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4 Differentiation

4.1 Interior Points and Open Sets in the Real Line

Definition Let D be a subset of the set R of real numbers, and let s be a
real number belonging to D. We say that s is an interior point of D if there
exists some strictly positive number δ such that x ∈ D for all real numbers x
satisfying s − δ < x < s + δ. The interior of D is then the subset of D
consisting of all real numbers belonging to D that are interior points of D.

Definition Let D be a subset of the set R of real numbers. We say that D
is an open set in R if every point of D is an interior point of D.

Let s be a real number. We say that a function f :D → R is defined
around s if the real number s is an interior point of the domain D of the
function f . It follows that the function f is defined around s if and only if
there exists some strictly positive real number δ such that f(x) is defined for
all real numbers x satisfying s− δ < x < s+ δ.

4.2 Differentiable Functions

Definition Let s be some real number, and let f be a real-valued function
defined around s. The function f is said to be differentiable at s, with
derivative f ′(s), if and only if the limit

f ′(s) = lim
h→0

f(s+ h)− f(s)

h

is well-defined. We denote by f ′, or by
df

dx
the function whose value at s is

the derivative f ′(s) of f at s.

Suppose that the real-valued function f is defined around some real num-
ber s and is differentiable at s. Then

f(s+ h) = f(s) + h
f(s+ h)− f(s)

h

for all real numbers h sufficiently close to zero. It follows that

lim
x→s

f(x) = lim
h→0

f(s+ h) = lim
h→0

f(s) +
(

lim
h→0

h
)(

lim
h→0

f(s+ h)− f(s)

h

)
= f(s) + 0.f ′(s) = f(s),

and therefore f is continuous at s (see Lemma 3.10). Thus differentiability
implies continuity.
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Example Let f :R → R be the function defined by f(x) = x2. Let s be a
real number. If h 6= 0 then

f(s+ h)− f(s)

h
=

(s+ h)2 − s2

h
= 2s+ h.

Therefore the function f is differentiable at s, and f ′(s) = lim
h→0

(2s+ h) = 2s.

Example Let g: [0,+∞) → R be the function defined by g(x) =
√
x, and

let s ∈ (0,+∞). If h is any real number satisfying h > −s and h 6= 0 then

g(s+ h)− g(s)

h
=

√
s+ h−

√
s

h
=

(
√
s+ h−

√
s)(
√
s+ h+

√
s)

h(
√
s+ h+

√
s)

=
(s+ h)− s

h(
√
s+ h+

√
s)

=
1√

s+ h+
√
s
.

Now lim
h→0

√
s+ h =

√
s (since the function x 7→

√
x is continuous at s). It

follows that the function g is differentiable at s, and

g′(s) = lim
h→0

g(s+ h)− g(s)

h
=

1

lim
h→0

(
√
s+ h+

√
s)

=
1

2
√
s
.

Proposition 4.1 Let s be some real number, and let f and g be real-valued
functions defined around s. Suppose that the functions f and g are differen-
tiable at s. Then f + g and f − g are differentiable at s, and

(f + g)′(s) = f ′(s) + g′(s), (f − g)′(s) = f ′(s)− g′(s).

Proof It follows from Proposition 3.11 that

lim
h→0

(f + g)(s+ h)− (f + g)(s)

h

= lim
h→0

f(s+ h)− f(s)

h
+ lim

h→0

g(s+ h)− g(s)

h
= f ′(s) + g′(s).

Thus the function f + g is differentiable at s, and (f + g)′(s) = f ′(s) + g′(s).
An analogous proof shows that the function f − g is also differentiable at s
and (f − g)′(s) = f ′(s)− g′(s).

Proposition 4.2 (Product Rule) Let s be some real number, and let f and
g be real-valued functions defined around s. Suppose that the functions f
and g are differentiable at s. Then f · g is also differentiable at s, and
(f · g)′(s) = f ′(s)g(s) + f(s)g′(s).
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Proof Note that

f(s+ h)g(s+ h)− f(s)g(s)

h

=
f(s+ h)− f(s)

h
g(s+ h) + f(s)

g(s+ h)− g(s)

h
.

Moreover lim
h→0

g(s+ h) = g(s) since g is differentiable, and hence continuous,

at s. It follows that

lim
h→0

f(s+ h)g(s+ h)− f(s)g(s)

h

= lim
h→0

f(s+ h)− f(s)

h
lim
h→0

g(s+ h) + f(s) lim
h→0

g(s+ h)− g(s)

h
= f ′(s)g(s) + f(s)g′(s).

Thus the function f · g is differentiable at s, and (f · g)′(s) = f ′(s)g(s) +
f(s)g′(s), as required.

Proposition 4.3 (Quotient Rule) Let s be some real number, and let f and
g be real-valued functions defined around s. Suppose that the functions f and
g are differentiable at s and that the function g is non-zero around s. Then
f/g is differentiable at s, and

(f/g)′(s) =
f ′(s)g(s)− f(s)g′(s)

g(s)2
.

