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7 Differentiation of Functions of Several Real
Variables

7.1 Linear Transformations

The space R™ consisting of all n-tuples (z1, s, ..., x,) of real numbers is a
vector space over the field R of real numbers, where addition and multipli-
cation by scalars are defined by

(1:173727"'71:71)+(y1>y27"'7yn) = <x1+y17'r2+y27"->xn+yn)a
t(r1, 2, ..., xy) = (tx1,tx, ... tx,)

for all (x1,2z9,...,2,), (Y1,92,...,ys) € R" and t € R.

Definition A map 7T:R" — R™ is said to be a linear transformation if
Tx+y)=Tx+Ty, T(tx) =tTx

for all x,y € R" and t € R.

Every linear transformation 7:R"™ — R™ is represented by an m x n
matrix (7;;). Indeed let ey, e, ..., e, be the standard basis vectors of R"

defined by
e; =(1,0,...,0), e =(0,1,...,0),...,e, = (0,0,...,1).

Thus if x € R" is represented by the n-tuple (xy, 2, ..., z,) then

X = ijej.
j=1
Similarly let f;, f5, ..., f,, be the standard basis vectors of R™ defined by
f =(1,0,...,0), £=(0,1,...,0),...,fn =(0,0,...,1).

Thus if v € R™ is represented by the n-tuple (vy,vs, ..., v,,) then

m
vV = E 'szz
i=1

Let T:R™ — R™ be a linear transformation. Define T;; for all integers ¢
between 1 and m and for all integers 7 between 1 and n such that

i=1
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Using the linearity of 7', we see that if x = (x1, 29, ...,x,) then
j=1 j=1 i=1 \j=1
Thus the 7th component of Tx is
Tixy + Tioxo + - - + Tiny.

Writing out this identity in matrix notation, we see that if Tx = v, where

x1 U1
T2 V2
X = s VvV = s
Tn U,
then
() T11 T12 Ce Tln T
V2 Tor T ... Ty X2
Um Tml Tm2 s Tmn Tn

Recall that the length (or norm) of an element x € R" is defined such
that
x> =]+ 25+ + ).

Definition Let T:R"™ — R™ be a linear transformation from R" to R™, and
let (7} ;) be the m x n matrix representing this linear transformation with
respect to the standard bases of R™ and R™. The Hilbert-Schmidt norm
|T||us of the linear transformation is then defined so that

1T lns =

Note that the Hilbert-Schmidt norm is just the Euclidean norm on the real
vector space of dimension mn whose elements are m x n matrices representing
linear transformations from R™ to R™ with respect to the standard bases of
these vector spaces. Therefore it has the standard properties of the Euclidean
norm. In particular it follows from the Triangle Inequality (Lemma 6.2) that

1T + Ullas < [|T|lus + 1U]las - and  [[sT[lns = |s| [[T]us

for all linear transformations 7" and U from R™ to R™ and for all real num-
bers s.
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Lemma 7.1 Let T:R™ — R™ be a linear transformation from R™ to R™.
Then T s uniformly continuous on R™. Moreover

Tx = Ty| < |[Tl[us[x =y

for all x,y € R™, where ||T||us is the Hilbert-Schmidt norm of the linear
transformation T'.

Proof Let v = Tx — Ty, where v € R™ is represented by the m-tuple
(v1,v9,...,Uy). Then

v; = T'ﬂ(xl — yl) + 7-;‘2(3:2 — y2) + -+ 7ﬂm(xn - yn)

for all integers ¢ between 1 and m. It follows from Schwarz’ Inequality
(Lemma 6.1) that

2 (307 (S0 = (7 i

j=1

Hence

m n

vIP =2 i < (ZZTE,]) x = y[? = [ T lshx — yI*
i=1

i=1 j=1

Thus |[Tx — Ty| < ||T||us|x — y|. It follows from this that 7" is uniformly
continuous. Indeed let some positive real number € be given. We can then
choose § so that ||T||usd < e. If x and y are elements of R” which satisfy
the condition |x —y| < ¢ then |Tx — T'y| < e. This shows that 7:R" — R™
is uniformly continuous on R", as required. |

Lemma 7.2 Let T:R™ — R™ be a linear transformation from R™ to R™
and let S:R™ — RP be a linear transformation from R™ to RP. Then the
Hilbert-Schmidt norm of the composition of the linear operators T and S
satisfies the inequality ||ST ||lus < ||S|lus [|7]|us-

Proof The composition ST of the linear operators is represented by the
product of the corresponding matrices. Thus the component (ST ; in the

kth row and the jth column of the p X n matrix representing the linear
transformation ST" satisfies

(ST)]{:,]’ - Z Sk,ijji’j.
i=1
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It follows from Schwarz’ Inequality (Lemma 6.1) that

o () ()

Summing over k, we find that

Z (5TR, < (ZZ%) (iT) ~ S (iT)

k=1 =1

Then summing over j, we find that

n

p n m
ISTIlEs =D D (ST, < I1Sks <Z Tfj> < || Slus P17 s |1

k=1 j=1 i=1 j=1

On taking square roots, we find that ||ST'||us < [|S||lus |T||us, as required. |

7.2 Review of Differentiability for Functions of One
Real Variable

Let f: I — R be a real-valued function defined on some open interval [ in R.
Let a be an element of I. Recall that the function f is differentiable at a if

and only if

St h) -~ f()

h—0 h
exists, and the value of this limit (if it exists) is known as the derivative of
f at a (denoted by f'(a)).

We wish to define the notion of differentiability for functions of more than
one variable. However we cannot immediately generalize the above definition
as it stands (because this would require us to divide one element in R™ by
another, which we cannot do since the operation of division is not defined on
R™). We shall therefore reformulate the above definition of differentiability
for functions of one real variable, exhibiting a criterion which is equivalent
to the definition of differentiability given above and which can be easily
generalized to functions of more than one real variable. This criterion is
provided by the following lemma.

Lemma 7.3 Let f:1 — R be a real-valued function defined on some open
interval I in R. Let a be an element of I. The function f is differentiable at
a with derivative f'(a) (where f'(a) is some real number) if and only if

lim — (f(a -+ h) — f(a) — f(a)h) = 0.
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Proof It follows directly from the definition of the limit of a function that

h—0

if and only if

But

f(a+hf)L_f(a) _f/<a>

- 'ﬁ(f(anth) — fla) = f(a)h)|.

