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6 Euclidean Spaces, Continuity, and

Open Sets

6.1 Basic Properties of Vectors and Norms

We denote by Rn the set consisting of all n-tuples (x1, x2, . . . , xn) of real
numbers. The set Rn represents n-dimensional Euclidean space (with respect
to the standard Cartesian coordinate system). Let x and y be elements of
Rn, where

x = (x1, x2, . . . , xn), y = (y1, y2, . . . , yn),

and let λ be a real number. We define

x + y = (x1 + y1, x2 + y2, . . . , xn + yn),

x− y = (x1 − y1, x2 − y2, . . . , xn − yn),

λx = (λx1, λx2, . . . , λxn),

x · y = x1y1 + x2y2 + · · ·+ xnyn,

|x| =
√
x21 + x22 + · · ·+ x2n.

The quantity x · y is the scalar product (or inner product) of x and y, and
the quantity |x| is the Euclidean norm of x. Note that |x|2 = x · x. The
Euclidean distance between two points x and y of Rn is defined to be the
Euclidean norm |y − x| of the vector y − x.

Proposition 6.1 (Schwarz’s Inequality) Let x and y be elements of Rn.
Then |x · y| ≤ |x||y|.

Proof We note that |λx + µy|2 ≥ 0 for all real numbers λ and µ. But

|λx + µy|2 = (λx + µy).(λx + µy) = λ2|x|2 + 2λµx · y + µ2|y|2.

Therefore λ2|x|2 + 2λµx · y + µ2|y|2 ≥ 0 for all real numbers λ and µ. In
particular, suppose that λ = |y|2 and µ = −x · y. We conclude that

|y|4|x|2 − 2|y|2(x · y)2 + (x · y)2|y|2 ≥ 0,

so that (|x|2|y|2 − (x · y)2) |y|2 ≥ 0. Thus if y 6= 0 then |y| > 0, and hence

|x|2|y|2 − (x · y)2 ≥ 0.

But this inequality is trivially satisfied when y = 0. Thus |x · y| ≤ |x||y|, as
required.
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Corollary 6.2 (Triangle Inequality) Let x and y be elements of Rn. Then
|x + y| ≤ |x|+ |y|.

Proof Using Schwarz’s Inequality, we see that

|x + y|2 = (x + y).(x + y) = |x|2 + |y|2 + 2x · y
≤ |x|2 + |y|2 + 2|x||y| = (|x|+ |y|)2.

The result follows directly.

It follows immediately from the Triangle Inequality (Corollary 6.2) that

|z− x| ≤ |z− y|+ |y − x|

for all points x, y and |z| of Rn. This important inequality expresses the
geometric fact the the length of any triangle in a Euclidean space is less than
or equal to the sum of the lengths of the other two sides.

6.2 Convergence of Sequences in Euclidean Spaces

Definition A sequence x1,x2,x3, . . . of points in Rn is said to converge to a
point p if and only if the following criterion is satisfied:—

given any real number ε satisfying ε > 0 there exists some positive
integer N such that |p− xj| < ε whenever j ≥ N .

We refer to p as the limit lim
j→+∞

xj of the sequence x1,x2,x3, . . . .

Lemma 6.3 Let p be a point of Rn, where p = (p1, p2, . . . , pn). Then a
sequence x1,x2,x3, . . . of points in Rn converges to p if and only if the ith
components of the elements of this sequence converge to pi for i = 1, 2, . . . , n.

Proof Let xji and pi denote the ith components of xj and p, where p =
lim

j→+∞
xj. Then |xji − pi| ≤ |xj − p| for all j. It follows directly from the

definition of convergence that if xj → p as j → +∞ then xji → pi as
j → +∞.

Conversely suppose that, for each i, xji → pi as j → +∞. Let ε > 0 be
given. Then there exist positive integers N1, N2, . . . , Nn such that |xji−pi| <
ε/
√
n whenever j ≥ Ni. Let N be the maximum of N1, N2, . . . , Nn. If j ≥ N

then

|xj − p|2 =
n∑

i=1

(xji − pi)2 < n(ε/
√
n)2 = ε2,

so that xj → p as j → +∞.
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Definition A sequence x1,x2,x3, . . . of points in Rn is said to be a Cauchy
sequence if and only if the following criterion is satisfied:—

given any real number ε satisfying ε > 0 there exists some positive
integer N such that |xj − xk| < ε whenever j ≥ N and k ≥ N .

Lemma 6.4 A sequence of points in Rn is convergent if and only if it is a
Cauchy sequence.

Proof Let x1,x2,x3, . . . be a sequence of points of Rn converging to some
point p. Let ε > 0 be given. Then there exists some positive integer N such
that |xj − p| < 1

2
ε whenever j ≥ N . If j ≥ N and k ≥ N then

|xj − xk| ≤ |xj − p|+ |p− xk| < 1
2
ε+ 1

2
ε = ε,

by the Triangle Inequality. Thus every convergent sequence in Rn is a Cauchy
sequence.