Proof Note that

f(s+ h)

g(s+ h)
− f(s)

g(s)
=

f(s+ h)g(s)− f(s)g(s+ h)

g(s+ h)g(s)

=
(f(s+ h)− f(s)) g(s)− f(s) (g(s+ h)− g(s))

g(s)g(s+ h)
.

Therefore

(f/g)′(s) = lim
h→0

1

h

(
f(s+ h)

g(s+ h)
− f(s)

g(s)

)
=

1

g(s)2

(
lim
h→0

f(s+ h)− f(s)

h
g(s)− f(s) lim

h→0

g(s+ h)− g(s)

h

)
=

f ′(s)g(s)− f(s)g′(s)

g(s)2
,

since lim
h→0

g(s)g(s+ h) = g(s)2 > 0.
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Proposition 4.4 (Chain Rule) Let a be some real number, let f be a real-
valued function defined around a, and let g be a real-valued function defined
around f(a). Suppose that the function f is differentiable at a, and the
function g is differentiable at f(a). Then the composition function g ◦ f is
differentiable at a, and (g ◦ f)′(a) = g′(f(a))f ′(a).

Proof Let b = f(a), and let

R(y) =


g(y)− g(b)

y − b
if y 6= b;

g′(b) if y = b.

for values of y around b. By considering separately the cases when f(a+h) 6=
f(a) and f(a+ h) = f(a), we see that

g(f(a+ h))− g(f(a)) = R(f(a+ h))(f(a+ h)− f(a)).

Now the function f is continuous at a, because it is differentiable at a. Also
the function R is continuous at b, where b = f(a), since

lim
y→b

R(y) = lim
y→b

g(y)− g(b)

y − b
= lim

k→0

g(b+ k)− g(b)

k
= g′(b) = R(b).

It follows from Proposition 3.4 that the composition function R ◦ f is con-
tinuous at a, and therefore

lim
h→0

R(f(a+ h)) = R(f(a)) = g′(f(a))

by Lemma 3.10. It follows that g ◦ f is differentiable at a, and

(g ◦ f)′(a) = lim
h→0

g(f(a+ h))− g(f(a))

h

= lim
h→0

R(f(a+ h)) lim
h→0

f(a+ h)− f(a)

h
= g′(f(a))f ′(a),

as required.

4.3 Rolle’s Theorem and the Mean Value Theorem

Theorem 4.5 (Rolle’s Theorem) Let f : [a, b]→ R be a real-valued function
defined on some interval [a, b]. Suppose that f is continuous on [a, b] and
is differentiable on (a, b). Suppose also that f(a) = f(b). Then there exists
some real number s satisfying a < s < b which has the property that f ′(s) = 0.
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Proof First we show that if the function f attains its minimum value at u,
and if a < u < b, then f ′(u) = 0. Now the difference quotient

f(u+ h)− f(u)

h

is non-negative for all sufficiently small positive values of h; therefore f ′(u) ≥
0. On the other hand, this difference quotient is non-positive for all suffi-
ciently small negative values of h; therefore f ′(u) ≤ 0. We deduce therefore
that f ′(u) = 0.

Similarly if the function f attains its maximum value at v, and if a < v <
b, then f ′(v) = 0. (Indeed the result for local maxima can be deduced from
the corresponding result for local minima simply by replacing the function f
by −f .)

Now the function f is continuous on the closed bounded interval [a, b].
It therefore follows from the Extreme Value Theorem (Theorem 3.15) that
there must exist real numbers u and v in the interval [a, b] with the property
that f(u) ≤ f(x) ≤ f(v) for all real numbers x satisfying a ≤ x ≤ b. If
a < u < b then f ′(u) = 0 and we can take s = u. Similarly if a < v < b
then f ′(v) = 0 and we can take s = v. The only remaining case to consider
is when both u and v are endpoints of the interval [a, b]. In that case the
function f is constant on [a, b], since f(a) = f(b), and we can choose s to be
any real number satisfying a < s < b.

4.4 The Mean Value Theorem

Rolle’s Theorem can be generalized to yield the following important theorem.

Theorem 4.6 (The Mean Value Theorem) Let f : [a, b]→ R be a real-valued
function defined on some interval [a, b]. Suppose that f is continuous on [a, b]
and is differentiable on (a, b). Then there exists some real number s satisfying
a < s < b which has the property that

f(b)− f(a) = f ′(s)(b− a).

Proof Let g: [a, b] → R be the real-valued function on the closed inter-
val [a, b] defined by

g(x) = f(x)− b− x
b− a

f(a)− x− a
b− a

f(b).

Then the function g is continuous on [a, b] and differentiable on (a, b). More-
over g(a) = 0 and g(b) = 0. It follows from Rolle’s Theorem (Theorem 4.5)

33



that g′(s) = 0 for some real number s satisfying a < s < b. But

g′(s) = f ′(s)− f(b)− f(a)

b− a
.

Therefore f(b)− f(a) = f ′(s)(b− a), as required.