It follows immediately from this that the function f is differentiable at a with
derivative f’(a) if and only if

lim - (f(a+h) ~ f(a) ~ (@) =0. 1
—0 ‘h‘

Now let us observe that, for any real number ¢, the map h + ch defines a
linear transformation from R to R. Conversely, every linear transformation
from R to R is of the form h — ch for some ¢ € R. Because of this, we may
regard the derivative f’(a) of f at a as representing a linear transformation
h +— f'(a)h, characterized by the property that the map

z = f(a) + f'(a)(x — a)
provides a ‘good’ approximation to f around a in the sense that

. e(a,h)
TS

=0,

where
e(a,h) = fla+h) — f(a) = f(a)h

(i.e., e(a,h) measures the difference between f(a + h) and the value f(a) +
f'(a)h of the approximation at a+h, and thus provides a measure of the error
of this approximation). We shall generalize the notion of differentiability to
functions f from R™ to R™ by defining the derivative (D f), of f at p to be
a linear transformation from R™ to R™ characterized by the property that
the map

x = f(p)+ (Df)p (x—p)

provides a ‘good’ approximation to f around p.
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7.3 Derivatives of Functions of Several Variables

Definition Let V be an open subset of R® and let ¢: V' — R™ be a map
from V into R™. Let p be a point of V. The function ¢ is said to be
differentiable at p, with derivative T:R™ — R™ if and only if there exists a
linear transformation 7: R" — R™ from R"™ to R™ with the property that

gnﬁ (p(p + ) — p(p) — Th) = 0.

If ¢ is differentiable at p then the derivative T:R"™ — R™ of ¢ at p may be
denoted by (D), or by (Dy)(p), or by f'(p).

The derivative (Dy), of ¢ at p is sometimes referred to as the total
derivative of ¢ at p. If ¢ is differentiable at every point of V' then we say
that ¢ is differentiable on V.

Lemma 7.4 Let T:R™ — R™ be a linear transformation from R™ into R™.
Then T is differentiable at each point p of R", and (DT), =T.

Proof This follows immediately from the identity T'(p + h) — Tp — Th =
0.

Lemma 7.5 Let V be an open subset of R", let p:V — R™ be a map from
V into R™, let T:R™ — R™ be a linear transformation, and let p be a point
of V.. Then ¢ is differentiable at p, with derivative T, if and only if, given
any strictly positive real number €, there exists some strictly positive real
number & such that p+h €V and

lp(p+h) — ¢(p) — Th| < ¢h]
for all h € R™ satisfying |h| < 0.

Proof Suppose that the function @:R™ — R™ satisfies the criterion de-
scribed in the statement of the lemma. Let some strictly positive real num-
ber € be given. Take some real number &’ satisfying 0 < ¢’ < . Then there
exists some strictly positive real number § such that p+h € V and

lo(p +h) — p(p) — Th| <£'|h|

for all h € R™ satisfying |h| < §. Then

ﬁ<¢<p+h>—¢<p>—m>ga’<s
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whenever 0 < |h| < 0, and therefore

gg%ﬂﬂp+m—¢®%4”0=0

It then follows that the function ¢ is differentiable at p, with derivative 7'
Conversely, the function ¢ is differentiable at p, with derivative 7', then

lim o (2(p ) — () ~ Th) = 0

then it follows from the definition of limits that, given any strictly positive
real number ¢, there exists some strictly positive real number § such that the
condition set out in the statement of the lemma is satisfied, as required. |}

It follows from Lemma 7.5 that if a function p: V — R™ defined over an
open set V' in R" is differentiable at a point p of V', then, given any positive
real number ¢ there exists a positive real number ¢ such that

[o(p +h) —¢(p) — (Dy)p h| < £fh|
for all h € R" satisfying |h| < J, where (Dp)p:R" — R™ denotes the
derivative of ¢ at the point p. In that case

¢(p+h) = p(p) + (Dp)ph+e(p,h),

where (p.h)
. €ep,
LORTN

Thus if ¢ is differentiable at p then the map A\:V — R defined by

A(x) = ¢(p) + (Dg)p (x = p)

provides a good approximation to the function around p. The difference
between p(x) and A(x) is equal to e(p,x — p), and this quantity tends to 0
faster than |x — p| as x tends to p.

= 0.

Example Let ¢: R* — R? be defined so that

A(0)- (727
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for all real numbers x and y. Let p, ¢, h and k be real numbers. Then

A((30) = (% et )
(pQ—q2+2(ph_qk)+h2_k2 )
2pq + 2(qh + pk) + 2hk

_ (PP 2ph—gk) (R

- 2pq 2(qgh + pk) 2hk

- P 2p —2q h h? — k?

()G ()= (M)
Now |(h, k)| = Vh? + k?, and

h? — k?

(")
for (h,k) # (0,0). Note that if h and k are both multiplied by some positive
real number ¢ then the right hand side of the above equality is multiplied by

t2. It follows that if K is the maximum value of the right hand side of this
equality on the circle {(h, k) : h? + k? = 1} then

2 (2 — k%)% 4 AR2k?
h* + k2

1t
h* + k2

2

1 h? — k?
e < bk ) < K(h* 4+ k).
Therefore
1 h? — k?

It follows that the function ¢:R?* — R? is differentiable, and the deriva-
tive (D) (p,q of this function at the point (p, ¢) is the linear transformation
represented as a matrix with respect to the standard bases as follows:

2p —2q )
D = .
( 2 ) (p,q) ( 2 2p

Example Let M,(R) denote the real vector space consisting of all n x n
matrices with real coefficients. M,,(R) may be regarded as a Euclidean space,
where the Euclidean distance between two n x n matrices A and B is the
Hilbert-Schmidt norm of ||A — B||lgs of A — B, defined such that

IA = Bllas = | > > (Aij — Bij)>

i=1 j=1
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Let GL(n,R) denote the set of invertible n x n matrices with real coefficients.
Then
GL(n,R) = {A € M,(R) : det A # 0}.

Now the determinant det A of a square m X n matrix A is a continuous
function of the coefficients of the matrix. It follows from this that GL(n,R)
is an open subset of M, (R). We denote the identity n x n matrix by I. Then
II|lus = v/n, because the square of the Hilbert-Schmidt norm |[|/||us is the
sum of the squares of the components of the identity matrix, and is therefore
equal to n.