Now let x1,x2,x3, . . . be a Cauchy sequence in Rn. Then the ith com-
ponents of the elements of this sequence constitute a Cauchy sequence of
real numbers. This Cauchy sequence must converge to some real number
pi, by Cauchy’s Criterion for Convergence (Theorem 2.7). It follows from
Lemma 6.3 that the Cauchy sequence x1,x2,x3, . . . converges to the point p,
where p = (p1, p2, . . . , pn).

6.3 Continuity of Functions of Several Real Variables

Definition Let X and Y be a subsets of Rm and Rn respectively. A function
f :X → Y from X to Y is said to be continuous at a point p of X if and
only if the following criterion is satisfied:—

given any strictly positive real number ε, there exists some strictly
positive real number δ such that |f(x) − f(p)| < ε whenever
x ∈ X satisfies |x− p| < δ.

The function f :X → Y is said to be continuous on X if and only if it is
continuous at every point p of X.

Lemma 6.5 Let X, Y and Z be subsets of Rm, Rn and Rk respectively, and
let f :X → Y and g:Y → Z be functions satisfying f(X) ⊂ Y . Suppose that
f is continuous at some point p of X and that g is continuous at f(p). Then
the composition function g ◦ f :X → Z is continuous at p.
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Proof Let ε > 0 be given. Then there exists some η > 0 such that |g(y)−
g(f(p))| < ε for all y ∈ Y satisfying |y − f(p)| < η. But then there exists
some δ > 0 such that |f(x)− f(p)| < η for all x ∈ X satisfying |x− p| < δ.
It follows that |g(f(x)) − g(f(p))| < ε for all x ∈ X satisfying |x − p| < δ,
and thus g ◦ f is continuous at p, as required.

Lemma 6.6 Let X and Y be a subsets of Rm and Rn respectively, and let
f :X → Y be a continuous function from X to Y . Let x1,x2,x3, . . . be a
sequence of points of X which converges to some point p of X. Then the
sequence f(x1), f(x2), f(x3), . . . converges to f(p).

Proof Let ε > 0 be given. Then there exists some δ > 0 such that |f(x)−
f(p)| < ε for all x ∈ X satisfying |x − p| < δ, since the function f is
continuous at p. Also there exists some positive integerN such that |xj−p| <
δ whenever j ≥ N , since the sequence x1,x2,x3, . . . converges to p. Thus if
j ≥ N then |f(xj) − f(p)| < ε. Thus the sequence f(x1), f(x2), f(x3), . . .
converges to f(p), as required.

Let X and Y be a subsets of Rm and Rn respectively, and let f :X → Y
be a function from X to Y . Then

f(x) = (f1(x), f2(x), . . . , fn(x))

for all x ∈ X, where f1, f2, . . . , fn are functions from X to R, referred to as
the components of the function f .

Proposition 6.7 Let X and Y be a subsets of Rm and Rn respectively, and
let p ∈ X. A function f :X → Y is continuous at the point p if and only if
its components are all continuous at p.

Proof Note that the ith component fi of f is given by fi = πi ◦ f , where
πi:Rn → R is the continuous function which maps (y1, y2, . . . , yn) ∈ Rn

onto its ith coordinate yi. Now any composition of continuous functions is
continuous, by Lemma 6.5. Thus if f is continuous at p, then so are the
components of f .

Conversely suppose that the components of f are continuous at p ∈ X.
Let ε > 0 be given. Then there exist positive real numbers δ1, δ2, . . . , δn such
that |fi(x) − fi(p)| < ε/

√
n for x ∈ X satisfying |x − p| < δi. Let δ be the

minimum of δ1, δ2, . . . , δn. If x ∈ X satisfies |x− p| < δ then

|f(x)− f(p)|2 =
n∑

i=1

|fi(x)− fi(p)|2 < ε2,

and hence |f(x) − f(p)| < ε. Thus the function f is continuous at p, as
required.
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Lemma 6.8 The functions s:R2 → R and m:R2 → R defined by s(x, y) =
x+ y and m(x, y) = xy are continuous.

Proof Let (u, v) ∈ R2. We first show that s:R2 → R is continuous at (u, v).
Let ε > 0 be given. Let δ = 1

2
ε. If (x, y) is any point of R2 whose distance

from (u, v) is less than δ then |x− u| < δ and |y − v| < δ, and hence

|s(x, y)− s(u, v)| = |x+ y − u− v| ≤ |x− u|+ |y − v| < 2δ = ε.