4.5 Cauchy’s Mean Value Theorem

We now prove a generalization of the standard Mean Value Theorem, known
as Cauchy’s Mean Value Theorem.

Theorem 4.7 (Cauchy’s Mean Value Theorem) Let f and g be real-valued
functions defined on some interval [a, b]. Suppose that f and g are continuous
on [a, b] and are differentiable on (a, b). Then there exists some real number s
satisfying a < s < b which has the property that

(f(b)− f(a)) g′(s) = (g(b)− g(a)) f ′(s).

In particular, if g(b) 6= g(a) and the function g′ is non-zero throughout (a, b),
then

f(b)− f(a)

g(b)− g(a)
=
f ′(s)

g′(s)
.

Proof Consider the function h: [a, b]→ R defined by

h(x) = f(x) (g(b)− g(a))− g(x) (f(b)− f(a)) .

Then h(a) = f(a)g(b) − g(a)f(b) = h(b), and the function h satisfies the
hypotheses of Rolle’s Theorem on the interval [a, b]. We deduce from Rolle’s
Theorem (Theorem 4.5) that h′(s) = 0 for some s satisfying a < s < b. The
required result then follows immediately.

4.6 One-Sided Limits and Limits at Infinity

Definition Let f :D → R be a real-valued function defined over some sub-
set D of R, and let s and l be real numbers. We say that l is the limit
lim
x→s+

f(x) of f(x) as x tends to s from above if, given any strictly positive

real number ε, there exists some strictly positive real number δ such that
x ∈ D and l−ε < f(x) < l+ε for all real numbers x satisfying s < x < s+δ.
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If f is a real-valued function, if f(x) is defined for all real numbers x
greater than but sufficiently close to some real number s, if l is a real number,
and if l is the limit of f(x) as x tends to s from above, then we may denote
this fact by writing

l = lim
x→s+

f(x).

Definition Let f :D → R be a real-valued function defined over some sub-
set D of R, and let s and l be real numbers. We say that l is the limit
lim
x→s−

f(x) of f(x) as x tends to s from below if, given any strictly positive

real number ε, there exists some strictly positive real number δ such that
x ∈ D and l−ε < f(x) < l+ε for all real numbers x satisfying s−δ < x < s.

Let f :D → R be a real-valued function defined on some subset D of R,
and let s and l be real numbers. Suppose that there exists some positive real
number δ0 with the property that x ∈ D for all real numbers x satisfying
s < x < s+δ0. Then lim

x→s+
f(x) = l if and only if the real number l is the limit

of f(x) as x tends to s in the subset D ∩ (s,+∞) of D. Thus the properties
of “one-sided limits” taken as a variable x tends to some given value s from
above, or from below, are consequences of properties of limits in general, and
thus there is no need to develop a separate theory of “one-sided limits”.

Lemma 4.8 Let f :D → R be a real-valued function defined on a subset D of
R, let s be a real number that is an interior point of D∪{s}, and let l be a real
number. Then lim

x→s
f(x) = l if and only if lim

x→s+
f(x) = l and lim

x→s−
f(x) = l.

Proof It follows directly from the definition of limits that if lim
x→s

f(x) = l

then lim
x→s+

f(x) = l and lim
x→s−

f(x) = l. To prove the converse, suppose that

lim
x→s+

f(x) = l and lim
x→s−

f(x) = l. Let some strictly positive real number ε

be given. Then there exist strictly positive real numbers δ1 and δ2 such that
l− ε < f(x) < l+ ε both for all real numbers x satisfying s < x < s+ δ1 and
also for all real numbers x satisfying s− δ2 < x < s. Let δ be the minimum
of δ1 and δ2. Then l − ε < f(x) < l + ε for all real numbers x satisfying
0 < |x− s| < δ. It follows that lim

x→s
f(x) = l, as required.

Definition Let f :D → R be a real-valued function defined on some subsetD
of R, and let l be some real number. We say that l is the limit lim

x→+∞
f(x)

of f(x) as x→ +∞ if, given any strictly positive real number ε, there exists
some real number K such that x ∈ D and l − ε < f(x) < l + ε whenever
x > K.
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On comparing definitions, it we see that if f :D → R is a real-valued
function defined on a subset D of R, where D contains all real numbers
greater than some given real number, if l is a real number, then lim

x→+∞
f(x) = l

if and

lim
t→0+

f

(
1

t

)
= l.

It follows that properties of limits taken “at infinity” can be deduced from
corresponding properties of “one-sided limits” and thus follow from the gen-
eral theory of limits. In particular, if f and g are real valued functions, if
f(x) and g(x) are defined for all sufficiently large values of x, and if the limits
lim

x→+∞
f(x) and lim

x→+∞
g(x) both exist, then so do the corresponding limits of

the functions f + g, f − g, f.g and |f |, and moreover

lim
x→+∞

(f(x) + g(x)) = lim
x→+∞

f(x) + lim
x→+∞

g(x),

lim
x→+∞

(f(x)− g(x)) = lim
x→+∞

f(x)− lim
x→+∞

g(x),

lim
x→+∞

(f(x)g(x)) = lim
x→+∞

f(x)× lim
x→+∞

g(x),

lim
x→+∞

|f(x)| =

∣∣∣∣ lim
x→+∞

f(x)

∣∣∣∣ .
Moreover if in addition lim

x→+∞
g(x) 6= 0 then

lim
x→+∞

f(x)

g(x)
=

lim
x→+∞

f(x)

lim
x→+∞

g(x)
.

