Module MA2321: Analysis in Several Real Variables Michaelmas Term 2015 Section 6

D. R. Wilkins

Copyright © David R. Wilkins 1988–2015

Contents

6	Euclidean Spaces, Continuity, and		
	Ope	n Sets	73
	6.1	Basic Properties of Vectors and Norms	73
	6.2	Convergence of Sequences in Euclidean Spaces	74
	6.3	Continuity of Functions of Several Real Variables	75
	6.4	Limits of Functions of Several Real Variables	78
	6.5	Open Sets in Euclidean Spaces	79
	6.6	Closed Sets in Euclidean Spaces	83
	6.7	Continuous Functions and Open Sets	84
	6.8	The Multidimensional Bolzano-Weierstrass Theorem	85
	6.9	The Extreme Value Theorem for Functions of Several Real	
		Variables	87
	6.10	Uniform Continuity for Functions of Several Real Variables	89

6 Euclidean Spaces, Continuity, and Open Sets

6.1 Basic Properties of Vectors and Norms

We denote by \mathbb{R}^n the set consisting of all *n*-tuples (x_1, x_2, \ldots, x_n) of real numbers. The set \mathbb{R}^n represents *n*-dimensional *Euclidean space* (with respect to the standard Cartesian coordinate system). Let **x** and **y** be elements of \mathbb{R}^n , where

$$\mathbf{x} = (x_1, x_2, \dots, x_n), \quad \mathbf{y} = (y_1, y_2, \dots, y_n),$$

and let λ be a real number. We define

$$\begin{aligned} \mathbf{x} + \mathbf{y} &= (x_1 + y_1, x_2 + y_2, \dots, x_n + y_n), \\ \mathbf{x} - \mathbf{y} &= (x_1 - y_1, x_2 - y_2, \dots, x_n - y_n) \\ \lambda \mathbf{x} &= (\lambda x_1, \lambda x_2, \dots, \lambda x_n), \\ \mathbf{x} \cdot \mathbf{y} &= x_1 y_1 + x_2 y_2 + \dots + x_n y_n, \\ |\mathbf{x}| &= \sqrt{x_1^2 + x_2^2 + \dots + x_n^2}. \end{aligned}$$

The quantity $\mathbf{x} \cdot \mathbf{y}$ is the *scalar product* (or *inner product*) of \mathbf{x} and \mathbf{y} , and the quantity $|\mathbf{x}|$ is the *Euclidean norm* of \mathbf{x} . Note that $|\mathbf{x}|^2 = \mathbf{x} \cdot \mathbf{x}$. The *Euclidean distance* between two points \mathbf{x} and \mathbf{y} of \mathbb{R}^n is defined to be the Euclidean norm $|\mathbf{y} - \mathbf{x}|$ of the vector $\mathbf{y} - \mathbf{x}$.

Proposition 6.1 (Schwarz's Inequality) Let \mathbf{x} and \mathbf{y} be elements of \mathbb{R}^n . Then $|\mathbf{x} \cdot \mathbf{y}| \leq |\mathbf{x}| |\mathbf{y}|$.

Proof We note that $|\lambda \mathbf{x} + \mu \mathbf{y}|^2 \ge 0$ for all real numbers λ and μ . But

$$|\lambda \mathbf{x} + \mu \mathbf{y}|^2 = (\lambda \mathbf{x} + \mu \mathbf{y}) \cdot (\lambda \mathbf{x} + \mu \mathbf{y}) = \lambda^2 |\mathbf{x}|^2 + 2\lambda \mu \mathbf{x} \cdot \mathbf{y} + \mu^2 |\mathbf{y}|^2.$$

Therefore $\lambda^2 |\mathbf{x}|^2 + 2\lambda\mu\mathbf{x}\cdot\mathbf{y} + \mu^2 |\mathbf{y}|^2 \ge 0$ for all real numbers λ and μ . In particular, suppose that $\lambda = |\mathbf{y}|^2$ and $\mu = -\mathbf{x}\cdot\mathbf{y}$. We conclude that

$$|\mathbf{y}|^4 |\mathbf{x}|^2 - 2|\mathbf{y}|^2 (\mathbf{x} \cdot \mathbf{y})^2 + (\mathbf{x} \cdot \mathbf{y})^2 |\mathbf{y}|^2 \ge 0,$$

so that $(|\mathbf{x}|^2|\mathbf{y}|^2 - (\mathbf{x} \cdot \mathbf{y})^2) |\mathbf{y}|^2 \ge 0$. Thus if $\mathbf{y} \neq \mathbf{0}$ then $|\mathbf{y}| > 0$, and hence

$$|\mathbf{x}|^2 |\mathbf{y}|^2 - (\mathbf{x} \cdot \mathbf{y})^2 \ge 0.$$

But this inequality is trivially satisfied when $\mathbf{y} = \mathbf{0}$. Thus $|\mathbf{x} \cdot \mathbf{y}| \le |\mathbf{x}| |\mathbf{y}|$, as required.

Corollary 6.2 (Triangle Inequality) Let \mathbf{x} and \mathbf{y} be elements of \mathbb{R}^n . Then $|\mathbf{x} + \mathbf{y}| \leq |\mathbf{x}| + |\mathbf{y}|$.

Proof Using Schwarz's Inequality, we see that

$$\begin{aligned} |\mathbf{x} + \mathbf{y}|^2 &= (\mathbf{x} + \mathbf{y}).(\mathbf{x} + \mathbf{y}) = |\mathbf{x}|^2 + |\mathbf{y}|^2 + 2\mathbf{x} \cdot \mathbf{y} \\ &\leq |\mathbf{x}|^2 + |\mathbf{y}|^2 + 2|\mathbf{x}||\mathbf{y}| = (|\mathbf{x}| + |\mathbf{y}|)^2. \end{aligned}$$

The result follows directly.

It follows immediately from the Triangle Inequality (Corollary 6.2) that

$$|\mathbf{z} - \mathbf{x}| \le |\mathbf{z} - \mathbf{y}| + |\mathbf{y} - \mathbf{x}|$$

for all points \mathbf{x} , \mathbf{y} and $|\mathbf{z}|$ of \mathbb{R}^n . This important inequality expresses the geometric fact the length of any triangle in a Euclidean space is less than or equal to the sum of the lengths of the other two sides.

6.2 Convergence of Sequences in Euclidean Spaces

Definition A sequence $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \ldots$ of points in \mathbb{R}^n is said to *converge* to a point \mathbf{p} if and only if the following criterion is satisfied:—

given any real number ε satisfying $\varepsilon > 0$ there exists some positive integer N such that $|\mathbf{p} - \mathbf{x}_j| < \varepsilon$ whenever $j \ge N$.

We refer to **p** as the *limit* $\lim_{j \to +\infty} \mathbf{x}_j$ of the sequence $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \ldots$

Lemma 6.3 Let \mathbf{p} be a point of \mathbb{R}^n , where $\mathbf{p} = (p_1, p_2, \dots, p_n)$. Then a sequence $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \dots$ of points in \mathbb{R}^n converges to \mathbf{p} if and only if the *i*th components of the elements of this sequence converge to p_i for $i = 1, 2, \dots, n$.