This shows that s:R2 → R is continuous at (u, v).
Next we show that m:R2 → R is continuous at (u, v). Now

m(x, y)−m(u, v) = xy − uv = (x− u)(y − v) + u(y − v) + (x− u)v.

for all points (x, y) of R2. Thus if the distance from (x, y) to (u, v) is less
than δ then |x − u| < δ and |y − v| < δ, and hence |m(x, y) − m(u, v)| <
δ2 + (|u|+ |v|)δ. Let ε > 0 is given. If δ > 0 is chosen to be the minimum of
1 and ε/(1 + |u|+ |v|) then δ2 + (|u|+ |v|)δ < (1 + |u|+ |v|)δ < ε, and thus
|m(x, y)−m(u, v)| < ε for all points (x, y) of R2 whose distance from (u, v)
is less than δ. This shows that p:R2 → R is continuous at (u, v).

Proposition 6.9 Let X be a subset of Rn, and let f :X → R and g:X → R
be continuous functions from X to R. Then the functions f + g, f − g and
f · g are continuous. If in addition g(x) 6= 0 for all x ∈ X then the quotient
function f/g is continuous.

Proof Note that f + g = s ◦ h and f · g = m ◦ h, where h:X → R2,
s:R2 → R and m:R2 → R are given by h(x) = (f(x), g(x)), s(u, v) = u + v
and m(u, v) = uv for all x ∈ X and u, v ∈ R. It follows from Proposition 6.7,
Lemma 6.8 and Lemma 6.5 that f + g and f · g are continuous, being com-
positions of continuous functions. Now f − g = f + (−g), and both f and
−g are continuous. Therefore f − g is continuous.

Now suppose that g(x) 6= 0 for all x ∈ X. Note that 1/g = r ◦ g, where
r:R \ {0} → R is the reciprocal function, defined by r(t) = 1/t. Now the
reciprocal function r is continuous. Thus the function 1/g is a composition
of continuous functions and is thus continuous. But then, using the fact that
a product of continuous real-valued functions is continuous, we deduce that
f/g is continuous.

Example Consider the function f :R2 \ {(0, 0)} → R2 defined by

f(x, y) =

(
x

x2 + y2
,
−y

x2 + y2

)
.

The continuity of the components of the function f follows from straightfor-
ward applications of Proposition 6.9. It then follows from Proposition 6.7
that the function f is continuous on R2 \ {(0, 0)}.
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6.4 Limits of Functions of Several Real Variables

Definition Let X be a subset of m-dimensional Euclidean space Rm, and
let p ∈ Rm. The point p is said to be a limit point of the set X if, given any
δ > 0, there exists some point x of X such that 0 < |x− p| < δ.

It follows easily from the definition of convergence of sequences of points
in Euclidean space that if X is a subset of m-dimensional Euclidean space Rm

and if p is a point of Rm then the point p is a limit point of the set X if
and only if there exists an infinite sequence x1,x2,x3, . . . of points of X, all
distinct from the point p, such that lim

j→+∞
xj = p.

Definition Let X be a subset of m-dimensional Euclidean space Rm, let
f :X → Rn be a function mapping the set X into n-dimensional Euclidean
space Rn, let p be a limit point of the set X, and let q be a point Rn. The
point q is said to be the limit of f(x), as x tends to p in X, if and only if
the following criterion is satisfied:—

given any strictly positive real number ε, there exists some strictly
positive real number δ such that |f(x)− q| < ε whenever x ∈ X
satisfies 0 < |x− p| < δ.

Let X be a subset of m-dimensional Euclidean space Rm, let f :X → Rn

be a function mapping the set X into n-dimensional Euclidean space Rn,
let p be a limit point of the set X, and let q be a point Rn. If q is the
limit of f(x) as x tends to p in X then we can denote this fact by writing
lim
x→p

f(x) = q.

Proposition 6.10 Let X be a subset of m-dimensional Euclidean space Rm,
let f :X → Rn be a function mapping the set X into n-dimensional Euclidean
space Rn, let p be a limit point of the set X, and let q be a point Rn. Let
X̃ = X ∪ {p}, and let f̃ : X̃ → Rn be defined such that

f̃(x) =

{
f(x) if x 6= p;
q if x = p.

Then lim
x→p

f(x) = q if and only if the function f̃ is continuous at p.

Proof The result follows directly on comparing the relevant definitions.

Corollary 6.11 Let X be a subset of m-dimensional Euclidean space Rm,
let f :X → Rn be a function mapping the set X into n-dimensional Euclidean
space Rn, and let p be a point of the set X that is also a limit point of X. Then
the function f is continuous at the point p if and only if lim

x→p
f(x) = f(p).
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Let X be a subset of m-dimensional Euclidean space Rm, and let p be a
point of the set X. Suppose that the point p is not a limit point of the set X.
Then there exists some strictly positive real number δ0 such that |x−p| ≥ δ0
for all x ∈ X. The point p is then said to be an isolated point of X.