4.7 L’Hôpital’s Rule

An important corollary of Cauchy’s Mean Value Theorem is l’Hôpital’s Rule
for evaluating the limit of a quotient of two functions at a point where both
functions vanish.

Proposition 4.9 (L’Hôpital’s Rule for Limits from above) Let f and g be
differentiable real-valued functions defined around some real number s for
which f(s) = g(s) = 0. Suppose that there exists some strictly positive
real number δ0 such that g(x) and g′(x) are non-zero for all real numbers x

satisfying s < x < s + δ0, and that lim
x→s+

f ′(x)

g′(x)
exists (and is finite). Then

lim
x→s+

f(x)

g(x)
also exists, and

lim
x→s+

f(x)

g(x)
= lim

x→s+

f ′(x)

g′(x)
.

36



Proof Let l = lim
x→s+

f ′(x)

g′(x)
, and let some strictly positive real number ε be

given. By choosing a sufficiently small strictly positive real number δ we can
ensure that f(x)/g(x) and f ′(x)/g′(x) are well-defined and

l − ε < f ′(x)

g′(x)
< l + ε

for all real numbers x satisfying s < x < s + δ. Now f(s) = g(s) = 0.
An application of Cauchy’s Mean Value Theorem to the functions f and g
on the interval [s, x] therefore ensures that there exists some real number t
satisfying s < t < x for which

f(x)

g(x)
=
f(x)− f(s)

g(x)− g(s)
=
f ′(t)

g′(t)
.

But then s < t < s+ δ. It follows that

l − ε < f ′(t)

g′(t)
< l + ε,

and therefore

l − ε < f(x)

g(x)
< l + ε.

This shows that lim
x→s+

f(x)/g(x) = l, as required.

Corollary 4.10 (L’Hôpital’s Rule for Limits from below) Let f and g be
differentiable real-valued functions defined around some real number s for
which f(s) = g(s) = 0. Suppose that there exists some strictly positive
real number δ0 such that g(x) and g′(x) are non-zero for all real numbers x

satisfying s − δ0 < x < s, and that lim
x→s−

f ′(x)

g′(x)
exists (and is finite). Then

lim
x→s−

f(x)

g(x)
also exists, and

lim
x→s−

f(x)

g(x)
= lim

x→s−

f ′(x)

g′(x)
.

Proof It follows from Proposition 4.9 and the definitions of limits from above
and from below that

lim
x→s−

f(x)

g(x)
= lim

h→0+

f(s− h)

g(s− h)
= lim

h→0+

f ′(s− h)

g′(s− h)
= lim

x→s−

f ′(x)

g′(x)
,

as required.
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Proposition 4.11 (L’Hôpital’s Rule) Let f and g be differentiable real-
valued functions defined around some real number s for which f(s) = g(s) =
0. Suppose that there exists some strictly positive real number δ such that
g(x) and g′(x) are non-zero for all real numbers x satisfying 0 < |x− s| < δ,
and that the limit of f ′(x)/g′(x) exists (and is finite) as x → s. Then the
limit of f(x)/g(x) exists as x→ s, and

lim
x→s

f(x)

g(x)
= lim

x→s

f ′(x)

g′(x)
.

Proof Let l = lim
x→s

f ′(x)

g′(x)
. It follows from Proposition 4.9 and Corollary 4.10

that

lim
x→s+

f(x)

g(x)
= lim

x→s+

f ′(x)

g′(x)
= l

and

lim
x→s−

f(x)

g(x)
= lim

x→s−

f ′(x)

g′(x)
= l.

It then follows from Lemma 4.8 that

lim
x→s

f(x)

g(x)
= l,

as required.

Example Using l’Hôpital’s Rule twice, we see that

lim
x→2

x3 + x2 − 16x+ 20

x3 − 3x2 + 4
= lim

x→2

3x2 + 2x− 16

3x2 − 6x
= lim

x→2

6x+ 2

6x− 6
=

7

3
.

Proposition 4.12 (L’Hôpital’s Rule for Limits at Infinity) Let f and g
be differentiable real-valued functions defined for all real numbers that are
greater than some given real number. Suppose that lim

x→+∞
f(x) = 0 and

lim
g→+∞

g(x) = 0. Suppose also that there exists some real number K such

that g(x) and g′(x) are non-zero for all real numbers x satisfying x > K,
and that the limit of f ′(x)/g′(x) exists (and is finite) as x→ +∞. Then the
limit of f(x)/g(x) exists as x→ +∞, and

lim
x→+∞

f(x)

g(x)
= lim

x→+∞

f ′(x)

g′(x)
.
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Proof Suppose that

lim
x→+∞

f ′(x)

g′(x)
= l.