Let ¢: GL(n,R) — GL(n,R) be the function defined so that ¢(A) =
for all invertible n x n matrices A. We show that this function ¢: GL(n, R
GL(n,R) is differentiable.

Let A be an invertible n x n matrix. Then for all n X n matrices H. Now
the matrix [+ A~'H is invertible if and only if det(+ A~ H) # 0. Moreover
this determinant is a continuous function of the coefficients of the matrix H.
It follows that there exists some positive number §, such that I + A~'H
is invertible whenever ||H|lus < dp. Moreover the function mapping the
matrix H to ||(I + A~'H) !|ug is continuous and takes the value y/n when
H is the zero matrix. We can therefore choose a positive number §, small
enough to ensure that I + A~ H is invertible and [|(I + A7 H)™!||gs < 2v/n
whenever || H||us < do.

Let the n x n matrix H satisfy ||H||lgs < dp. Then

A—l
) —

(I-AT'HYI+A''H)=1—-A"'HA'H,
and therefore
I=(I-A'"H(I+A'H)+ A 'HA'H.

Multiplying this identity on the right by the matrix (I + A~'H)™!, we find
that
(I+AYH)Y ' =]~ A'H + A" HA Y H(I + A~ H) L.

It follows that

(A+H)' = (AU+ATTH) ' =T+ ATH) AT
= AV ATTHA '+ ATTHAT'UH(I 4+ ATTH) AT

The Hilbert-Schmidt norm of a product of n x n matrices is bounded above
by the product of the Hilbert-Schmidt norms of those matrices. Therefore if
||H||HS < 50 then

AT HAT H(I + A7 H) 7 A s < | A7 s (7 + A7 H) ™ s | H [,
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where ||(I + A7 H)™||gs < 24/n, and therefore
[(A+ H)™H = AT+ AT HATY| o < 2V/n)| A7 G| H s
It follows that

0.

lim

— A+ H)y ' — A+ AT THA
H—0 ||H ||ns H( )

s =
HS

Therefore the function ¢: GL(n,R) — GL(n,R) is differentiable, where p(A) =
A~ for all invertible n x n matrices A with real coefficients, and moreover

(D) A(H) = —AT"HA",

Lemma 7.6 Let po:V — R™ be a function which maps an open subset V
of R™ into R™ which is differentiable at some point p of V. Then ¢ is
continuous at p.

Proof If we define

e(p,h) = ¢(p+h) —¢(p) — (Dy)ph

then

hmdnm

RTINS

(because ¢ is differentiable at p), and hence

_ e . e(p,h)
i e(p, h) = <ﬁ§%|h|> (ﬁlﬂ% Ih] ) =0

But

}1113% e(p,h) = tllli% o(p+h) —¢(p),

since
lim (D) h = (D) (Jimh) = 0

(on account of the fact that every linear transformation from R™ to R™ is
continuous). We conclude therefore that

lim ¢(p +h) = ¢(p),

h—0

showing that ¢ is continuous at p. |}
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Lemma 7.7 Let p:V — R™ be a function which maps an open subset V' of
R™ into R™ which is differentiable at some point p of V. Let (Dp)p: R" —
R™ be the derivative of ¢ at p. Let u be an element of R™. Then

1
(Dp)pu = lim — ((p + tu) — ¢(p)) -
Thus the derivative (Dy)p of ¢ at p is uniquely determined by the map .

Proof It follows from the differentiability of ¢ at p that

lim o (4(p -+ b) = ¢(p) — (Dg)y ) = 0.

In particular, if we set h = tu, and h = —tu, where ¢ is a real variable, we
can conclude that

lim (p(p + tu) — ¢(p) — t(Dyp)pu) = 0,

t—0t+ ¢

lim % (p(p + tu) — (p) — t(Dyp)pu) = 0,

t—0~

It follows that

lim + (o(p + 1) — p(p) ~ H(D)pu) =0,

t—0

as required. |

We now show that given two differentiable functions mapping V into R,
where V' is an open set in R”, the sum, difference and product of these
functions are also differentiable.

Theorem 7.8 Let V be an open set in R", and let f:V — R and g:V — R
be functions mapping V into R. Let p be a point of V. Suppose that f
and g are differentiable at p. Then the functions f + g, f — g and f.g are
differentiable at p, and

(D(f+9)p = (Df)p+ (Dg)p,
(Df)p = (Dg)p,

D(f.9)p = 9@)(Df)p+ f(P)(Dg)p-
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Proof We can write

f(p+h) = f(p)+(Df)ph+e(p,h),
g(p+h) = g(p)+ (Dg)ph+esp,h),

for all sufficiently small h, where

h h
i LR gy, )
h—0 ‘h‘ h—0 ‘h‘

on account of the fact that f and g are differentiable at p. Then

lim |—}11| F(p+h) +g(p+h) — (f(B) + 9(p)) — (Df)p + (Dg)p) b

h—0
— lim 6l(pa h) + 62(1), h)
h—0 ‘h‘

lim | f(p + h) — g(p+h) — (f(p) — 9(p)) — (DF)p — (Dg)y) b

h—0 |h’
— lim el(pa h) - 62(p7 h)
h—0 ’h’

=0,

=0.

Thus f + g and f — g are differentiable at p. Also

fp+h)g(p+h) = f(p)g(p)+9P)(Df)ph+ f(p)(Dg)ph+e(p,h),

where

e(p,h) = (f(p) + (Df)ph)ex(p,h) + (9(p) + (Dg)ph)ei(p, h)
+((Df)ph)((Dg)ph) + e1(p, h)ex(p, h).