Proof Let x_{ji} and p_i denote the *i*th components of \mathbf{x}_j and \mathbf{p} , where $\mathbf{p} = \lim_{j \to +\infty} \mathbf{x}_j$. Then $|x_{ji} - p_i| \leq |\mathbf{x}_j - \mathbf{p}|$ for all *j*. It follows directly from the definition of convergence that if $\mathbf{x}_j \to \mathbf{p}$ as $j \to +\infty$ then $x_{ji} \to p_i$ as $j \to +\infty$.

Conversely suppose that, for each $i, x_{ji} \to p_i$ as $j \to +\infty$. Let $\varepsilon > 0$ be given. Then there exist positive integers N_1, N_2, \ldots, N_n such that $|x_{ji} - p_i| < \varepsilon/\sqrt{n}$ whenever $j \ge N_i$. Let N be the maximum of N_1, N_2, \ldots, N_n . If $j \ge N$ then

$$|\mathbf{x}_j - \mathbf{p}|^2 = \sum_{i=1}^n (x_{ji} - p_i)^2 < n(\varepsilon/\sqrt{n})^2 = \varepsilon^2,$$

so that $\mathbf{x}_j \to \mathbf{p}$ as $j \to +\infty$.

Definition A sequence $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \ldots$ of points in \mathbb{R}^n is said to be a *Cauchy* sequence if and only if the following criterion is satisfied:—

given any real number ε satisfying $\varepsilon > 0$ there exists some positive integer N such that $|\mathbf{x}_j - \mathbf{x}_k| < \varepsilon$ whenever $j \ge N$ and $k \ge N$.

Lemma 6.4 A sequence of points in \mathbb{R}^n is convergent if and only if it is a Cauchy sequence.

Proof Let $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \ldots$ be a sequence of points of \mathbb{R}^n converging to some point \mathbf{p} . Let $\varepsilon > 0$ be given. Then there exists some positive integer N such that $|\mathbf{x}_j - \mathbf{p}| < \frac{1}{2}\varepsilon$ whenever $j \ge N$. If $j \ge N$ and $k \ge N$ then

$$|\mathbf{x}_j - \mathbf{x}_k| \le |\mathbf{x}_j - \mathbf{p}| + |\mathbf{p} - \mathbf{x}_k| < \frac{1}{2}\varepsilon + \frac{1}{2}\varepsilon = \varepsilon,$$

by the Triangle Inequality. Thus every convergent sequence in \mathbb{R}^n is a Cauchy sequence.

Now let $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \ldots$ be a Cauchy sequence in \mathbb{R}^n . Then the *i*th components of the elements of this sequence constitute a Cauchy sequence of real numbers. This Cauchy sequence must converge to some real number p_i , by Cauchy's Criterion for Convergence (Theorem 2.7). It follows from Lemma 6.3 that the Cauchy sequence $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \ldots$ converges to the point \mathbf{p} , where $\mathbf{p} = (p_1, p_2, \ldots, p_n)$.

6.3 Continuity of Functions of Several Real Variables

Definition Let X and Y be a subsets of \mathbb{R}^m and \mathbb{R}^n respectively. A function $f: X \to Y$ from X to Y is said to be *continuous* at a point **p** of X if and only if the following criterion is satisfied:—

given any strictly positive real number ε , there exists some strictly positive real number δ such that $|f(\mathbf{x}) - f(\mathbf{p})| < \varepsilon$ whenever $\mathbf{x} \in X$ satisfies $|\mathbf{x} - \mathbf{p}| < \delta$.

The function $f: X \to Y$ is said to be continuous on X if and only if it is continuous at every point **p** of X.

Lemma 6.5 Let X, Y and Z be subsets of \mathbb{R}^m , \mathbb{R}^n and \mathbb{R}^k respectively, and let $f: X \to Y$ and $g: Y \to Z$ be functions satisfying $f(X) \subset Y$. Suppose that f is continuous at some point **p** of X and that g is continuous at $f(\mathbf{p})$. Then the composition function $g \circ f: X \to Z$ is continuous at **p**. **Proof** Let $\varepsilon > 0$ be given. Then there exists some $\eta > 0$ such that $|g(\mathbf{y}) - g(f(\mathbf{p}))| < \varepsilon$ for all $\mathbf{y} \in Y$ satisfying $|\mathbf{y} - f(\mathbf{p})| < \eta$. But then there exists some $\delta > 0$ such that $|f(\mathbf{x}) - f(\mathbf{p})| < \eta$ for all $\mathbf{x} \in X$ satisfying $|\mathbf{x} - \mathbf{p}| < \delta$. It follows that $|g(f(\mathbf{x})) - g(f(\mathbf{p}))| < \varepsilon$ for all $\mathbf{x} \in X$ satisfying $|\mathbf{x} - \mathbf{p}| < \delta$, and thus $g \circ f$ is continuous at \mathbf{p} , as required.

Lemma 6.6 Let X and Y be a subsets of \mathbb{R}^m and \mathbb{R}^n respectively, and let $f: X \to Y$ be a continuous function from X to Y. Let $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \ldots$ be a sequence of points of X which converges to some point \mathbf{p} of X. Then the sequence $f(\mathbf{x}_1), f(\mathbf{x}_2), f(\mathbf{x}_3), \ldots$ converges to $f(\mathbf{p})$.

Proof Let $\varepsilon > 0$ be given. Then there exists some $\delta > 0$ such that $|f(\mathbf{x}) - f(\mathbf{p})| < \varepsilon$ for all $\mathbf{x} \in X$ satisfying $|\mathbf{x} - \mathbf{p}| < \delta$, since the function f is continuous at \mathbf{p} . Also there exists some positive integer N such that $|\mathbf{x}_j - \mathbf{p}| < \delta$ whenever $j \ge N$, since the sequence $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \ldots$ converges to \mathbf{p} . Thus if $j \ge N$ then $|f(\mathbf{x}_j) - f(\mathbf{p})| < \varepsilon$. Thus the sequence $f(\mathbf{x}_1), f(\mathbf{x}_2), f(\mathbf{x}_3), \ldots$ converges to $f(\mathbf{p})$, as required.

Let X and Y be a subsets of \mathbb{R}^m and \mathbb{R}^n respectively, and let $f: X \to Y$ be a function from X to Y. Then

$$f(\mathbf{x}) = (f_1(\mathbf{x}), f_2(\mathbf{x}), \dots, f_n(\mathbf{x}))$$

for all $\mathbf{x} \in X$, where f_1, f_2, \ldots, f_n are functions from X to \mathbb{R} , referred to as the *components* of the function f.

Proposition 6.7 Let X and Y be a subsets of \mathbb{R}^m and \mathbb{R}^n respectively, and let $\mathbf{p} \in X$. A function $f: X \to Y$ is continuous at the point \mathbf{p} if and only if its components are all continuous at \mathbf{p} .

Proof Note that the *i*th component f_i of f is given by $f_i = \pi_i \circ f$, where $\pi_i: \mathbb{R}^n \to \mathbb{R}$ is the continuous function which maps $(y_1, y_2, \ldots, y_n) \in \mathbb{R}^n$ onto its *i*th coordinate y_i . Now any composition of continuous functions is continuous, by Lemma 6.5. Thus if f is continuous at \mathbf{p} , then so are the components of f.