Let X be a subset of m-dimensional Euclidean space Rm. The definition
of continuity then ensures that any function f :X → Rn mapping the set X
into n-dimensional Euclidean space Rn is continuous at any isolated point of
its domain X.

Corollary 6.12 Let X be a subset of m-dimensional Euclidean space Rm,
let f :X → R and g:X → R be real-valued functions on X, and let p be a
limit point of the set X. Suppose that lim

x→p
f(x) and lim

x→p
g(x) both exist. Then

so do lim
x→p

(f(x) + g(x)), lim
x→p

(f(x)− g(x)) and lim
x→p

(f(x)g(x)), and moreover

lim
x→p

(f(x) + g(x)) = lim
x→p

f(x) + lim
x→p

g(x),

lim
x→p

(f(x)− g(x)) = lim
x→p

f(x)− lim
x→p

g(x),

lim
x→p

(f(x)g(x)) = lim
x→p

f(x)× lim
x→p

g(x),

If moreover g(x) 6= 0 for all x ∈ X and limx→p g(x) 6= 0 then

lim
x→p

f(x)

g(x)
=

lim
x→p

f(x)

lim
x→p

g(x)
.

Proof Let X̃ = X ∪ {p}, and let f̃ : X̃ → R and g̃: X̃ → R be defined such
that

f̃(x) =

{
f(x) if x 6= p;
l if x = p.

g̃(x) =

{
g(x) if x 6= p;
m if x = p.

,

where l = lim
x→p

f(x) and m = lim
x→p

g(x). Then the functions f̃ and g̃ are

continuous at p. The result therefore follows on applying Proposition 6.9.

6.5 Open Sets in Euclidean Spaces

Let X be a subset of Rn. Given a point p of X and a non-negative real
number r, the open ball BX(p, r) in X of radius r about p is defined to be
the subset of X given by

BX(p, r) = {x ∈ X : |x− p| < r}.

79



(Thus BX(p, r) is the set consisting of all points of X that lie within a sphere
of radius r centred on the point p.)

Definition Let X be a subset of Rn. A subset V of X is said to be open
in X if and only if, given any point p of V , there exists some δ > 0 such that
BX(p, δ) ⊂ V .

By convention, we regard the empty set ∅ as being an open subset of X.
(The criterion given above is satisfied vacuously in the case when V is the
empty set.)

In particular, a subset V of Rn is said to be an open set (in Rn) if and only
if, given any point p of V , there exists some δ > 0 such that B(p, δ) ⊂ V ,
where B(p, r) = {x ∈ Rn : |x− p| < r}.

Example Let H = {(x, y, z) ∈ R3 : z > c}, where c is some real number.
ThenH is an open set in R3. Indeed let p be a point ofH. Then p = (u, v, w),
where w > c. Let δ = w − c. If the distance from a point (x, y, z) to the
point (u, v, w) is less than δ then |z − w| < δ, and hence z > c, so that
(x, y, z) ∈ H. Thus B(p, δ) ⊂ H, and therefore H is an open set.

The previous example can be generalized. Given any integer i between 1
and n, and given any real number ci, the sets

{(x1, x2, . . . , xn) ∈ Rn : xi > ci}, {(x1, x2, . . . , xn) ∈ Rn : xi < ci}

are open sets in Rn.

Example Let U be an open set in Rn. Then for any subset X of Rn, the
intersection U ∩X is open in X. (This follows directly from the definitions.)
Thus for example, let S2 be the unit sphere in R3, given by

S2 = {(x, y, z) ∈ R3 : x2 + y2 + z2 = 1}

and let N be the subset of S2 given by

N = {(x, y, z) ∈ Rn : x2 + y2 + z2 = 1 and z > 0}.

Then N is open in S2, since N = H ∩ S2, where H is the open set in R3

given by
H = {(x, y, z) ∈ R3 : z > 0}.

Note that N is not itself an open set in R3. Indeed the point (0, 0, 1) belongs
to N , but, for any δ > 0, the open ball (in R3 of radius δ about (0, 0, 1)
contains points (x, y, z) for which x2 + y2 + z2 6= 1. Thus the open ball of
radius δ about the point (0, 0, 1) is not a subset of N .
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Lemma 6.13 Let X be a subset of Rn, and let p be a point of X. Then, for
any positive real number r, the open ball BX(p, r) in X of radius r about p
is open in X.

Proof Let x be an element of BX(p, r). We must show that there exists
some δ > 0 such that BX(x, δ) ⊂ BX(p, r). Let δ = r− |x−p|. Then δ > 0,
since |x− p| < r. Moreover if y ∈ BX(x, δ) then

|y − p| ≤ |y − x|+ |x− p| < δ + |x− p| = r,

by the Triangle Inequality, and hence y ∈ BX(p, r). Thus BX(x, δ) ⊂
BX(p, r). This shows that BX(p, r) is an open set, as required.