Let p: [0, 1/K)→ R and q: [0, 1/K)→ R be defined such that p(0) = q(0) =
0, p(t) = f(1/t) and q(t) = g(1/t) for all real numbers t satisfying 0 < t <
1/K. The requirements that lim

x→+∞
f(x) = 0 and lim

g→+∞
g(x) = 0 ensure that

the functions p and q defined on the interval [0, 1/K) are continuous at 0.
Moreover

p′(t) = − 1

t2
f ′
(

1

t

)
and q′(t) = − 1

t2
g′
(

1

t

)
for all real numbers t satisfying 0 < t < 1/K, and thus

lim
t→0+

p′(t)

q′(t)
= lim

x→+∞

f ′(x)

g′(x)
= l.

It follows that there exists some positive real number δ such that l − ε <
p′(t)/q′(t) < l + ε for all real numbers t satisfying 0 < t < δ. Let s be a real
number satisfying 0 < s < δ. application of Cauchy’s Mean Value Theorem
shows that there exists some real number t satisfying 0 < t < s < δ for which

p(s)

q(s)
=
p(s)− p(0)

q(s)− q(0)
=
p′(t)

q′(t)
.

But then l − ε < p(s)/q(s) < l + ε. It follows that lim
s→0+

p(s)/q(s) = l, and

thus lim
x→+∞

f(x)/g(x) = l, as required.

4.8 Derivatives of Trigonometrical Functions

Proposition 4.13 Let sin:R → R be the sine function whose value sin θ,
for a given real number θ is the sine of an angle of θ radians. Then

lim
θ→0

sin θ

θ
= 1.

Proof Let E and A be the endpoints of a diameter of a circle of unit radius,
let O be the centre of the circle, and let B be a point on the circle for which
the line OB makes an angle of θ radians with the line OA, where 0 < θ < π

2
.

Let C be the point on the line segment OA for which the angle OCB is a
right angle, and let the line OB be produced to the point D determined so
that the angle OAD is a right angle.

The sector OAB of the unit circle is by definition the region bounded by
the arc AB of the circle and the radii OA and OB. Now the area of a sector
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of a circle subtending at the centre an angle of θ radians is equal to the area

of the circle multiplied by
θ

2π
. But the area of a circle of unit radius is π. It

follows that a sector of the unit circle subtending at the centre an angle of θ
radians has area 1

2
θ. Also the triangles OAB and OAD have heights equal to

lengths of the line segments BC and AD respectively, and the definitions of
the sine, cosine and tangent functions ensure that the lengths of BC and AD
are sin θ and tan θ respectively. Also the common base OA of the triangles
OAB and OAD has length one unit, because the circle has unit radius. Now,
in Euclidean geometry, the area of any triangle is half the base of the triangle
multiplied by the height of the triangle. Therefore

area of triangle OAB = 1
2

sin θ,

area of sector OAB = 1
2
θ,

area of triangle OAD = 1
2

tan θ =
sin θ

2 cos θ
.

Moreover the triangle OAB is strictly contained in the sector OAB, which in
turn is strictly contained in the triangle OAD. It follows that

sin θ < θ <
sin θ

cos θ
,

for all real numbers θ satisfying 0 < θ < π
2
, and therefore

cos θ <
sin θ

θ
< 1,

for all real numbers θ satisfying 0 < θ < π
2
. Now, given any positive real

number ε, there exists some real numbeer δ satisfying 0 < δ < π
2

such that
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1−ε < cos θ < 1 whenever 0 < θ < δ. (In geometrical terms, we are choosing
δ so that the length of the line segment BA in the figure associated with this
proof is less than ε whenever 0 < θ < δ.) But then

1− ε < sin θ

θ
< 1

whenever 0 < θ < δ. These inequalities also hold when −δ < θ < 0,

because the value of
sin θ

θ
is unchanged on replacing θ by −θ. It follows that

lim
θ→0

sin θ

θ
= 1, as required.

Corollary 4.14 Let cos:R → R be the cosine function whose value cos θ,
for a given real number θ is the cosine of an angle of θ radians. Then

lim
θ→0

1− cos θ

θ
= 0.

Proof Basic trigonometrical identities ensure that

1− cos θ = 2 sin2 1
2
θ and sin θ = 2 sin 1

2
θ cos 1

2
θ

for all real numbers θ. Therefore

1− cos θ

sin θ
=

sin 1
2
θ

cos 1
2
θ

= tan 1
2
θ

for all real numbers θ. It follows that

lim
θ→0

1− cos θ

sin θ
= 0,

and therefore

lim
θ→0

1− cos θ

θ
= lim

θ→0

1− cos θ

sin θ
× lim

θ→0

sin θ

θ
= 0× 1 = 0,

as required.