Conversely suppose that the components of f are continuous at $\mathbf{p} \in X$. Let $\varepsilon > 0$ be given. Then there exist positive real numbers $\delta_1, \delta_2, \ldots, \delta_n$ such that $|f_i(\mathbf{x}) - f_i(\mathbf{p})| < \varepsilon/\sqrt{n}$ for $\mathbf{x} \in X$ satisfying $|\mathbf{x} - \mathbf{p}| < \delta_i$. Let δ be the minimum of $\delta_1, \delta_2, \ldots, \delta_n$. If $\mathbf{x} \in X$ satisfies $|\mathbf{x} - \mathbf{p}| < \delta$ then

$$|f(\mathbf{x}) - f(\mathbf{p})|^2 = \sum_{i=1}^n |f_i(\mathbf{x}) - f_i(\mathbf{p})|^2 < \varepsilon^2,$$

and hence $|f(\mathbf{x}) - f(\mathbf{p})| < \varepsilon$. Thus the function f is continuous at \mathbf{p} , as required.

Lemma 6.8 The functions $s: \mathbb{R}^2 \to \mathbb{R}$ and $m: \mathbb{R}^2 \to \mathbb{R}$ defined by s(x, y) = x + y and m(x, y) = xy are continuous.

Proof Let $(u, v) \in \mathbb{R}^2$. We first show that $s: \mathbb{R}^2 \to \mathbb{R}$ is continuous at (u, v). Let $\varepsilon > 0$ be given. Let $\delta = \frac{1}{2}\varepsilon$. If (x, y) is any point of \mathbb{R}^2 whose distance from (u, v) is less than δ then $|x - u| < \delta$ and $|y - v| < \delta$, and hence

$$|s(x,y) - s(u,v)| = |x + y - u - v| \le |x - u| + |y - v| < 2\delta = \varepsilon.$$

This shows that $s: \mathbb{R}^2 \to \mathbb{R}$ is continuous at (u, v).

Next we show that $m: \mathbb{R}^2 \to \mathbb{R}$ is continuous at (u, v). Now

m(x,y) - m(u,v) = xy - uv = (x - u)(y - v) + u(y - v) + (x - u)v.

for all points (x, y) of \mathbb{R}^2 . Thus if the distance from (x, y) to (u, v) is less than δ then $|x - u| < \delta$ and $|y - v| < \delta$, and hence $|m(x, y) - m(u, v)| < \delta^2 + (|u| + |v|)\delta$. Let $\varepsilon > 0$ is given. If $\delta > 0$ is chosen to be the minimum of 1 and $\varepsilon/(1 + |u| + |v|)$ then $\delta^2 + (|u| + |v|)\delta < (1 + |u| + |v|)\delta < \varepsilon$, and thus $|m(x, y) - m(u, v)| < \varepsilon$ for all points (x, y) of \mathbb{R}^2 whose distance from (u, v)is less than δ . This shows that $p: \mathbb{R}^2 \to \mathbb{R}$ is continuous at (u, v).

Proposition 6.9 Let X be a subset of \mathbb{R}^n , and let $f: X \to \mathbb{R}$ and $g: X \to \mathbb{R}$ be continuous functions from X to \mathbb{R} . Then the functions f + g, f - g and $f \cdot g$ are continuous. If in addition $g(\mathbf{x}) \neq 0$ for all $\mathbf{x} \in X$ then the quotient function f/g is continuous.

Proof Note that $f + g = s \circ h$ and $f \cdot g = m \circ h$, where $h: X \to \mathbb{R}^2$, $s: \mathbb{R}^2 \to \mathbb{R}$ and $m: \mathbb{R}^2 \to \mathbb{R}$ are given by $h(\mathbf{x}) = (f(\mathbf{x}), g(\mathbf{x})), s(u, v) = u + v$ and m(u, v) = uv for all $\mathbf{x} \in X$ and $u, v \in \mathbb{R}$. It follows from Proposition 6.7, Lemma 6.8 and Lemma 6.5 that f + g and $f \cdot g$ are continuous, being compositions of continuous functions. Now f - g = f + (-g), and both f and -g are continuous. Therefore f - g is continuous.

Now suppose that $g(\mathbf{x}) \neq 0$ for all $\mathbf{x} \in X$. Note that $1/g = r \circ g$, where $r: \mathbb{R} \setminus \{0\} \to \mathbb{R}$ is the reciprocal function, defined by r(t) = 1/t. Now the reciprocal function r is continuous. Thus the function 1/g is a composition of continuous functions and is thus continuous. But then, using the fact that a product of continuous real-valued functions is continuous, we deduce that f/g is continuous.

Example Consider the function $f: \mathbb{R}^2 \setminus \{(0,0)\} \to \mathbb{R}^2$ defined by

$$f(x,y) = \left(\frac{x}{x^2 + y^2}, \frac{-y}{x^2 + y^2}\right)$$

The continuity of the components of the function f follows from straightforward applications of Proposition 6.9. It then follows from Proposition 6.7 that the function f is continuous on $\mathbb{R}^2 \setminus \{(0,0)\}$.

6.4 Limits of Functions of Several Real Variables

Definition Let X be a subset of m-dimensional Euclidean space \mathbb{R}^m , and let $\mathbf{p} \in \mathbb{R}^m$. The point \mathbf{p} is said to be a *limit point* of the set X if, given any $\delta > 0$, there exists some point \mathbf{x} of X such that $0 < |\mathbf{x} - \mathbf{p}| < \delta$.

It follows easily from the definition of convergence of sequences of points in Euclidean space that if X is a subset of m-dimensional Euclidean space \mathbb{R}^m and if **p** is a point of \mathbb{R}^m then the point **p** is a limit point of the set X if and only if there exists an infinite sequence $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \ldots$ of points of X, all distinct from the point **p**, such that $\lim_{j\to+\infty} \mathbf{x}_j = \mathbf{p}$.

Definition Let X be a subset of m-dimensional Euclidean space \mathbb{R}^m , let $f: X \to \mathbb{R}^n$ be a function mapping the set X into n-dimensional Euclidean space \mathbb{R}^n , let **p** be a limit point of the set X, and let **q** be a point \mathbb{R}^n . The point **q** is said to be the *limit* of $f(\mathbf{x})$, as **x** tends to **p** in X, if and only if the following criterion is satisfied:—

given any strictly positive real number ε , there exists some strictly positive real number δ such that $|f(\mathbf{x}) - \mathbf{q}| < \varepsilon$ whenever $\mathbf{x} \in X$ satisfies $0 < |\mathbf{x} - \mathbf{p}| < \delta$.

Let X be a subset of *m*-dimensional Euclidean space \mathbb{R}^m , let $f: X \to \mathbb{R}^n$ be a function mapping the set X into *n*-dimensional Euclidean space \mathbb{R}^n , let **p** be a limit point of the set X, and let **q** be a point \mathbb{R}^n . If **q** is the limit of $f(\mathbf{x})$ as **x** tends to **p** in X then we can denote this fact by writing $\lim_{\mathbf{x}\to\mathbf{p}} f(\mathbf{x}) = \mathbf{q}$.