Lemma 6.14 Let X be a subset of Rn, and let p be a point of X. Then, for
any non-negative real number r, the set {x ∈ X : |x−p| > r} is an open set
in X.

Proof Let x be a point of X satisfying |x− p| > r, and let y be any point
of X satisfying |y − x| < δ, where δ = |x− p| − r. Then

|x− p| ≤ |x− y|+ |y − p|,

by the Triangle Inequality, and therefore

|y − p| ≥ |x− p| − |y − x| > |x− p| − δ = r.

Thus BX(x, δ) is contained in the given set. The result follows.

Proposition 6.15 Let X be a subset of Rn. The collection of open sets in X
has the following properties:—

(i) the empty set ∅ and the whole set X are both open in X;

(ii) the union of any collection of open sets in X is itself open in X;

(iii) the intersection of any finite collection of open sets in X is itself open
in X.

Proof The empty set ∅ is an open set by convention. Moreover the definition
of an open set is satisfied trivially by the whole set X. This proves (i).

Let A be any collection of open sets in X, and let U denote the union of
all the open sets belonging to A. We must show that U is itself open in X.
Let x ∈ U . Then x ∈ V for some set V belonging to the collection A. It
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follows that there exists some δ > 0 such that BX(x, δ) ⊂ V . But V ⊂ U ,
and thus BX(x, δ) ⊂ U . This shows that U is open in X. This proves (ii).

Finally let V1, V2, V3, . . . , Vk be a finite collection of subsets of X that
are open in X, and let V denote the intersection V1 ∩ V2 ∩ · · · ∩ Vk of these
sets. Let x ∈ V . Now x ∈ Vj for j = 1, 2, . . . , k, and therefore there
exist strictly positive real numbers δ1, δ2, . . . , δk such that BX(x, δj) ⊂ Vj for
j = 1, 2, . . . , k. Let δ be the minimum of δ1, δ2, . . . , δk. Then δ > 0. (This is
where we need the fact that we are dealing with a finite collection of sets.)
Now BX(x, δ) ⊂ BX(x, δj) ⊂ Vj for j = 1, 2, . . . , k, and thus BX(x, δ) ⊂ V .
Thus the intersection V of the sets V1, V2, . . . , Vk is itself open in X. This
proves (iii).

Example The set {(x, y, z) ∈ R3 : x2 + y2 + z2 < 4 and z > 1} is an open
set in R3, since it is the intersection of the open ball of radius 2 about the
origin with the open set {(x, y, z) ∈ R3 : z > 1}.

Example The set {(x, y, z) ∈ R3 : x2 + y2 + z2 < 4 or z > 1} is an open set
in R3, since it is the union of the open ball of radius 2 about the origin with
the open set {(x, y, z) ∈ R3 : z > 1}.

Example The set

{(x, y, z) ∈ R3 : (x− n)2 + y2 + z2 < 1
4

for some n ∈ Z}

is an open set in R3, since it is the union of the open balls of radius 1
2

about
the points (n, 0, 0) for all integers n.

Example For each positive integer k, let

Vk = {(x, y, z) ∈ R3 : k2(x2 + y2 + z2) < 1}.

Now each set Vk is an open ball of radius 1/k about the origin, and is therefore
an open set in R3. However the intersection of the sets Vk for all positive
integers k is the set {(0, 0, 0)}, and thus the intersection of the sets Vk for all
positive integers k is not itself an open set in R3. This example demonstrates
that infinite intersections of open sets need not be open.

Lemma 6.16 A sequence x1,x2,x3, . . . of points in Rn converges to a point p
if and only if, given any open set U which contains p, there exists some
positive integer N such that xj ∈ U for all j satisfying j ≥ N .
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Proof Suppose that the sequence x1,x2,x3, . . . has the property that, given
any open set U which contains p, there exists some positive integer N such
that xj ∈ U whenever j ≥ N . Let ε > 0 be given. The open ball B(p, ε) of
radius ε about p is an open set by Lemma 6.13. Therefore there exists some
positive integer N such that xj ∈ B(p, ε) whenever j ≥ N . Thus |xj−p| < ε
whenever j ≥ N . This shows that the sequence converges to p.

Conversely, suppose that the sequence x1,x2,x3, . . . converges to p. Let
U be an open set which contains p. Then there exists some ε > 0 such that
the open ball B(p, ε) of radius ε about p is a subset of U . Thus there exists
some ε > 0 such that U contains all points x of X that satisfy |x − p| < ε.
But there exists some positive integer N with the property that |xj −p| < ε
whenever j ≥ N , since the sequence converges to p. Therefore xj ∈ U
whenever j ≥ N , as required.