It follows from Lemma 7.1 that there exist constants M; and Ms such that

[(Df)ph| < Mifh|,  [(Dg)ph| < M,lhl.
Therefore
[(Df)ph)((Dg)ph)| < MM, h?,
so that
Jim r((DF)p B)(Do)p ) =0
Also



62(p7 h)

= llllg(l)(f(p>+(Df)ph)llllf% |h| =0,
1
lim m((g(p) + (Dg)p h)ei(p, h))
. . . 61(1),1’1) _
= lim(g(p) + (Dg)p h) lim Y
. 1 o . . 62<p7h) _
S (51 (P o (P, ) = i (. ) i =510 =0
Therefore (p. h)
__e(p,h)
= =0

showing that the function f.g is differentiable at p and that

D(f.9)p =9@)(Df)p + f(P)(Dg)p- 1

Theorem 7.9 (Chain Rule) Let V' be an open set in R™, and let p: V — R™
be a function mapping V into R™. Let W be an open set in R™ which contains
©(V), and let p: W — R be a function mapping W into R!. Let p be a point
of V. Suppose that ¢ is differentiable at p and that 1 is differentiable at o(p).
Then the composition 1 o p: R™ — R (i.e., ¢ followed by 1)) is differentiable
at p. Moreover

D( o p)p = (DY)y(p) © (DP)p.

Thus the derivative of the composition oy of the functions at the given point
15 the composition of the derivatives of those functions at the appropriate
POINts.

Proof Let q = ¢(p). First we note that there exist positive real numbers L,
and M such that [(Dy)ph| < Lih| for allh € R™ and |(Dvy)qk| < M |k for all
k € R™. Indeed it follows from Lemma 7.1 that we can take L = ||(Dy)pllus
and M = ||(Dv)qllns, where |[(Dg)pllns and M = |[(Dv)q|lus denote the
Hilbert-Schmidt norms of the linear transformations (D), and (D).

Let some strictly positive number € be given. The function v is differ-
entiable at q, with derivative (D)4, and therefore there exists a strictly
positive real number 7 such that q + k € W and

[W(a+k) —¥(q) — (DY) k| < 5

1
- Lk
(L+1)5| |

for all k € R™ satisfying |k| < 7 (see Lemma 7.5). Let gy be a strictly
positive number chosen such that g < 1 and 2Meg < €. It then follows from
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the continuity and differentiability of ¢ at p that there exists some strictly
positive real number § satisfying (L + 1)0 < n with the property that

p+heD and |p(p+h)—p(p) - (De)ph| < el

for all h € R™ satisfying |h| < §.
Let h € R” satisfy |h| < d, and let

k=¢(p+h)—-¢p) =¢P+h) —q
Then
Y(p(p+h)) —Y(p(p)) — (DY) o) (Dg)ph
= (W(a+k)—(q) — (Di)qk)
+ (DY)q (p(p +h) —p(p) — (Dp)ph).

Also, on applying the Triangle Inequality satisfied by the Euclidean norm
(see Corollary 6.2), we find that

k| = Jp(p+h)— o)
< [(D@)ph| + |p(p +h) — o(p) — (D¢)ph|
< Llh[ + &lh
< (L+ 1) < (L+1)0 <n.

It follows that
[(e(p +h)) —v(e(P) — (DY) e (De)p hi

< [W(a+k) —¢(q) — (Di)gK|

+[(D¥)q (p(p +h) —o(p) — (Dy)p h)|
< [W(a+k) —¥(q) — (DY) k|

+ M |o(p +h) — ¢o(p) — (Dg); h
< 2(L—1—i—1)€|k|+M€0|h|

< gelh| + ze[h| = cfh|

whenever |h| < §. It follows that the composition function ¥ o @:R" —
R' is differentiable, and its derivative at the point p is (D)yp)(Dp)p, as
required. |

Example Consider the function ¢: R? — R defined by

1
oz, y) = z?y> sin - if © #£0;
0 if x =0.
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Now one can verify from the definition of differentiability that the function
h:R — R defined by

1
2 . .
h(t) = t sin ift #0,
0 ift=20

is differentiable everywhere on R, though its derivative h': R — R is not con-
tinuous at 0. Also the functions (z,y) — x and (z,y) — y are differentiable
everywhere on R (by Lemma 7.4). Now ¢(z,y) = y*h(x). Using Theorem 7.8
and Theorem 7.9, we conclude that ¢ is differentiable everywhere on R2.

Let (e, e,...,e,) denote the standard basis of R™, where
e; = (1,0,...,0), ex=(0,1,...,0),..., e,=1(0,0,...,1).

Let us denote by fV — R the ith component of the map ¢:V — R™,
where V' is an open subset of R™. Thus

p(x) = (%), fa(x),.- ., fm(x))

for all x € V. The jth partial derivative of f; at p € V is then given by
dfi fi(p +te;) — fi(p)

= lim )
amj t—0 t

X=p

We see therefore that if ¢ is differentiable at p then

(951 9f2 Ofm
(D@)Pej - <8$]’axj7a 8%) .

Thus the linear transformation (Dy)p: R™ — R™ is represented by the m xn

matrix
o5 oh  of
Ory Oxy  Oxp
of, o of
Ory Oxy Oz
Ofm  Ofm 0 fn
0. 01, w.

This matrix is known as the Jacobian matriz of ¢ at p.
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Example Consider the function f:R? — R defined by
Ty ,
— if (z, 0,0);
f(x,y):{ (22 + y2)? ' (z,y) # (0,0)

Note that this function is not continuous at (0,0). (Indeed f(t,t) = 1/(4t?)
if ¢ # 0 so that f(t,t) — +oo as t — 0, yet f(x,0) = f(0,y) = 0 for all
x,y € R, thus showing that
lim x,
(w,y)—>(070)f< v)
cannot possibly exist.) Because f is not continuous at (0,0) we conclude

from Lemma 7.6 that f cannot be differentiable at (0,0). However it is easy
to show that the partial derivatives

of(x,y) of(x,y)
o and Iy

exist everywhere on R?, even at (0,0). Indeed

0f (z,y) PG ~0

9 (e y)=(00) W ey)=00)

on account of the fact that f(z,0) = f(0,y) =0 for all z,y € R.

Example Consider the function g: R? — R defined by

ry? |
gy =4 g o (x,y) # (0,0);

Given real numbers b and ¢, let up.:R — R be defined so that wu,.(t) =
g(bt,ct) for allt € R. If b =0 or ¢ = 0 then u,.(t) = 0 for all ¢t € R, and the
function uy . is thus a smooth function of ¢. If b # 0 and ¢ # 0 then

bc*t? bc*t

T

ub,c(t)

and therefore u, () is a smooth function of ¢. Moreover

C2
dup, (1) — if b £ 0;

=%
dt i 0 ifb=0.
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The restriction of the function g to any line passing through the origin de-
termines a smooth function of distance along the line. The restriction of the
function g to any other line in the plane also determines a smooth function
of distance. It follows that, when restricted to any straight line in R?, the
value of the function g is a smooth function of distance along that line.
However g(x,y) = 3 for all (z,y) € R?satisfying z > 0 and y = £+/z, and
similarly g(z,y) = —1 for all (z,y) € R? satisfying z < 0 and y = +v/—=.
It follows that every open disk about the origin (0,0) contains some points
1

at which the function g takes the value 5, and other points at which the
1

function takes the value —3, and indeed the function g will take on all real
values between —% and % on any open disk about the origin, no matter how
small the disk. It follows that the function g: R?> — R is not continuous at
zero, even though the partial derivatives of the function g with respect to x

and y exist at each point of R2.