Proposition 6.10 Let X be a subset of m-dimensional Euclidean space \mathbb{R}^m , let $f: X \to \mathbb{R}^n$ be a function mapping the set X into n-dimensional Euclidean space \mathbb{R}^n , let \mathbf{p} be a limit point of the set X, and let \mathbf{q} be a point \mathbb{R}^n . Let $\tilde{X} = X \cup {\mathbf{p}}$, and let $\tilde{f}: \tilde{X} \to \mathbb{R}^n$ be defined such that

$$\tilde{f}(\mathbf{x}) = \begin{cases} f(\mathbf{x}) & \text{if } \mathbf{x} \neq \mathbf{p}; \\ \mathbf{q} & \text{if } \mathbf{x} = \mathbf{p}. \end{cases}$$

Then $\lim_{\mathbf{x}\to\mathbf{p}} f(x) = \mathbf{q}$ if and only if the function \tilde{f} is continuous at \mathbf{p} .

Proof The result follows directly on comparing the relevant definitions.

Corollary 6.11 Let X be a subset of m-dimensional Euclidean space \mathbb{R}^m , let $f: X \to \mathbb{R}^n$ be a function mapping the set X into n-dimensional Euclidean space \mathbb{R}^n , and let \mathbf{p} be a point of the set X that is also a limit point of X. Then the function f is continuous at the point \mathbf{p} if and only if $\lim_{\mathbf{x}\to\mathbf{p}} f(\mathbf{x}) = f(\mathbf{p})$. Let X be a subset of *m*-dimensional Euclidean space \mathbb{R}^m , and let **p** be a point of the set X. Suppose that the point **p** is not a limit point of the set X. Then there exists some strictly positive real number δ_0 such that $|\mathbf{x} - \mathbf{p}| \ge \delta_0$ for all $\mathbf{x} \in X$. The point **p** is then said to be an *isolated point* of X.

Let X be a subset of *m*-dimensional Euclidean space \mathbb{R}^m . The definition of continuity then ensures that any function $f: X \to \mathbb{R}^n$ mapping the set X into *n*-dimensional Euclidean space \mathbb{R}^n is continuous at any isolated point of its domain X.

Corollary 6.12 Let X be a subset of m-dimensional Euclidean space \mathbb{R}^m , let $f: X \to \mathbb{R}$ and $g: X \to \mathbb{R}$ be real-valued functions on X, and let \mathbf{p} be a limit point of the set X. Suppose that $\lim_{\mathbf{x}\to\mathbf{p}} f(\mathbf{x})$ and $\lim_{\mathbf{x}\to\mathbf{p}} g(\mathbf{x})$ both exist. Then so do $\lim_{\mathbf{x}\to\mathbf{p}} (f(\mathbf{x}) + g(\mathbf{x}))$, $\lim_{\mathbf{x}\to\mathbf{p}} (f(\mathbf{x}) - g(\mathbf{x}))$ and $\lim_{\mathbf{x}\to\mathbf{p}} (f(\mathbf{x})g(\mathbf{x}))$, and moreover

$$\begin{split} &\lim_{\mathbf{x}\to\mathbf{p}}(f(\mathbf{x})+g(\mathbf{x})) &= \lim_{\mathbf{x}\to\mathbf{p}}f(\mathbf{x})+\lim_{\mathbf{x}\to\mathbf{p}}g(\mathbf{x}),\\ &\lim_{\mathbf{x}\to\mathbf{p}}(f(\mathbf{x})-g(\mathbf{x})) &= \lim_{\mathbf{x}\to\mathbf{p}}f(\mathbf{x})-\lim_{\mathbf{x}\to\mathbf{p}}g(\mathbf{x}),\\ &\lim_{\mathbf{x}\to\mathbf{p}}(f(\mathbf{x})g(\mathbf{x})) &= \lim_{\mathbf{x}\to\mathbf{p}}f(\mathbf{x})\times\lim_{\mathbf{x}\to\mathbf{p}}g(\mathbf{x}), \end{split}$$

If moreover $g(\mathbf{x}) \neq 0$ for all $\mathbf{x} \in X$ and $\lim_{\mathbf{x} \to \mathbf{p}} g(\mathbf{x}) \neq 0$ then

$$\lim_{\mathbf{x}\to\mathbf{p}}\frac{f(\mathbf{x})}{g(\mathbf{x})} = \frac{\lim_{\mathbf{x}\to\mathbf{p}}f(\mathbf{x})}{\lim_{\mathbf{x}\to\mathbf{p}}g(\mathbf{x})}.$$

Proof Let $\tilde{X} = X \cup \{\mathbf{p}\}$, and let $\tilde{f}: \tilde{X} \to \mathbb{R}$ and $\tilde{g}: \tilde{X} \to \mathbb{R}$ be defined such that

$$\tilde{f}(\mathbf{x}) = \begin{cases} f(\mathbf{x}) & \text{if } \mathbf{x} \neq \mathbf{p}; \\ l & \text{if } \mathbf{x} = \mathbf{p}. \end{cases} \qquad \tilde{g}(\mathbf{x}) = \begin{cases} g(\mathbf{x}) & \text{if } \mathbf{x} \neq \mathbf{p}; \\ m & \text{if } \mathbf{x} = \mathbf{p}. \end{cases}$$

where $l = \lim_{\mathbf{x}\to\mathbf{p}} f(\mathbf{x})$ and $m = \lim_{\mathbf{x}\to\mathbf{p}} g(\mathbf{x})$. Then the functions \tilde{f} and \tilde{g} are continuous at **p**. The result therefore follows on applying Proposition 6.9.

6.5 Open Sets in Euclidean Spaces

Let X be a subset of \mathbb{R}^n . Given a point **p** of X and a non-negative real number r, the open ball $B_X(\mathbf{p}, r)$ in X of radius r about **p** is defined to be the subset of X given by

$$B_X(\mathbf{p}, r) = \{ \mathbf{x} \in X : |\mathbf{x} - \mathbf{p}| < r \}.$$

(Thus $B_X(\mathbf{p}, r)$ is the set consisting of all points of X that lie within a sphere of radius r centred on the point \mathbf{p} .)

Definition Let X be a subset of \mathbb{R}^n . A subset V of X is said to be *open* in X if and only if, given any point **p** of V, there exists some $\delta > 0$ such that $B_X(\mathbf{p}, \delta) \subset V$.

By convention, we regard the empty set \emptyset as being an open subset of X. (The criterion given above is satisfied vacuously in the case when V is the empty set.)

In particular, a subset V of \mathbb{R}^n is said to be an *open set* (in \mathbb{R}^n) if and only if, given any point **p** of V, there exists some $\delta > 0$ such that $B(\mathbf{p}, \delta) \subset V$, where $B(\mathbf{p}, r) = {\mathbf{x} \in \mathbb{R}^n : |\mathbf{x} - \mathbf{p}| < r}.$

Example Let $H = \{(x, y, z) \in \mathbb{R}^3 : z > c\}$, where c is some real number. Then H is an open set in \mathbb{R}^3 . Indeed let **p** be a point of H. Then $\mathbf{p} = (u, v, w)$, where w > c. Let $\delta = w - c$. If the distance from a point (x, y, z) to the point (u, v, w) is less than δ then $|z - w| < \delta$, and hence z > c, so that $(x, y, z) \in H$. Thus $B(\mathbf{p}, \delta) \subset H$, and therefore H is an open set.

The previous example can be generalized. Given any integer i between 1 and n, and given any real number c_i , the sets

$$\{(x_1, x_2, \dots, x_n) \in \mathbb{R}^n : x_i > c_i\}, \qquad \{(x_1, x_2, \dots, x_n) \in \mathbb{R}^n : x_i < c_i\}$$

are open sets in \mathbb{R}^n .