6.6 Closed Sets in Euclidean Spaces

Let X be a subset of Rn. A subset F of X is said to be closed in X if and
only if its complement X \ F in X is open in X. (Recall that X \ F = {x ∈
X : x 6∈ F}.)

Example The sets {(x, y, z) ∈ R3 : z ≥ c}, {(x, y, z) ∈ R3 : z ≤ c}, and
{(x, y, z) ∈ R3 : z = c} are closed sets in R3 for each real number c, since the
complements of these sets are open in R3.

Example Let X be a subset of Rn, and let x0 be a point of X. Then the
sets {x ∈ X : |x − x0| ≤ r} and {x ∈ X : |x − x0| ≥ r} are closed for
each non-negative real number r. In particular, the set {x0} consisting of
the single point x0 is a closed set in X. (These results follow immediately
using Lemma 6.13 and Lemma 6.14 and the definition of closed sets.)

Let A be some collection of subsets of a set X. Then

X \
⋃
S∈A

S =
⋂
S∈A

(X \ S), X \
⋂
S∈A

S =
⋃
S∈A

(X \ S)

(i.e., the complement of the union of some collection of subsets of X is the
intersection of the complements of those sets, and the complement of the
intersection of some collection of subsets of X is the union of the comple-
ments of those sets). The following result therefore follows directly from
Proposition 6.15.

Proposition 6.17 Let X be a subset of Rn. The collection of closed sets
in X has the following properties:—
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(i) the empty set ∅ and the whole set X are both closed in X;

(ii) the intersection of any collection of closed sets in X is itself closed in
X;

(iii) the union of any finite collection of closed sets in X is itself closed in
X.

Lemma 6.18 Let X be a subset of Rn, and let F be a subset of X which is
closed in X. Let x1,x2,x3, . . . be a sequence of points of F which converges
to a point p of X. Then p ∈ F .

Proof The complement X \F of F in X is open, since F is closed. Suppose
that p were a point belonging to X\F . It would then follow from Lemma 6.16
that xj ∈ X \ F for all values of j greater than some positive integer N ,
contradicting the fact that xj ∈ F for all j. This contradiction shows that p
must belong to F , as required.

6.7 Continuous Functions and Open Sets

Let X and Y be subsets of Rm and Rn, and let f :X → Y be a function
from X to Y . We recall that the function f is continuous at a point p of X
if, given any ε > 0, there exists some δ > 0 such that |f(u) − f(p)| < ε
for all points u of X satisfying |u − p| < δ. Thus the function f :X → Y
is continuous at p if and only if, given any ε > 0, there exists some δ > 0
such that the function f maps BX(p, δ) into BY (f(p), ε) (where BX(p, δ)
and BY (f(p), ε) denote the open balls in X and Y of radius δ and ε about
p and f(p) respectively).

Given any function f :X → Y , we denote by f−1(V ) the preimage of a
subset V of Y under the map f , defined by f−1(V ) = {x ∈ X : f(x) ∈ V }.

Proposition 6.19 Let X and Y be subsets of Rm and Rn, and let f :X → Y
be a function from X to Y . The function f is continuous if and only if f−1(V )
is open in X for every open subset V of Y .

Proof Suppose that f :X → Y is continuous. Let V be an open set in Y .
We must show that f−1(V ) is open in X. Let p ∈ f−1(V ). Then f(p) ∈
V . But V is open, hence there exists some ε > 0 with the property that
BY (f(p), ε) ⊂ V . But f is continuous at p. Therefore there exists some
δ > 0 such that f maps BX(p, δ) into BY (f(p), ε) (see the remarks above).
Thus f(x) ∈ V for all x ∈ BX(p, δ), showing that BX(p, δ) ⊂ f−1(V ). This
shows that f−1(V ) is open in X for every open set V in Y .
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Conversely suppose that f :X → Y is a function with the property that
f−1(V ) is open in X for every open set V in Y . Let p ∈ X. We must
show that f is continuous at p. Let ε > 0 be given. Then BX(f(p), ε) is
an open set in Y , by Lemma 6.13, hence f−1 (BY (f(p), ε)) is an open set
in X which contains p. It follows that there exists some δ > 0 such that
BX(p, δ) ⊂ f−1 (BY (f(p), ε)). Thus, given any ε > 0, there exists some
δ > 0 such that f maps BX(p, δ) into BY (f(p), ε). We conclude that f is
continuous at p, as required.

Let X be a subset of Rn, let f :X → R be continuous, and let c be some
real number. Then the sets {x ∈ X : f(x) > c} and {x ∈ X : f(x) < c}
are open in X, and, given real numbers a and b satisfying a < b, the set
{x ∈ X : a < f(x) < b} is open in X.

6.8 The Multidimensional Bolzano-Weierstrass Theo-
rem

A sequence x1,x2,x3, . . . of points in Rn is said to be bounded if there exists
some constant K such that |xj| ≤ K for all j.