Corollary 4.15 The derivatives of the sine and cosine functions satisfy

d

dx
(sinx) = cos x, and

d

dx
(cosx) = − sinx.
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Proof Using standard principles of differential calculus we see that

d

dx
(sinx) = lim

h→0

sin(x+ h)− sinx

h

= lim
h→0

sinx cosh− cosx sinh− sinx

h

= cos x lim
h→0

sinh

h
− sinx lim

h→0

1− cosh

h
= cos x,

d

dx
(cosx) = lim

h→0

cos(x+ h)− cosx

h

= lim
h→0

cosx cosh− sinx sinh− sinx

h

= − sinx lim
h→0

sinh

h
− cosx lim

h→0

1− cosh

h
= − sinx,

as required.

4.9 Derivatives of Logarithmic and Exponential Func-
tions

Given any real numbers a and b satisfying a < b, let L(a, b) denote the area
of the region

{(x, y) ∈ R2 : a ≤ x ≤ b, y ≥ 0 and xy ≤ 1}

of the Euclidean plane bounded by the x-axis (i.e., the line y = 0), the line
x = a, the line y = b and the hyperbola xy = 1. (The quantity L(a, b)
thus denotes the area under the graph of the function sending x to 1/x (i.e.,
between the graph of that function and the x-axis) in the interval from x = a
and x = b.

Let r be a positive real number, and let T :R2 → R2 denote the transfor-
mation of the Euclidean plane defined such that T (x, y) = (rx, r−1x) for all
real numbers x and y. Given any rectangle in R2 with sides parallel to the
coordinate axes, the image of that rectangle under the transformation T has
the same area as the rectangle itself. It follows from this that the T :R2 → R2

preserves the area of any geometrical figure whose boundary can be approx-
imated sufficiently closely by a polygonal curve with sides parallel to the
coordinate axes. Now the transformation T maps the hyperbola xy = 1 onto
itself. It therefore maps the region

{(x, y) ∈ R2 : a ≤ x ≤ b, y ≥ 0 and xy ≤ 1}
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onto the region

{(x, y) ∈ R2 : ra ≤ x ≤ rb, y ≥ 0 and xy ≤ 1}.

It follows that L(ra, rb) = L(a, b) for all strictly positive real numbers a, b
and r satisfying a < b.

Let us define L(a, a) = 0 and L(b, a) = −L(a, b) for all positive real
numbers a and b satisfying a < b. Then L(a, b) = L(ra, rb) for all positive
real numbers a, b and r, irrespective of whether a < b, a = b or a > b.
Moreover L(a, c) = L(a, b) + L(b, c) for all positive real numbers a, b and c.

We define log x = L(1, x) for all positive real numbers x. The real-valued
function log:R+ → R defined on the set R+ of positive real numbers is the
natural logarithm function.

If u and v are real numbers satisfying u < v then log v− log u = L(u, v) >
0, and thus log u < log v. Thus the logarithm function log:R+ → R is a
monotonically increasing function.

Lemma 4.16 The natural logarithm function log:R+ → R satisfies

log(xy) = log x+ log y.

for all real numbers x and y.

Proof Given real numbers a and b, let L(a, b) denote the area of the region
Xa,b of the plane defined such that

Xa,b = {(x, y) ∈ R2 : a ≤ x ≤ b, y ≥ 0 and xy ≤ 1}.

Then L(a, c) = L(a, b) + L(b, c) for all positive real numbers a, b and c. It
follows that

log xy = L(1, xy) = L(1, x) + L(x, xy) = L(1, x) + L(1, y) = log x+ log y,

as required.
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Lemma 4.17 The natural logarithm function log:R+ → R satisfies

d

dx
(log x) =

1

x
.

for all real numbers x.

Proof Given real numbers a and b, let L(a, b) denote the area of the region
Xa,b of the plane defined such that

Xa,b = {(x, y) ∈ R2 : a ≤ x ≤ b, y ≥ 0 and xy ≤ 1}.

Let s be a positive real number. Then

log(s+ h)− log s

h
=

1

h
L(s, s+ h)

for all real numbers h satisfying h > −s. Suppose that h > 0. Then

Xs,h ⊃ {(x, y) ∈ R2 : s ≤ x ≤ s+ h and 0 ≤ y ≤ 1/(s+ h)}

and
Xs,s+h ⊂ {(x, y) ∈ R2 : s ≤ x ≤ s+ h and 0 ≤ y ≤ 1/s},

and therefore
1

s+ h
<

1

h
L(s, s+ h) <

1

s
.

Taking the limit as h tends to zero from above, we find that

lim
h→0+

log(s+ h)− log s

h
= lim

h→0+

1

h
L(s, s+ h) =

1

s
.

Similarly
1

s
<

1

k
L(s− k, s) < 1

s− k
for all real numbers k satisfying 0 < k < s, and therefore

lim
h→0−

log(s+ h)− log s

h
= lim

k→0+

log s− log(s− k)

k
= lim

k→0+

1

k
L(s− k, s) =

1

s
.