Example Let U be an open set in \mathbb{R}^n . Then for any subset X of \mathbb{R}^n , the intersection $U \cap X$ is open in X. (This follows directly from the definitions.) Thus for example, let S^2 be the unit sphere in \mathbb{R}^3 , given by

$$S^2 = \{(x,y,z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 = 1\}$$

and let N be the subset of S^2 given by

$$N = \{ (x, y, z) \in \mathbb{R}^n : x^2 + y^2 + z^2 = 1 \text{ and } z > 0 \}.$$

Then N is open in S^2 , since $N = H \cap S^2$, where H is the open set in \mathbb{R}^3 given by

$$H = \{(x, y, z) \in \mathbb{R}^3 : z > 0\}$$

Note that N is not itself an open set in \mathbb{R}^3 . Indeed the point (0, 0, 1) belongs to N, but, for any $\delta > 0$, the open ball (in \mathbb{R}^3 of radius δ about (0, 0, 1)contains points (x, y, z) for which $x^2 + y^2 + z^2 \neq 1$. Thus the open ball of radius δ about the point (0, 0, 1) is not a subset of N. **Lemma 6.13** Let X be a subset of \mathbb{R}^n , and let \mathbf{p} be a point of X. Then, for any positive real number r, the open ball $B_X(\mathbf{p}, r)$ in X of radius r about \mathbf{p} is open in X.

Proof Let \mathbf{x} be an element of $B_X(\mathbf{p}, r)$. We must show that there exists some $\delta > 0$ such that $B_X(\mathbf{x}, \delta) \subset B_X(\mathbf{p}, r)$. Let $\delta = r - |\mathbf{x} - \mathbf{p}|$. Then $\delta > 0$, since $|\mathbf{x} - \mathbf{p}| < r$. Moreover if $\mathbf{y} \in B_X(\mathbf{x}, \delta)$ then

$$|\mathbf{y} - \mathbf{p}| \le |\mathbf{y} - \mathbf{x}| + |\mathbf{x} - \mathbf{p}| < \delta + |\mathbf{x} - \mathbf{p}| = r,$$

by the Triangle Inequality, and hence $\mathbf{y} \in B_X(\mathbf{p}, r)$. Thus $B_X(\mathbf{x}, \delta) \subset B_X(\mathbf{p}, r)$. This shows that $B_X(\mathbf{p}, r)$ is an open set, as required.

Lemma 6.14 Let X be a subset of \mathbb{R}^n , and let \mathbf{p} be a point of X. Then, for any non-negative real number r, the set $\{\mathbf{x} \in X : |\mathbf{x} - \mathbf{p}| > r\}$ is an open set in X.

Proof Let \mathbf{x} be a point of X satisfying $|\mathbf{x} - \mathbf{p}| > r$, and let \mathbf{y} be any point of X satisfying $|\mathbf{y} - \mathbf{x}| < \delta$, where $\delta = |\mathbf{x} - \mathbf{p}| - r$. Then

$$|\mathbf{x} - \mathbf{p}| \le |\mathbf{x} - \mathbf{y}| + |\mathbf{y} - \mathbf{p}|,$$

by the Triangle Inequality, and therefore

$$|\mathbf{y} - \mathbf{p}| \ge |\mathbf{x} - \mathbf{p}| - |\mathbf{y} - \mathbf{x}| > |\mathbf{x} - \mathbf{p}| - \delta = r.$$

Thus $B_X(\mathbf{x}, \delta)$ is contained in the given set. The result follows.

Proposition 6.15 Let X be a subset of \mathbb{R}^n . The collection of open sets in X has the following properties:—

- (i) the empty set \emptyset and the whole set X are both open in X;
- (ii) the union of any collection of open sets in X is itself open in X;
- (iii) the intersection of any finite collection of open sets in X is itself open in X.

Proof The empty set \emptyset is an open set by convention. Moreover the definition of an open set is satisfied trivially by the whole set X. This proves (i).

Let \mathcal{A} be any collection of open sets in X, and let U denote the union of all the open sets belonging to \mathcal{A} . We must show that U is itself open in X. Let $\mathbf{x} \in U$. Then $\mathbf{x} \in V$ for some set V belonging to the collection \mathcal{A} . It follows that there exists some $\delta > 0$ such that $B_X(\mathbf{x}, \delta) \subset V$. But $V \subset U$, and thus $B_X(\mathbf{x}, \delta) \subset U$. This shows that U is open in X. This proves (ii).

Finally let $V_1, V_2, V_3, \ldots, V_k$ be a *finite* collection of subsets of X that are open in X, and let V denote the intersection $V_1 \cap V_2 \cap \cdots \cap V_k$ of these sets. Let $\mathbf{x} \in V$. Now $\mathbf{x} \in V_j$ for $j = 1, 2, \ldots, k$, and therefore there exist strictly positive real numbers $\delta_1, \delta_2, \ldots, \delta_k$ such that $B_X(\mathbf{x}, \delta_j) \subset V_j$ for $j = 1, 2, \ldots, k$. Let δ be the minimum of $\delta_1, \delta_2, \ldots, \delta_k$. Then $\delta > 0$. (This is where we need the fact that we are dealing with a finite collection of sets.) Now $B_X(\mathbf{x}, \delta) \subset B_X(\mathbf{x}, \delta_j) \subset V_j$ for $j = 1, 2, \ldots, k$, and thus $B_X(\mathbf{x}, \delta) \subset V$. Thus the intersection V of the sets V_1, V_2, \ldots, V_k is itself open in X. This proves (iii).

Example The set $\{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 < 4 \text{ and } z > 1\}$ is an open set in \mathbb{R}^3 , since it is the intersection of the open ball of radius 2 about the origin with the open set $\{(x, y, z) \in \mathbb{R}^3 : z > 1\}$.

Example The set $\{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 < 4 \text{ or } z > 1\}$ is an open set in \mathbb{R}^3 , since it is the union of the open ball of radius 2 about the origin with the open set $\{(x, y, z) \in \mathbb{R}^3 : z > 1\}$.

Example The set

$$\{(x, y, z) \in \mathbb{R}^3 : (x - n)^2 + y^2 + z^2 < \frac{1}{4} \text{ for some } n \in \mathbb{Z}\}\$$

is an open set in \mathbb{R}^3 , since it is the union of the open balls of radius $\frac{1}{2}$ about the points (n, 0, 0) for all integers n.

Example For each positive integer k, let

$$V_k = \{ (x, y, z) \in \mathbb{R}^3 : k^2 (x^2 + y^2 + z^2) < 1 \}.$$

Now each set V_k is an open ball of radius 1/k about the origin, and is therefore an open set in \mathbb{R}^3 . However the intersection of the sets V_k for all positive integers k is the set $\{(0,0,0)\}$, and thus the intersection of the sets V_k for all positive integers k is not itself an open set in \mathbb{R}^3 . This example demonstrates that infinite intersections of open sets need not be open.

Lemma 6.16 A sequence $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \ldots$ of points in \mathbb{R}^n converges to a point \mathbf{p} if and only if, given any open set U which contains \mathbf{p} , there exists some positive integer N such that $\mathbf{x}_j \in U$ for all j satisfying $j \geq N$.

