
space X. Then there exist positive constants C and C∗ such that ‖x‖∗ ≤
C‖x‖ and ‖x‖ ≤ C∗‖x‖∗ for all x ∈ X. Let V be a subset of X that is open
with respect to the norm ‖.‖∗, and let p ∈ V . Then there exists a positive
real number δ small enough to ensure that

{x ∈ X : ‖x− p‖∗ < Cδ} ⊂ V.

Then
{x ∈ X : ‖x− p‖ < δ} ⊂ V.

It follows that if V is open in the topology generated by the ‖.‖∗ norm then
it is also open in the topology generated by the ‖.‖ norm. Conversely if V
is open in the topology generated by the ‖.‖ norm then it is also open in
the topology generated by the ‖.‖∗ norm. Thus if norms ‖.‖ and ‖.‖∗ are
equivalent, then they generate the same topology on X.

We shall show that all norms on a finite-dimensional real vector space are
equivalent.

Lemma 9.21 Let ‖.‖ be a norm on Rn. Then the function x 7→ ‖x‖ is con-
tinuous with respect to the topology generated by the Euclidean norm on Rn.

Proof Let e1, e2, . . . , en denote the basis of Rn given by

e1 = (1, 0, 0, . . . , 0), e2 = (0, 1, 0, . . . , 0), · · · , en = (0, 0, 0, . . . , 1).

Let x and y be points of Rn, given by

x = (x1, x2, . . . , xn), y = (y1, y2, . . . , yn).

Using Schwarz’ Inequality, we see that

‖x− y‖ =

∥∥∥∥∥
n∑

j=1

(xj − yj)ej

∥∥∥∥∥ ≤
n∑

j=1

|xj − yj| ‖ej‖

≤

(
n∑

j=1

(xj − yj)2
) 1

2
(

n∑
j=1

‖ej‖2
) 1

2

= C|x− y|,

where
C2 = ‖e1‖2 + ‖e2‖2 + · · ·+ ‖en‖2

166



and |x− y| denotes the Euclidean norm of x− y, defined so that

|x− y| =

(
n∑

j=1

(xj − yj)2
) 1

2

.

Also |‖x‖ − ‖y‖| ≤ ‖x− y‖, since

‖x‖ ≤ ‖x− y‖+ ‖y‖, ‖y‖ ≤ ‖x− y‖+ ‖x‖.

We conclude therefore that

|‖x‖ − ‖y‖| ≤ C|x− y|,

for all x,y ∈ Rn, and thus the function x 7→ ‖x‖ is continuous on Rn with
respect to the topology generated by the Euclidean norm on Rn.

Theorem 9.22 Any two norms on Rn are equivalent.

Proof Let ‖.‖ be any norm on Rn. We show that ‖.‖ is equivalent to the
Euclidean norm |.|. Let Sn−1 denote the unit sphere in Rn, defined by

Sn−1 = {x ∈ Rn : |x| = 1}.

Now Sn−1 is a compact subset of Rn, since it is both closed and bounded.
Also the function x 7→ ‖x‖ is continuous (Lemma 9.21). Also it follows from
the Extreme Value Theorem (Theorem 6.21) that any continuous real-valued
function on a closed bounded subset of Euclidean space attains both its
maximum and minimum values on that subset. Therefore there exist points
u and v of Sn−1 such that ‖u‖ ≤ ‖x‖ ≤ ‖v‖ for all x ∈ Sn−1. Set c = ‖u‖
and C = ‖v‖. Then 0 < c ≤ C (since it follows from the definition of norms
that the norm of any non-zero element of Rn is necessarily non-zero).

If x is any non-zero element of Rn then λx ∈ Sn−1, where λ = 1/|x|. But
‖λx‖ = |λ| ‖x‖ (see the the definition of norms). Therefore c ≤ |λ| ‖x‖ ≤ C,
and hence c|x| ≤ ‖x‖ ≤ C|x| for all x ∈ Rn, showing that the norm ‖.‖ is
equivalent to the Euclidean norm |.| on Rn. If two norms on a vector space
are equivalent to a third norm, then they are equivalent to each other. It
follows that any two norms on Rn are equivalent, as required.

Let X be a finite-dimensional real vector space. Then X is isomorphic to
Rn, where n is the dimension of X. It follows immediately from Theorem 9.22
and that all norms on X are equivalent and therefore generate the same
topology on X. This result does not generalize to infinite-dimensional vector
spaces.
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