Remark These last two examples exhibits an important point. They show
that even if all the partial derivatives of a function exist at some point, this
does not necessarily imply that the function is differentiable at that point.
However Theorem 7.11 below shows that if the first order partial derivatives
of the components of a function exist and are continuous throughout some
neighbourhood of a given point then the function is differentiable at that
point.

Proposition 7.10 Let M and g be positive real numbers, and let
V={(x1,29,...,2,) € R": =6y < x; < g for j=1,2,...,n}.

let f:V — R be a real-valued function defined over V. Suppose that the par-
tial derivatives of the function f with respect to xq, xs, . .., x, exist throughout
V', and satisfy
8f($1, To, ... ,.Tn)
0xj

whenever —6y < x; < oy for j =1,2,...,n. Then

[f(v) = f(a)| < VnM|v —u

<M

for allu,veV.
Proof Let points wy, for £ =0,1,2,...,n be defined so that

Wi = (wk,h Wg,2, - - ,wk,n),
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where

w; if j > k;
wk,j:{ ! J

Then wyg = u and w, = v. Moreover w, and wj,_; differ only in the
kth coordinate for £ = 1,2,...,n, and indeed wy_1 1 = U, Wi = vy and

wyj = wi—1,; for j # k. Let ¢x:[0,1] — R be defined such that

qr(t) = f((1 = t)wp_1 +twy)

for all t € [0,1]. Then ¢(0) = f(wg_1) and gx(1) = f(wy), and therefore

n n

FO) = fa) = (f(wi) = F(wi-1)) = > (a(1) — 1 (0)).
Now don (4
) = 0 )0 (1 — Wy + i)

dt

for all t € [0, 1], where Oy f denotes the partial derivative of the function f
with respect to . Moreover |(0xf)(x)| < M for all x € V. It follows that
lq. ()] < M|vg — uyg| for all ¢t € [0,1]. Applying the Mean Value Function
(Theorem 4.6) to the function ¢ on the interval [0, 1], we see that

|ax(1) = ar(0)] < Moy, —

for k=1,2,...,n. It follows that

Fv) = F@)] <D lae(1) = ae(0)] < MY Jor — u.

Now
n

> ok — w| < v/nlv —ul.

k=1

Indeed let s € R™ be defined such that s = (s1, S2,...,S,) where s; = +1 if
v; > u; and s; = —1 if v; < u;. Then

n
Y e —wl=s.(v—u) <s|lv—u|=alv—ul.
k=1

The result follows. |}
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Theorem 7.11 Let V' be an open subset of R™ and let f:V — R be a
function mapping V into R. Suppose that the first order partial derivatives of
the components of f exist and are continuous on V. Then f is differentiable
at each point of V', and

for allp € V and h € R", where h = (hq, ha, ..., hy).
Proof Let p € V, and let g: V' — R be defined such that

n

g(x) = f(x) = > _a;(z; —py)

j=1
for all x € V, where x = (x1,23,...,2,) and
of
a; = (0;f)(P) = 7~
J J axj b

for j = 1,2,...,n. The partial derivatives 0;g of the function g are then
determined by those of f so that

(959)(x) = (0;f)(x) — a;

for j = 1,2,...,n. It follows that (9;¢9)(p) = 0 for j = 1,2,...,n. It
follows from the continuity of the partial derivatives of f that, given any
positive real number e, there exists some positive real number § such that

(1,22, ...,x,) € V and, for each integer k between 1 and n,
k) (w22, )| < =
whenever p; — 6 < x; < p; + 06 for j = 1,2,...,n. It then follows from

Proposition 7.10 that

l9(p +h) — g(p)| < ¢|h|
for all h € R™ satisfying |h| < ¢. But then
fP+h) = f(p) =D hi(0;1)(p)| < elhl
j=1
for all h € R™ satisfying |h| < 0, where h = (hy, ha, ..., h,). It follows from
Lemma 7.5 that the function f is differentiable at p. Moreover the Cartesian
components of the derivative of f at p are equal to the partial derivatives of

f at that point, as required. |}
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We can generalize this result immediately to functions u: V' — R™ which
map some open subset V' of R" into R™. Let u; denote the ith component of
u for e =1,2,...,m. One sees easily from the definition of differentiability
that u is differentiable at a point of V' if and only if each u; is differentiable
at that point. We can therefore deduce immediately the following corollary.

Corollary 7.12 Let V' be an open subset of R™ and let w:V — R™ be a
function mapping V into R™. Suppose that the Jacobian matrix

8u1 0u1 8u1
8u2 8162 8u2
Oy, Oy, Oy,

exists at every point of V and that the entries of the Jacobian matrixz are
continuous functions on V. Then @ s differentiable at every point of V', and
the derivative of ¢ at each point is represented by the Jacobian matriz.

We now summarize the main conclusions regarding differentiability of
functions of several real variables. They are as follows.

(i) A function ¢:V — R™ defined on an open subset V' of R™ is said to
be differentiable at a point p of V if and only if there exists a linear
transformation (Dy)p: R” — R™ with the property that

.1

lim o (p(p+h) —¢(p) = (Dp)ph) =0.
The linear transformation (Dy), (if it exists) is unique and is known
as the derivative (or total derivative) of ¢ at p.

(i) If the function ¢: V' — R™ is differentiable at a point p of V' then the
derivative (Dy), of ¢ at p is represented by the Jacobian matrix of
the function ¢ at p whose entries are the first order partial derivatives
of the components of .