Proof Suppose that the sequence $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \ldots$ has the property that, given any open set U which contains \mathbf{p} , there exists some positive integer N such that $\mathbf{x}_j \in U$ whenever $j \geq N$. Let $\varepsilon > 0$ be given. The open ball $B(\mathbf{p}, \varepsilon)$ of radius ε about \mathbf{p} is an open set by Lemma 6.13. Therefore there exists some positive integer N such that $\mathbf{x}_j \in B(\mathbf{p}, \varepsilon)$ whenever $j \geq N$. Thus $|\mathbf{x}_j - \mathbf{p}| < \varepsilon$ whenever $j \geq N$. This shows that the sequence converges to \mathbf{p} .

Conversely, suppose that the sequence $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \ldots$ converges to \mathbf{p} . Let U be an open set which contains \mathbf{p} . Then there exists some $\varepsilon > 0$ such that the open ball $B(\mathbf{p}, \varepsilon)$ of radius ε about \mathbf{p} is a subset of U. Thus there exists some $\varepsilon > 0$ such that U contains all points \mathbf{x} of X that satisfy $|\mathbf{x} - \mathbf{p}| < \varepsilon$. But there exists some positive integer N with the property that $|\mathbf{x}_j - \mathbf{p}| < \varepsilon$ whenever $j \ge N$, since the sequence converges to \mathbf{p} . Therefore $\mathbf{x}_j \in U$ whenever $j \ge N$, as required.

6.6 Closed Sets in Euclidean Spaces

Let X be a subset of \mathbb{R}^n . A subset F of X is said to be *closed* in X if and only if its complement $X \setminus F$ in X is open in X. (Recall that $X \setminus F = \{\mathbf{x} \in X : \mathbf{x} \notin F\}$.)

Example The sets $\{(x, y, z) \in \mathbb{R}^3 : z \ge c\}$, $\{(x, y, z) \in \mathbb{R}^3 : z \le c\}$, and $\{(x, y, z) \in \mathbb{R}^3 : z = c\}$ are closed sets in \mathbb{R}^3 for each real number c, since the complements of these sets are open in \mathbb{R}^3 .

Example Let X be a subset of \mathbb{R}^n , and let \mathbf{x}_0 be a point of X. Then the sets $\{\mathbf{x} \in X : |\mathbf{x} - \mathbf{x}_0| \leq r\}$ and $\{\mathbf{x} \in X : |\mathbf{x} - \mathbf{x}_0| \geq r\}$ are closed for each non-negative real number r. In particular, the set $\{\mathbf{x}_0\}$ consisting of the single point \mathbf{x}_0 is a closed set in X. (These results follow immediately using Lemma 6.13 and Lemma 6.14 and the definition of closed sets.)

Let \mathcal{A} be some collection of subsets of a set X. Then

$$X \setminus \bigcup_{S \in \mathcal{A}} S = \bigcap_{S \in \mathcal{A}} (X \setminus S), \qquad X \setminus \bigcap_{S \in \mathcal{A}} S = \bigcup_{S \in \mathcal{A}} (X \setminus S)$$

(i.e., the complement of the union of some collection of subsets of X is the intersection of the complements of those sets, and the complement of the intersection of some collection of subsets of X is the union of the complements of those sets). The following result therefore follows directly from Proposition 6.15.

Proposition 6.17 Let X be a subset of \mathbb{R}^n . The collection of closed sets in X has the following properties:—

- (i) the empty set \emptyset and the whole set X are both closed in X;
- (ii) the intersection of any collection of closed sets in X is itself closed in X;
- (iii) the union of any finite collection of closed sets in X is itself closed in X.

Lemma 6.18 Let X be a subset of \mathbb{R}^n , and let F be a subset of X which is closed in X. Let $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \ldots$ be a sequence of points of F which converges to a point \mathbf{p} of X. Then $\mathbf{p} \in F$.

Proof The complement $X \setminus F$ of F in X is open, since F is closed. Suppose that \mathbf{p} were a point belonging to $X \setminus F$. It would then follow from Lemma 6.16 that $\mathbf{x}_j \in X \setminus F$ for all values of j greater than some positive integer N, contradicting the fact that $\mathbf{x}_j \in F$ for all j. This contradiction shows that \mathbf{p} must belong to F, as required.

6.7 Continuous Functions and Open Sets

Let X and Y be subsets of \mathbb{R}^m and \mathbb{R}^n , and let $f: X \to Y$ be a function from X to Y. We recall that the function f is continuous at a point **p** of X if, given any $\varepsilon > 0$, there exists some $\delta > 0$ such that $|f(\mathbf{u}) - f(\mathbf{p})| < \varepsilon$ for all points **u** of X satisfying $|\mathbf{u} - \mathbf{p}| < \delta$. Thus the function $f: X \to Y$ is continuous at **p** if and only if, given any $\varepsilon > 0$, there exists some $\delta > 0$ such that the function f maps $B_X(\mathbf{p}, \delta)$ into $B_Y(f(\mathbf{p}), \varepsilon)$ (where $B_X(\mathbf{p}, \delta)$ and $B_Y(f(\mathbf{p}), \varepsilon)$ denote the open balls in X and Y of radius δ and ε about **p** and $f(\mathbf{p})$ respectively).

Given any function $f: X \to Y$, we denote by $f^{-1}(V)$ the preimage of a subset V of Y under the map f, defined by $f^{-1}(V) = \{ \mathbf{x} \in X : f(\mathbf{x}) \in V \}.$

Proposition 6.19 Let X and Y be subsets of \mathbb{R}^m and \mathbb{R}^n , and let $f: X \to Y$ be a function from X to Y. The function f is continuous if and only if $f^{-1}(V)$ is open in X for every open subset V of Y.

Proof Suppose that $f: X \to Y$ is continuous. Let V be an open set in Y. We must show that $f^{-1}(V)$ is open in X. Let $\mathbf{p} \in f^{-1}(V)$. Then $f(\mathbf{p}) \in V$. But V is open, hence there exists some $\varepsilon > 0$ with the property that $B_Y(f(\mathbf{p}), \varepsilon) \subset V$. But f is continuous at \mathbf{p} . Therefore there exists some $\delta > 0$ such that f maps $B_X(\mathbf{p}, \delta)$ into $B_Y(f(\mathbf{p}), \varepsilon)$ (see the remarks above). Thus $f(\mathbf{x}) \in V$ for all $\mathbf{x} \in B_X(\mathbf{p}, \delta)$, showing that $B_X(\mathbf{p}, \delta) \subset f^{-1}(V)$. This shows that $f^{-1}(V)$ is open in X for every open set V in Y. Conversely suppose that $f: X \to Y$ is a function with the property that $f^{-1}(V)$ is open in X for every open set V in Y. Let $\mathbf{p} \in X$. We must show that f is continuous at \mathbf{p} . Let $\varepsilon > 0$ be given. Then $B_X(f(\mathbf{p}), \varepsilon)$ is an open set in Y, by Lemma 6.13, hence $f^{-1}(B_Y(f(\mathbf{p}), \varepsilon))$ is an open set in X which contains \mathbf{p} . It follows that there exists some $\delta > 0$ such that $B_X(\mathbf{p}, \delta) \subset f^{-1}(B_Y(f(\mathbf{p}), \varepsilon))$. Thus, given any $\varepsilon > 0$, there exists some $\delta > 0$ such that f maps $B_X(\mathbf{p}, \delta)$ into $B_Y(f(\mathbf{p}), \varepsilon)$. We conclude that f is continuous at \mathbf{p} , as required.