Example Let

(xj, yj, zj) =

(
sin(π

√
j), (−1)j, cos

(
2π log j

log 2

))
for j = 1, 2, 3, . . .. This sequence of points in R3 is bounded, because the
components of its members all take values between −1 and 1. Moreover
xj = 0 whenever j is the square of a positive integer, yj = 1 whenever j is
even and zj = 1 whenever j is a power of two.

The infinite sequence x1, x2, x3, . . . has a convergent subsequence

x1, x4, x9, x16, x25, . . .

which includes those xj for which j is the square of a positive integer. The
corresponding subsequence y1, y4, y9, . . . of y1, y2, y3, . . . is not convergent, be-
cause its values alternate between 1 and −1. However this subsequence is
bounded, and we can extract from this sequence a convergent subsequence

y4, y16, y36, y64, y100, . . .

which includes those xj for which j is the square of an even positive integer.
The subsequence

x4, x16, x36, y64, y100, . . .
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is also convergent, because it is a subsequence of a convergent subsequence.
However the corresponding subsequence

z4, z16, z36, z64, z100, . . .

does not converge. (Indeed zj = 1 when j is an even power of 2, but
zj = cos(2π log(9)/ log(2)) when j = 9 × 22p for some positive integer p.)
However this subsequence is bounded, and we can extract from it a conver-
gent subsequence

z4, z16, z64, z256, z1024, . . .

which includes those xj for which j is equal to two raised to the power of
an even positive integer. Then the first, second and third components of the
following subsequence

(x4, y4, z4), (x16, y16, z16), (x64, y64, z64), (x256, y256, z256), . . .

of the original sequence of points in R3 converge, and it therefore follows
from Lemma 6.3 that this sequence is a convergent subsequence of the given
sequence of points in R3.

Example Let

xj =


1 if j = 4k for some integer k
0 if j = 4k + 1 for some integer k
−1 if j = 4k + 2 for some integer k
0 if j = 4k + 3 for some integer k

and

yj =


0 if j = 4k for some integer k,
1 if j = 4k + 1 for some integer k,
0 if j = 4k + 2 for some integer k,
−1 if j = 4k + 3 for some integer k,

,

and let uj = (xj, yj) for j = 1, 2, 3, 4, . . .. Then the first components xj for
which the index j is odd constitute a convergent sequence x1, x3, x5, x7, . . .
of real numbers, and the second components yj for which the index j is even
also constitute a convergent sequence y2, y4, y6, y8, . . . of real numbers.

However one would not obtain a convergent subsequence of u1,u2,u3, . . .
simply by selecting those indices j for which xj is in the convergent subse-
quence x1, x3, x5, . . . and yj is in the convergent subsequence y2, y4, y6, . . .,
because there no values of the index j for which xj and yj both belong to the
respective subsequences. However the one-dimensional Bolzano-Weierstrass
Theorem (Theorem 2.5) guarantees that there is a convergent subsequence
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of y1, y3, y5, y7, . . ., and indeed y1, y5, y9, y13, . . . is such a convergent subse-
quence. This yields a convergent subsequence u1,u5,u9,u13, . . . of the given
bounded sequence of points in R2.

Theorem 6.20 Every bounded sequence of points in Rn has a convergent
subsequence.

Proof We prove the result by induction on the dimension n of the Euclidean
space Rn that contains the infinite sequence in question. It follows from the
one-dimensional Bolzano-Weierstrass Theorem (Theorem 2.5) that the the-
orem is true when n = 1. Suppose that n > 1, and that every bounded se-
quence in Rn−1 has a convergent subsequence. Let x1,x2,x3, . . . be a bounded
infinite sequence of elements of Rn, and let xj,i denote the ith component of
xj for i = 1, 2, . . . , n and for all positive integers j. The induction hypoth-
esis requires that all bounded sequences in Rn−1 contain convergent subse-
quences. Therefore there exist real numbers p1, p2, . . . , pn−1 and an increasing
sequence m1,m2,m3, . . . of positive integers such that lim

k→+∞
xmk,i = pi for i =

1, 2, . . . , n−1. The nth components xm1,n, xm2,n, xm3,n, . . . of the members of
the subsequence xm1 ,xm2 ,xm3 , . . . then constitute a bounded sequence of real
numbers. It follows from the one-dimensional Bolzano-Weierstrass Theorem
(Theorem 2.5) that there exists an increasing sequence k1, k2, k3, . . . of posi-
tive integers for which the sequence xmk1

,n, xmk2
,n, xmk3

,n, . . . converges. Let
sj = mkj for all positive integers j, and let pn = lim

j→+∞
xmkj

,n = lim
j→+∞

xsj ,n.