(iii) There exist functions ¢: V' — R™ whose first order partial derivatives
are well-defined at a particular point of V' but which are not differen-
tiable at that point. Indeed there exist such functions whose first order
partial derivatives exist throughout their domain, though the functions
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(vi)

(vii)

themselves are not even continuous. Thus in order to show that a func-
tion is differentiable at a particular point, it is not sufficient to show
that the first order partial derivatives of the function exist at that point.

However if the first order partial derivatives of the components of a
function ¢: V' — R™ exist and are continuous throughout some neigh-
bourhood of a given point then the function is differentiable at that
point. (However the converse does not hold: there exist functions
which are differentiable whose first order partial derivatives are not
continuous.)

Linear transformations are everywhere differentiable.

A function ¢:V — R™ is differentiable if and only if its components
are differentiable functions on V' (where V' is an open set in R").

Given two differentiable functions from V' to R, where V is an open
set in R™, the sum, difference and product of these functions are also
differentiable.

(viii) (The Chain Rule). The composition of two differentiable functions is

7.4

differentiable, and the derivative of the composition of the functions at
any point is the composition of the derivatives of the functions.

Second Order Partial Derivatives

Let V be an open subset of R” and let f: V' — R be a real-valued function on
V. We consider the second order partial derivatives of the function f defined

by

#r_ 0 (of
8$i8$j - 81‘2 8[)3j ‘

We shall show that if the partial derivatives

af  of o*f o*f
, , and
ail'i aill'j 81'@895] &Ujﬁxl

all exist and are continuous then

*’f O*f
(%cﬁxj N 8:[]8331

First though we give a counterexample which demonstrates that there exist
functions f for which

0% f 0% f
axiﬁxj 82:]8331 ’
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Example Let f:R? — R be the function defined by
f(l’, y) = 2+ y2
0 if (z,y) = (0,0).

For convenience of notation, let us write

folz,y) = 8f((;;y)7
f(zy) = %ﬂ;g)’
Fonlz,y) = %gz,yy),
fye(,y) = azéfy(;;cy)

If (z,y) # (0,0) then

yr’ —y’ +22%y  22%y(2® — o)
1'2 +y2 (1»2 +y2)2
3z2y(2? + %) — 2 (2 + y?) — 22y + 22%y3
(.7/'2 +y2)2
x4y + 4I2y3 _ y5
<x2 +y2)2 :

fa

Similarly

yla + 4y2ad — 2

(y2 + $2)2

fy =
Thus if (x,y) # (0,0) then

1'6 + 91.4y2 _ 91.2y4 _ y6

fzy = fyz = (xg + yz)s
Note that
lim (x,y) =0, lim x,y) = 0.
(2,9)—(0,0) fel@.9) (2,5)—(0,0) fulz.y)

Indeed if (x,y) # (0,0) then

61°

|fm| S 4 - 6T7
r



where r = /22 4+ y2, and similarly |f,| < 6r. However
im - foy(z,y)

(z,y)—(0,0)
does not exist. Indeed
6
glﬁli%fa;y(xa(n - glcli%fym(x70) - :162%1? - 17
6
. Y Y i _
Z]}l_r%fmy(oay) - ;E)%fyx<oay> - lel_rf(l) yﬁ =—-1

Next we show that f,, f,, fuy and fy, all exist at (0,0), and thus exist
everywhere on R?. Now f(x,0) = 0 for all z, hence f,(0,0) = 0. Also
f(0,y) = 0 for all y, hence f,(0,0) = 0. Thus

fy(x>0) =T, fx(oay):_y
for all x,y € R. We conclude that

fu(0,0) = Wh@0)

f42(0,0)

Thus

at (0,0).

Observe that in this example the functions f,, and f,, are continuous
throughout R? \ {(0,0} and are equal to one another there. Although the
functions f,, and f,, are well-defined at (0,0), they are not continuous at

(0,0) and £4,(0,0) # f,.(0,0).

We now prove that the continuity of the first and second order partial
derivatives of a function f of two variables x and y is sufficient to ensure that
0% f
0xdy’

Theorem 7.13 Let V be an open set in R? and let f:V — R be a real-valued
function on V. Suppose that the partial derivatives

of  of 0% O’ f
-, =, —, and
or’ 0Oy  0x0y 0yox
exist and are continuous on V. Then
o0 f B 0*f
oxdy  Oyoz’
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Proof For convenience, we shall denote the values of

a—f 0_f O’f and O'f
ox’ 0Oy’ 0xdy’ OyOx

at a point (x,y) of V by fu(z,y), fy(z,y), foy(z,y) and fy.(x,y) respectively.
Let (a,b) be a point of V. The set V is an open set in R™ and therefore

there exists some positive real number R such that (a +h,b+ k) € V for all
(h, k) € R? satisfying vh? + k? < R.

Let us define a differentiable function u by

u(t) = f(t,b+ k) — f(t,b)

We apply the Mean Value Theorem to the function u on the closed interval
[a,a + h] to conclude that there exists 6;, where 0 < ¢y < 1, such that

u(a+h) —u(a) = hu'(a+ 6,h).
But
u(a+h) —ula) = fla+ h,b+k)— f(a+ h,b) — f(a,b+ k) + f(a,b)

and
u'(a+601h) = fola+ 01k, b+ k) — fo(a+ 61h,b).

Moreover, on applying the Mean Value Theorem to the function that sends
y € [b,b+ k] to fu(a+ 01h,y), we see that there exists 0y, where 0 < 6y < 1,
such that

fola+01h,b+ k) — fo(a+ 601k, b) = kfy.(a+ 601k, b+ O2k)
Thus

fla+h,b+k)— f(a+h,b) — f(a,b+ k) + f(a,b)
0*f

dyox (z,y)=(a-+61h,b+02k)

= hkfyx(a + 91h, b+ ng) = hk

Now let € > 0 be given. Then there exists some positive real number ¢y,
where 6; < R, such that

|fya:(x» y) - fyaj(a7 b>| < %5
whenever (z—a)?+ (y—b)? < 67, by the continuity of the function f,,. Thus

|f(a—i—h,b+k:)—f(a+h,b)—f(a,b—l—k:)—l—f(a,b)
hk

— fyala,b)| < e
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for all (h, k) € R? for which hk # 0 and VA% + k2 < 6.
A corresponding result holds with the roles of x and y interchanged, and
therefore there exists some positive real number d9, where d, < R, such that

|f(a+h,b+k:)—f(a+h,b)—f(a,b+k:)+f(a,b)
hk

for all (h, k) € R? for which hk # 0 and VA% + k2 < &,.
Take ¢ to be the minimum of §; and . If hk # 0 and VA2 + k2 < 62
then

fla+h,b+k)— f(a+h,b) — f(a,b+k)+ f(a,b)

— fay(a,b)] < %8

| o —fyx(a7b)| < %g,
|f(a_+_h’b_|_k)_f(a—l—f;L,kb)—f(a,b—Fk’)“‘f(a,b) _f:cy(a7b)| < %8.