Let X be a subset of \mathbb{R}^n , let $f: X \to \mathbb{R}$ be continuous, and let c be some real number. Then the sets $\{\mathbf{x} \in X : f(\mathbf{x}) > c\}$ and $\{\mathbf{x} \in X : f(\mathbf{x}) < c\}$ are open in X, and, given real numbers a and b satisfying a < b, the set $\{\mathbf{x} \in X : a < f(\mathbf{x}) < b\}$ is open in X.

6.8 The Multidimensional Bolzano-Weierstrass Theorem

A sequence $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \ldots$ of points in \mathbb{R}^n is said to be *bounded* if there exists some constant K such that $|\mathbf{x}_j| \leq K$ for all j.

Example Let

$$(x_j, y_j, z_j) = \left(\sin(\pi\sqrt{j}), \, (-1)^j, \cos\left(\frac{2\pi\log j}{\log 2}\right)\right)$$

for j = 1, 2, 3, ... This sequence of points in \mathbb{R}^3 is bounded, because the components of its members all take values between -1 and 1. Moreover $x_j = 0$ whenever j is the square of a positive integer, $y_j = 1$ whenever j is even and $z_j = 1$ whenever j is a power of two.

The infinite sequence x_1, x_2, x_3, \ldots has a convergent subsequence

$$x_1, x_4, x_9, x_{16}, x_{25}, \ldots$$

which includes those x_j for which j is the square of a positive integer. The corresponding subsequence y_1, y_4, y_9, \ldots of y_1, y_2, y_3, \ldots is not convergent, because its values alternate between 1 and -1. However this subsequence is bounded, and we can extract from this sequence a convergent subsequence

```
y_4, y_{16}, y_{36}, y_{64}, y_{100}, \ldots
```

which includes those x_j for which j is the square of an even positive integer. The subsequence

```
x_4, x_{16}, x_{36}, y_{64}, y_{100}, \dots
```

is also convergent, because it is a subsequence of a convergent subsequence. However the corresponding subsequence

$$z_4, z_{16}, z_{36}, z_{64}, z_{100}, \ldots$$

does not converge. (Indeed $z_j = 1$ when j is an even power of 2, but $z_j = \cos(2\pi \log(9)/\log(2))$ when $j = 9 \times 2^{2p}$ for some positive integer p.) However this subsequence is bounded, and we can extract from it a convergent subsequence

 $z_4, z_{16}, z_{64}, z_{256}, z_{1024}, \ldots$

which includes those x_j for which j is equal to two raised to the power of an even positive integer. Then the first, second and third components of the following subsequence

 $(x_4, y_4, z_4), (x_{16}, y_{16}, z_{16}), (x_{64}, y_{64}, z_{64}), (x_{256}, y_{256}, z_{256}), \dots$

of the original sequence of points in \mathbb{R}^3 converge, and it therefore follows from Lemma 6.3 that this sequence is a convergent subsequence of the given sequence of points in \mathbb{R}^3 .

Example Let

$$x_j = \begin{cases} 1 & \text{if } j = 4k \text{ for some integer } k \\ 0 & \text{if } j = 4k + 1 \text{ for some integer } k \\ -1 & \text{if } j = 4k + 2 \text{ for some integer } k \\ 0 & \text{if } j = 4k + 3 \text{ for some integer } k \end{cases}$$

and

$$y_j = \begin{cases} 0 & \text{if } j = 4k \text{ for some integer } k, \\ 1 & \text{if } j = 4k + 1 \text{ for some integer } k, \\ 0 & \text{if } j = 4k + 2 \text{ for some integer } k, \\ -1 & \text{if } j = 4k + 3 \text{ for some integer } k, \end{cases}$$

and let $\mathbf{u}_j = (x_j, y_j)$ for $j = 1, 2, 3, 4, \ldots$ Then the first components x_j for which the index j is odd constitute a convergent sequence $x_1, x_3, x_5, x_7, \ldots$ of real numbers, and the second components y_j for which the index j is even also constitute a convergent sequence $y_2, y_4, y_6, y_8, \ldots$ of real numbers.

However one would not obtain a convergent subsequence of $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \ldots$ simply by selecting those indices j for which x_j is in the convergent subsequence x_1, x_3, x_5, \ldots and y_j is in the convergent subsequence y_2, y_4, y_6, \ldots , because there no values of the index j for which x_j and y_j both belong to the respective subsequences. However the one-dimensional Bolzano-Weierstrass Theorem (Theorem 2.5) guarantees that there is a convergent subsequence of $y_1, y_3, y_5, y_7, \ldots$, and indeed $y_1, y_5, y_9, y_{13}, \ldots$ is such a convergent subsequence. This yields a convergent subsequence $\mathbf{u}_1, \mathbf{u}_5, \mathbf{u}_9, \mathbf{u}_{13}, \ldots$ of the given bounded sequence of points in \mathbb{R}^2 .

Theorem 6.20 Every bounded sequence of points in \mathbb{R}^n has a convergent subsequence.

Proof We prove the result by induction on the dimension n of the Euclidean space \mathbb{R}^n that contains the infinite sequence in question. It follows from the one-dimensional Bolzano-Weierstrass Theorem (Theorem 2.5) that the theorem is true when n = 1. Suppose that n > 1, and that every bounded sequence in \mathbb{R}^{n-1} has a convergent subsequence. Let $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \ldots$ be a bounded infinite sequence of elements of \mathbb{R}^n , and let $x_{j,i}$ denote the *i*th component of \mathbf{x}_j for $i = 1, 2, \dots, n$ and for all positive integers j. The induction hypothesis requires that all bounded sequences in \mathbb{R}^{n-1} contain convergent subsequences. Therefore there exist real numbers $p_1, p_2, \ldots, p_{n-1}$ and an increasing sequence m_1, m_2, m_3, \ldots of positive integers such that $\lim_{k \to +\infty} x_{m_k,i} = p_i$ for i = $1, 2, \ldots, n-1$. The *n*th components $x_{m_1,n}, x_{m_2,n}, x_{m_3,n}, \ldots$ of the members of the subsequence $\mathbf{x}_{m_1}, \mathbf{x}_{m_2}, \mathbf{x}_{m_3}, \ldots$ then constitute a bounded sequence of real numbers. It follows from the one-dimensional Bolzano-Weierstrass Theorem (Theorem 2.5) that there exists an increasing sequence k_1, k_2, k_3, \ldots of positive integers for which the sequence $x_{m_{k_1},n}, x_{m_{k_2},n}, x_{m_{k_3},n}, \ldots$ converges. Let $s_j = m_{k_j}$ for all positive integers j, and let $p_n = \lim_{j \to +\infty} x_{m_{k_j},n} = \lim_{j \to +\infty} x_{s_j,n}$. Then the sequence $x_{s_1,i}, x_{s_2,i}, x_{s_3,i}, \ldots$ converges for values of *i* between 1 and n-1, because it is a subquence of the convergent sequence $x_{m_1,i}, x_{m_2,i}, x_{m_3,i}, \ldots$ Moreover $x_{s_1,n}, x_{s_2,n}, x_{s_3,n}, \ldots$ also converges. Thus the *i*th components of the infinite sequence $\mathbf{x}_{m_1}, \mathbf{x}_{m_2}, \mathbf{x}_{m_3}, \ldots$ converge for $i = 1, 2, \ldots, n$. It then follows from Lemma 6.3 that $\lim_{j\to+\infty} \mathbf{x}_{s_k} = \mathbf{p}$, where $\mathbf{p} = (p_1, p_2, \dots, p_n)$. The result follows.