Then the sequence xs1,i, xs2,i, xs3,i, . . . converges for values of i between 1 and
n−1, because it is a subquence of the convergent sequence xm1,i, xm2,i, xm3,i, . . ..
Moreover xs1,n, xs2,n, xs3,n, . . . also converges. Thus the ith components of the
infinite sequence xm1 ,xm2 ,xm3 , . . . converge for i = 1, 2, . . . , n. It then fol-
lows from Lemma 6.3 that lim

j→+∞
xsk = p, where p = (p1, p2, . . . , pn). The

result follows.

6.9 The Extreme Value Theorem for Functions of Sev-
eral Real Variables

Theorem 6.21 (The Extreme Value Theorem for Continuous Functions on
Closed Bounded Sets) Let X be a closed bounded set in m-dimensional Eu-
clidean space, and let f :X → R be a continuous real-valued function defined
on X. Then there exist points u and v of X such that f(u) ≤ f(x) ≤ f(v)
for all x ∈ X.

Proof We prove the result for an arbitrary continuous real-valued function
f :X → R by showing that the result holds for a related continuous function
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g:X → R that is known to be bounded above and below on X. Let h:R→ R
be the continuous function defined such that

h(t) =
t

1 + |t|

for all t ∈ R. Then the continuous function h:R→ R is increasing. Moreover
−1 ≤ h(t) ≤ 1 for all t ∈ R (see the proof of Theorem 3.15).

Let f :X → R be a continuous real-valued function on the closed bounded
set X, and let g:X → R be the continuous real-valued function defined on
X such that

g(x) = h(f(x)) =
f(x)

1 + |f(x)|
for all x ∈ X. Then −1 ≤ g(x) ≤ 1 for all x ∈ X. The set of values of the
function g is then non-empty and bounded above, and therefore has a least
upper bound. Let

M = sup{g(x) : x ∈ X}.

Then, for each positive integer j, the real number M − j−1 is not an upper
bound for the set of values of the function g, and therefore there exists
some point xj in the set X for which M − j−1 < g(xj) ≤ M . The sequence
x1,x2,x3, . . . is then a bounded sequence of points in Rm, because the set X is
bounded. It follows from the multidimensional Bolzano-Weierstrass Theorem
(Theorem 6.20) that this sequence has a subsequence xk1 ,xk2 ,xk3 , . . . which
converges to some point v of Rn. Moreover this point v belongs to the set X
because X is closed (see Lemma 6.18). Now

M − 1

kj
< g(xkj) ≤M

for all positive integers j, and therefore g(xkj) → M as j → +∞. It then
follows from Lemma 6.6 that

g(v) = g

(
lim

j→+∞
xkj

)
= lim

j→+∞
g(xkj) = M.

But g(x) ≤ M for all x ∈ X. It follows that h(f(x)) = g(x) ≤ g(v) =
h(f(v)) for all x ∈ X. Moreover h:R → R is an increasing function. It
follows therefore that f(x) ≤ f(v) for all x ∈ X.

On applying this result with the continuous function f replaced by the
function −f , we conclude also that there exists some point u of X such that
f(u) ≤ f(x) for all x ∈ X. The result follows.
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6.10 Uniform Continuity for Functions of Several Real
Variables

Definition Let X be a subset of Rm. A function f :X → Rn from X to
Rn is said to be uniformly continuous if, given any ε > 0, there exists some
δ > 0 (which does not depend on either x′ or x) such that |f(x′)− f(x)| < ε
for all points x′ and x of X satisfying |x′ − x| < δ.

Theorem 6.22 Let X be a subset of Rm that is both closed and bounded.
Then any continuous function f :X → Rn is uniformly continuous.

Proof Let ε > 0 be given. Suppose that there did not exist any δ > 0 such
that |f(x′)− f(x)| < ε for all points x′,x ∈ X satisfying |x′− x| < δ. Then,
for each positive integer j, there would exist points uj and vj in X such
that |uj −vj| < 1/j and |f(uj)− f(vj)| ≥ ε. But the sequence u1,u2,u3, . . .
would be bounded, since X is bounded, and thus would possess a subsequence
uj1 ,uj2 ,uj3 , . . . converging to some point p (Theorem 6.20). Moreover p ∈ X,
since X is closed. The sequence vj1 ,vj2 ,vj3 , . . . would also converge to p,
since lim

k→+∞
|vjk − ujk | = 0. But then the sequences f(uj1), f(uj2), f(uj3), . . .

and f(vj1), f(vj2), f(vj3), . . . would converge to f(p), since f is continuous
(Lemma 6.6), and thus lim

k→+∞
|f(ujk)− f(vjk)| = 0. But this is impossible,

since uj and vj have been chosen so that |f(uj) − f(vj)| ≥ ε for all j. We
conclude therefore that there must exist some δ > 0 such that |f(x′)−f(x)| <
ε for all points x′,x ∈ X satisfying |x′ − x| < δ, as required.
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