Using the triangle inequality we conclude that

| fyz(a,b) = foy(a,b)] <e.

But this inequality has to hold for all € > 0. Therefore we must have

fy:v(a7 b) = f:cy(aa b)
We conclude therefore that
o*f  Of
oxdy  Oydx

at each point (a,b) of V', as required. |}

Remark It is actually possible to prove a somewhat stronger theorem which
states that, if f: V' — R is a real-valued function defined on a open subset V'
of R? and if the partial derivatives

G_f % and O f
ox’ 0Oy’ Oxdy

exist and are continuous at some point (a,b) of V then

o0 f
Oyox
exists at (a,b) and
o0 f O*f
Yoz |,  Oxdy (a’b)'
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Corollary 7.14 Let V be an open set in R™ and let f:V — R be a real-
valued function on V. Suppose that the partial derivatives

of and ’f

exist and are continuous on V' for all integers i and j between 1 and n. Then

02 f 02 f

8;171-83:]- N 83:]6.%1

for all integers i and j between 1 and n.

7.5 Maxima and Minima

Let f:V — R be a real-valued function defined over some open subset V' of
R™ whose first and second order partial derivatives exist and are continuous
throughout V. Suppose that f has a local minimum at some point p of V,
where p = (p1,p2, ..., a,). Now for each integer ¢ between 1 and n the map

t— f(pl, c. ,ai_l,t,aiﬂ, A ,an)

has a local minimum at ¢t = a;, hence the derivative of this map vanishes
there. Thus if f has a local minimum at p then

= 0.

('33:2- x=p

The following lemma applies Taylor’s Theorem (for functions of a sin-
gle real variable) the local behaviour of real-valued functions of several real
variables that are twice continuously differentiable throughout an open neigh-
bourhood of some given point.

Lemma 7.15 Let f be a continuous real-valued function defined throughout
an open ball in R™ of radius R about some point p. Suppose that the partial
derivatives of f of orders one and two exist and are continuous throughout
this open ball. Then

Z h] Y ox; 0xy 8x] 8wk

p+6h

for all h € R™ satisfying |h| < 4.
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Proof Let h satisfy |h| < R, and let

q(t) = f(p +th)

for all t € [0,1]. It follows from the Chain Rule for functions of several
variables Theorem 7.9

= th(akf)<p+th)
j=1
and n
(1) = 3 hhe(@01)(p + th),
jk=1
where af( )
L1,T9y...,Tp
(0 ) (w1, 20, 1) =
J 1 2 8xj
and

82f(:1:1, To, ... ,l’n)
ox j ox k '
It follows from Taylor’s Theorem for functions of a single real variable (The-

orem 4.21) that if the function f has continuous partial derivatives of orders
one and two then

(0;0kf) (21, @2, ..., 2p) =

q(1) = q(0) + ¢'(0) + 34"(9)
for some real number # satisfying 0 < 6 < 1. It follows that

fp+h) = +th O f)(p Zhhkaakfx )
jk 1
- I >+ih AREINT

v k=1 kax kax] Ok |, on

as required. Jj

Let f be areal-valued function of several variables whose first second order
partial derivatives exist and are continuous throughout some open neighour-
hood of a given point p, and let R > 0 be chosen such that the function f is
defined throughout the open ball of radius R about the point p. It follows
from Lemma 7.15 that if

of

=0
al'j p
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for j =1,2,...,n, and if |h| < R then

f(p+h)= Zzh”axmy

=1 j=1

=p+6h

for some 6 satisfying 0 < 6 < 1. Let us denote by (H;;(p)) the Hessian
matrix at the point p, defined by
0 f
Hi ; -

X=p

If the partial derivatives of f of second order exist and are continuous then
H, ;(p) = Hji(p) for all i and j, by Corollary 7.14. Thus the Hessian matrix
is symmetric.

We now recall some facts concerning symmetric matrices.
Let (¢;;) be a symmetric n X n matrix.

The matrix (c¢; ;) is said to be positive semi-definite if Z Z ¢ jhih; >0
for all (hq, ho, ..., h,) € R™. =

The matrix (¢; ;) is said to be positive definite if Z Z c; jhih; > 0 for
all non-zero (hy, ha, ..., h,) € R™ . ]nl §

The matrix (¢; ;) is said to be negative semi-definite if Z Z cijhih; <0
for all (hy, ho, ..., h,) € R™. =

The matrix (¢; ;) is said to be negative definite if Z Zci,jhihj < 0 for
all non-zero (hq, ha, ..., h,) € R™ o

The matrix (¢; ;) is said to be indefinite if it is neither positive semi-
definite nor negative semi-definite.

Lemma 7.16 Let (c; ;) be a positive definite symmetric n x n matriz. Then
there exists some € > 0 with the following property: if all of the components
of a symmetric n x n matriz (b; ;) satisfy the inequality |b; ; — c; ;| < € then
the matriz (b; ;) is positive definite.