6.9 The Extreme Value Theorem for Functions of Several Real Variables

Theorem 6.21 (The Extreme Value Theorem for Continuous Functions on Closed Bounded Sets) Let X be a closed bounded set in m-dimensional Euclidean space, and let $f: X \to \mathbb{R}$ be a continuous real-valued function defined on X. Then there exist points **u** and **v** of X such that $f(\mathbf{u}) \leq f(\mathbf{x}) \leq f(\mathbf{v})$ for all $\mathbf{x} \in X$.

Proof We prove the result for an arbitrary continuous real-valued function $f: X \to \mathbb{R}$ by showing that the result holds for a related continuous function

 $g: X \to \mathbb{R}$ that is known to be bounded above and below on X. Let $h: \mathbb{R} \to \mathbb{R}$ be the continuous function defined such that

$$h(t) = \frac{t}{1+|t|}$$

for all $t \in \mathbb{R}$. Then the continuous function $h: \mathbb{R} \to \mathbb{R}$ is increasing. Moreover $-1 \le h(t) \le 1$ for all $t \in \mathbb{R}$ (see the proof of Theorem 3.15).

Let $f: X \to \mathbb{R}$ be a continuous real-valued function on the closed bounded set X, and let $g: X \to \mathbb{R}$ be the continuous real-valued function defined on X such that

$$g(\mathbf{x}) = h(f(\mathbf{x})) = \frac{f(\mathbf{x})}{1 + |f(\mathbf{x})|}$$

for all $\mathbf{x} \in X$. Then $-1 \leq g(\mathbf{x}) \leq 1$ for all $\mathbf{x} \in X$. The set of values of the function g is then non-empty and bounded above, and therefore has a least upper bound. Let

$$M = \sup\{g(\mathbf{x}) : \mathbf{x} \in X\}.$$

Then, for each positive integer j, the real number $M - j^{-1}$ is not an upper bound for the set of values of the function g, and therefore there exists some point \mathbf{x}_j in the set X for which $M - j^{-1} < g(\mathbf{x}_j) \leq M$. The sequence $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \ldots$ is then a bounded sequence of points in \mathbb{R}^m , because the set X is bounded. It follows from the multidimensional Bolzano-Weierstrass Theorem (Theorem 6.20) that this sequence has a subsequence $\mathbf{x}_{k_1}, \mathbf{x}_{k_2}, \mathbf{x}_{k_3}, \ldots$ which converges to some point \mathbf{v} of \mathbb{R}^n . Moreover this point \mathbf{v} belongs to the set Xbecause X is closed (see Lemma 6.18). Now

$$M - \frac{1}{k_j} < g(\mathbf{x}_{k_j}) \le M$$

for all positive integers j, and therefore $g(\mathbf{x}_{k_j}) \to M$ as $j \to +\infty$. It then follows from Lemma 6.6 that

$$g(\mathbf{v}) = g\left(\lim_{j \to +\infty} \mathbf{x}_{k_j}\right) = \lim_{j \to +\infty} g(\mathbf{x}_{k_j}) = M$$

But $g(\mathbf{x}) \leq M$ for all $\mathbf{x} \in X$. It follows that $h(f(\mathbf{x})) = g(\mathbf{x}) \leq g(\mathbf{v}) = h(f(\mathbf{v}))$ for all $\mathbf{x} \in X$. Moreover $h: \mathbb{R} \to \mathbb{R}$ is an increasing function. It follows therefore that $f(\mathbf{x}) \leq f(\mathbf{v})$ for all $\mathbf{x} \in X$.

On applying this result with the continuous function f replaced by the function -f, we conclude also that there exists some point \mathbf{u} of X such that $f(\mathbf{u}) \leq f(\mathbf{x})$ for all $\mathbf{x} \in X$. The result follows.

6.10 Uniform Continuity for Functions of Several Real Variables

Definition Let X be a subset of \mathbb{R}^m . A function $f: X \to \mathbb{R}^n$ from X to \mathbb{R}^n is said to be *uniformly continuous* if, given any $\varepsilon > 0$, there exists some $\delta > 0$ (which does not depend on either \mathbf{x}' or \mathbf{x}) such that $|f(\mathbf{x}') - f(\mathbf{x})| < \varepsilon$ for all points \mathbf{x}' and \mathbf{x} of X satisfying $|\mathbf{x}' - \mathbf{x}| < \delta$.

Theorem 6.22 Let X be a subset of \mathbb{R}^m that is both closed and bounded. Then any continuous function $f: X \to \mathbb{R}^n$ is uniformly continuous.

Proof Let $\varepsilon > 0$ be given. Suppose that there did not exist any $\delta > 0$ such that $|f(\mathbf{x}') - f(\mathbf{x})| < \varepsilon$ for all points $\mathbf{x}', \mathbf{x} \in X$ satisfying $|\mathbf{x}' - \mathbf{x}| < \delta$. Then, for each positive integer j, there would exist points \mathbf{u}_j and \mathbf{v}_j in X such that $|\mathbf{u}_j - \mathbf{v}_j| < 1/j$ and $|f(\mathbf{u}_j) - f(\mathbf{v}_j)| \ge \varepsilon$. But the sequence $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \ldots$ would be bounded, since X is bounded, and thus would possess a subsequence $\mathbf{u}_{j_1}, \mathbf{u}_{j_2}, \mathbf{u}_{j_3}, \ldots$ converging to some point \mathbf{p} (Theorem 6.20). Moreover $\mathbf{p} \in X$, since X is closed. The sequence $\mathbf{v}_{j_1}, \mathbf{v}_{j_2}, \mathbf{v}_{j_3}, \ldots$ would also converge to \mathbf{p} , since $\lim_{k \to +\infty} |\mathbf{v}_{j_k} - \mathbf{u}_{j_k}| = 0$. But then the sequences $f(\mathbf{u}_{j_1}), f(\mathbf{u}_{j_2}), f(\mathbf{u}_{j_3}), \ldots$ and $f(\mathbf{v}_{j_1}), f(\mathbf{v}_{j_2}), f(\mathbf{v}_{j_3}), \ldots$ would converge to $f(\mathbf{p})$, since f is continuous (Lemma 6.6), and thus $\lim_{k \to +\infty} |f(\mathbf{u}_{j_k}) - f(\mathbf{v}_{j_k})| = 0$. But this is impossible, since \mathbf{u}_j and \mathbf{v}_j have been chosen so that $|f(\mathbf{u}_j) - f(\mathbf{v}_j)| \ge \varepsilon$ for all j. We conclude therefore that there must exist some $\delta > 0$ such that $|f(\mathbf{x}') - f(\mathbf{x})| < \varepsilon$ for all points $\mathbf{x}', \mathbf{x} \in X$ satisfying $|\mathbf{x}' - \mathbf{x}| < \delta$, as required.