It follows that

lim
h→0

log(x+ h)− log x

h
=

1

s
.

We deduce that the natural logarithm function is differentiable, and

d

dx
(log x) =

1

x

for all positive real numbers x, as required.
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Let s be a real number satisfying s > 1, and let n be a positive integer.
Then log s > 0, log sn = n log s and log s−n = −n log s. The Intermediate
Value Theorem (Theorem 3.13) then ensures that all real numbers between
−n log s and n log s belong to the range of the natural logarithm function.
Now, given any real number y, we can choose n large enough to ensure
that |y| < n log s. It follows that there exists some positive real number x
satisfying log x = y. This shows that the range of the logarithm function
is the set R of real numbers. Also log u < log v for all real numbers u and
v satisfying u < v. It follows that the function log:R+ → R provides a
one-to-one correspondence between the set R+ of positive real numbers and
the set R of real numbers, and therefore there exists a well-defined function
exp:R → R whose value exp(t) at any real number t is equal to the unique
positive real number s satisfying log s = t. This function exp:R → R is the
exponential function. The range of the exponential function exp:R → R is
the set R+ of positive real numbers. It follows from the definition of the
exponential function that exp(log x) = x for all positive real numbers x.

Lemma 4.18 The exponential function exp:R→ R is differentiable, and

d

dx
(exp(x)) = exp(x)

for all real numbers x.

Proof Let t be a real number. Then there exists some positive real number s
satisfying log s = t. Now the logarithm function is differentiable at s, and its
derivative at s is equal to 1/s. It follows that

s = lim
k→0

k

log(s+ k)− log s
= lim

u→s

u− s
log u− log s

.

Let some strictly positive number ε be given. Then there exists some strictly
positive number η such that

s− ε < u− s
log u− log s

< s+ ε

for all real numbers u satisfying s − η < u < s + η that are not equal to
s. Now t = log s, and therefore log(s − η) < t < log(s + η). Let δ be the
minimum of log(s+η)− t and t− log(s−η). Then δ > 0, and, given any real
number x that differs from t but satisfies the inequalities t− δ < x < t + δ,
there exists some positive real number u satisfying s − η < u < s + η for
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which x = log u. Moreover u 6= s, because x = log u, t = log s and x 6= t.
x 6= s. But then u = exp(x) and s = exp(t), and therefore

s− ε < exp(x)− exp(t)

x− t
< s+ ε.

Thus, given any positive real number ε, there exists some positive real num-
ber δ such that

exp(t)− ε < exp(t+ h)− exp(t)

h
< exp(t) + ε.

for all real numbers h satisfying 0 < |h| < δ. It follows that

lim
h→0

exp(t+ h)− exp(t)

h
= exp(t),

as required.

4.10 Continuous Differentiability and Smoothness

Definition An open set in R is a subset D of R with the property that,
given any element s of D, there exists some strictly positive real number δ
such that every real number x satisfying |x− s| < δ belongs to the set D.

Definition Let f :D → R be a real valued function defined on an open set D
in R. The function f is said to be k-times continuously differentiable (or Ck)
on D if the function f itself and its first k derivatives f ′, f ′′, . . . , f (k) are
well-defined and continuous on D.

Definition Let f :D → R be a real valued function defined on an open set D
in R. The function f is said to be smooth (or C∞) on D if the function f itself
and its derivatives f ′, f ′′, f ′′′, . . . of all orders are well-defined and continuous
on D.

Sums, differences and products of smooth functions are smooth. Also a
quotient of a smooth function by another smooth function that is everywhere
non-zero is itself smooth.

In particular polynomial functions are smooth, and the sine, cosine, tan-
gent, logarithm and exponential functions are smooth where they are defined.

Lemma 4.19 Let f :D → R and g:E → R be smooth functions defined
over open subsets D and E of R, where f(D) ⊂ E. Then the composition
function g ◦ f :D → R is smooth.
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Proof Let f (0) = f , g(0) = g, f (1) = f ′, g(1) = g′ etc., and let C denote
the the collection of functions that either are of the form g(k) ◦ f for some
non-negative integer k or else are of the form

(g(k) ◦ f) · f (j1) · f (j2) · · · · · f (jm)

for some non-negative integer k and positive integers j1, j2, . . . , jm. Now it
follows from the Chain Rule (Proposition 4.4) and the Product Rule (Propo-
sition 4.2) that any function belonging to this collection C is differentiable,
and moreover the derivative of a function belonging to C either belongs itself
to C or else is expressible as a sum of functions belonging to the collection C.
Thus any function expressible as a sum of functions belonging to C is dif-
ferentiable, and its derivative is expressible as a sum of functions belonging
to the collection C. It follows that any function belonging to the collec-
tion C is smooth. In particular, the composition function g ◦ f is smooth, as
required.

4.11 Taylor’s Theorem for Functions of One Real Vari-
able

A subset I of R is an interval if and only if (s, u) ⊂ I for all s, u ∈ I, where

(s, u) = {x ∈ R : s ≤ x ≤ u}.