Proof Let S™ ! be the unit n — 1-sphere in R" defined by
St ={(hy,hg,...,hy) ER" K2+ h3 4 ---+ h: =1}
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Observe that a symmetric n x n matrix (b; ;) is positive definite if and only

if
Z Z bi,jhihj >0

i=1 j=1

for all (hy,ha,...,h,) € S* . Now the matrix (c; ;) is positive definite, by

assumption. Therefore
Z Z Ci,jhihj >0

i=1 j=1
for all (hy,hs,...,h,) € S™1. But S"7! is a closed bounded set in R™, it
therefore follows from Theorem 6.21 that there exists some (kq, ko, ..., k) €

5™~ with the property that
DD cighihy =y Y cigkiky
=1 j=1 =1 j=1

for all (hy, ha, ..., h,) € S" 1. Thus there exists a strictly positive constant
A > 0 with the property that

i zn: Ci’jhih]‘ Z A
i=1 j=1

for all (hy,ha, ..., h,) € S™ 1 Set e = A/n?. If (b;;) is a symmetric n X n
matrix all of whose components satisfy |b; ; — ¢; ;| < € then

zn: zn:(bm' — cij)hihj| < en? = A,

i=1 j=1

for all (hy, ho, ..., hy,) € S"™1, hence

2": Xn: bijhih; > z": zn:ci,jhihj —-A>0

i=1 j=1 i=1 j=1

for all (hy, ha, ..., hy,) € S*"!. Thus the matrix (b, ;) is positive-definite, as
required. |

Using the fact that a symmetric n x n matrix (¢; ;) is negative definite
if and only if the matrix (—¢;;) is positive-definite, we see that if (¢; ;) is
a negative-definite matrix then there exists some ¢ > 0 with the following
property: if all of the components of a symmetric n x n matrix (b, ;) satisfy
the inequality |b; ; — ¢; ;| < € then the matrix (b; ;) is negative definite.
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Let f:V — R be a real-valued function whose partial derivatives of first
and second order exist and are continuous throughout some open set V' in
R™. Let p be a point of V. We have already observed that if the function f
has a local maximum or a local minimum at p then

=0 =1,2,...,n).
0|, (=12...n)

We now apply Taylor’s theorem to study the behaviour of the function f
around a point p at which the first order partial derivatives vanish. We
consider the Hessian matrix (H; ;(p) defined by

92 f

81’2‘85L‘j x=p

Hi,j<p)

Lemma 7.17 Let f:V — R be a real-valued function whose partial deriva-
tives of first and second order exist and are continuous throughout some open
set V in R™, and let p be a point of V' at which

=0 =1,2,... .
7l (i=1.2....n)

If f has a local minimum at a point p of V' then the Hessian matriz (H; ;(p))
at p s positive semi-definite.

Proof The first order partial derivatives of f vanish at p. It therefore follows
from Taylor’s Theorem that, for any h € R™ which is sufficiently close to 0,
there exists some 6 satisfying 0 < 6 < 1 (where 6 depends on h) such that

1 n n
flp+h) = f(p) +3 D> hihiHij(p + 6h),

i=1 j=1
where )
o°f

Hi;(p +6h) = Ox;0x;
iO%j

x=p+6h

(see Lemma 7.15). Suppose that the Hessian matrix H; ;(p) is not positive
semi-definite. Then there exists some k € R™, where |k| = 1 with the

property that

i=1 j=1
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It follows from the continuity of the second order partial derivatives of f that
there exists some 6 > 0 such that

i i k?il{?jHl‘,j(X> <0

i=1 j=1

for all x € V satisfying |x — p| < . Choose any A such that 0 < A\ < ¢ and
set h = \k. Then

> > hihiH,i(p +6h) <0

i=1 j=1
for all 6 € (0,1). We conclude from Taylor’s theorem that f(p+ Ak) < f(p)
for all A satisfying 0 < A < § (see Lemma 7.15). We have thus shown that
if the Hessian matrix at p is not positive semi-definite then p is not a local
minimum. Thus the Hessian matrix of f is positive semi-definite at every
local minimum of f, as required. |

Let f:V — R be a real-valued function whose partial derivatives of first
and second order exist and are continuous throughout some open set V' in R",
and let p be a point at which the first order partial derivatives of f vanish.
The above lemma shows that if the function f has a local minimum at h
then the Hessian matrix of f is positive semi-definite at p. However the fact
that the Hessian matrix of f is positive semi-definite at p is not sufficient to
ensure that f is has a local minimum at p, as the following example shows.

Example Consider the function f:R? — R defined by f(z,y) = 2% — 3>,
Then the first order partial derivatives of f vanish at (0,0). The Hessian
matrix of f at (0,0) is the matrix

(o0)

and this matrix is positive semi-definite. However (0,0) is not a local mini-
mum of f since f(0,y) < f(0,0) for all y > 0.

The following theorem shows that if the Hessian of the function f is
positive definite at a point at which the first order partial derivatives of f
vanish then f has a local minimum at that point.

Theorem 7.18 Let f:V — R be a real-valued function whose partial deriva-
tives of first and second order exist and are continuous throughout some open
set V in R™, and let p be a point of V at which

=0 =1,2,...,n).
a$ix:p (Z ) Sy an)
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Suppose that the Hessian matriz H; ;(p) at p is positive definite. Then f has
a local minimum at p.

Proof The first order partial derivatives of f vanish at p. It therefore follows
from Taylor’s Theorem that, for any h € R™ which is sufficiently close to 0,
there exists some 6 satisfying 0 < 6 < 1 (where § depends on h) such that
1 n n
f(p+h)=f(p)+; g 2 hih;Hij(p + 0h),
where
0 f
Or;0x; x=p+6h

(see Lemma 7.15). Suppose that the Hessian matrix (H;;(p)) is positive
definite. It follows from Lemma 7.16 that there exists some ¢ > 0 such that
if |H;;(x) — H,; j(p)| < ¢ for all 4 and j then (H,;(x)) is positive definite.
But it follows from the continuity of the second order partial derivatives of
f that there exists some 6 > 0 such that |H; ;(x) — H; ;(p)| < € whenever
Ix — p| < 0. Thus if |h| < § then (H;;(p + 0h)) is positive definite for all
6 € (0,1) so that f(p+h) > f(p). Thus p is a local minimum of f. |}

H;j(p+6h) =

A symmetric n X n matrix C is positive definite if and only if all its
eigenvalues are strictly positive. In particular if n = 2 and if A\; and A, are
the eigenvalues a symmetric 2 x 2 matrix C, then

A+ Ay = trace C, AMAg = det C.

Thus a symmetric 2 x 2 matrix C' is positive definite if and only if its trace
and determinant are both positive.

Example Consider the function f:R? — R defined by
fla,y) = 42 + 3y — 20y — 2 — 2y — o°.

Now

of (z,y)

0 J@y=00)
The Hessian matrix of f at (0,0) is

8 =2
-2 6 /)
The trace and determinant of this matrix are 14 and 44 respectively. Hence

this matrix is positive definite. We conclude from Theorem 7.18 that the
function f has a local minimum at (0,0).

_ (0,0) 0f(z,y)
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