Thus a subset I of R is an interval if and only if, given real numbers s, x
and u satisfying s < x < u for which s ∈ I and u ∈ I, the real number x
also satisfies x ∈ I. An open interval is an interval that is also an open
set in R. Given real numbers c and d satisfying c < d, the intervals (c, d),
(c,+∞) and (−∞, d) are open intervals, as is the whole real line R. It is
a straightforward exercise to verify, using the Least Upper Bound Principle,
that all open intervals in R conform to one of the types just described.

Lemma 4.20 Let s and h be real numbers, let f be a k times differentiable
real-valued function defined on some open interval containing s and s + h,
let c0, c1, . . . , ck−1 be real numbers, and let

p(t) = f(s+ th)−
k−1∑
n=0

cnt
n.

for all real numbers t belonging to some open interval I for which 0 ∈ I and
1 ∈ I. Then p(n)(0) = 0 for all integers n satisfying 0 ≤ n < k if and only if

cn =
hnf (n)(s)

n!
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for all integers n satisfying 0 ≤ n < k.

Proof On setting t = 0, we find that p(0) = f(s)− c0, and thus p(0) = 0 if
and only if c0 = f(s).

Let the integer n satisfy 0 < n < k. On differentiating the function p
n times (using in particular the Chain Rule to differentiate f(s+ th) and its
derivatives as functions of t), we find that

p(n)(t) = hnf (n)(s+ th)−
k−1∑
j=n

j!

(j − n)!
cjt

j−n.

Then, on setting t = 0, we find that only the term with j = n contributes
to the value of the sum on the right hand side of the above identity, and
therefore

p(n)(0) = hnf (n)(s)− n!cn.

The result follows.

Theorem 4.21 (Taylor’s Theorem) Let s and h be real numbers, and let f
be a k times differentiable real-valued function defined on some open interval
containing s and s+ h. Then

f(s+ h) = f(s) +
k−1∑
n=1

hn

n!
f (n)(s) +

hk

k!
f (k)(s+ θh)

for some real number θ satisfying 0 < θ < 1.

Proof Let I be an open interval, containing the real numbers 0 and 1, chosen
to ensure that f(s + th) is defined for all t ∈ I, and let p: I → R be defined
so that

p(t) = f(s+ th)− f(s)−
k−1∑
n=1

tnhn

n!
f (n)(s)

for all t ∈ I. A straightforward calculation shows that p(n)(0) = 0 for n =
0, 1, . . . , k− 1 (see Lemma 4.20). Thus if q(t) = p(t)− p(1)tk for all s ∈ [0, 1]
then q(n)(0) = 0 for n = 0, 1, . . . , k − 1, and q(1) = 0. We can therefore
apply Rolle’s Theorem (Theorem 4.5) to the function q on the interval [0, 1]
to deduce the existence of some real number t1 satisfying 0 < t1 < 1 for
which q′(t1) = 0. We can then apply Rolle’s Theorem to the function q′ on
the interval [0, t1] to deduce the existence of some real number t2 satisfying
0 < t2 < t1 for which q′′(t2) = 0. By continuing in this fashion, applying
Rolle’s Theorem in turn to the functions q′′, q′′′, . . . , q(k−1), we deduce the
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existence of real numbers t1, t2, . . . , tk satisfying 0 < tk < tk−1 < · · · < t1 < 1
with the property that q(n)(tn) = 0 for n = 1, 2, . . . , k. Let θ = tk. Then
0 < θ < 1 and

0 =
1

k!
q(k)(θ) =

1

k!
p(k)(θ)− p(1) =

hk

k!
f (k)(s+ θh)− p(1),

hence

f(s+h) = f(s)+
k−1∑
n=1

hn

n!
f (n)(s)+p(1) = f(s)+

k−1∑
n=1

hn

n!
f (n)(s)+

hk

k!
f (k)(s+θh),

as required.

Corollary 4.22 Let f :D → R be a k-times continuously differentiable func-
tion defined over an open subset D of R and let s ∈ R. Then given any strictly
positive real number ε, there exists some strictly positive real number δ such
that ∣∣∣∣∣f(s+ h)− f(s)−

k∑
n=1

hn

n!
f (n)(s)

∣∣∣∣∣ < ε|h|k

whenever |h| < δ.

Proof The function f is k-times continuously differentiable, and therefore
its kth derivative f (k) is continuous. Let some strictly positive real number ε
be given. Then there exists some strictly positive real number δ that is small
enough to ensure that s + h ∈ D and |f (k)(s + h)− f (k)(s)| < k!ε whenever
|h| < δ. If h is an real number satisfying |h| < δ, and if θ is a real number
satisfying 0 < θ < 1, then s + θh ∈ D and |f (k)(s + θh) − f ((k)(s)| < k!ε.
Now it follows from Taylor’s Theorem (Theorem 4.21) that, given any real
number h satisfying |h| < δ there exists some real number θ satisfying 0 <
θ < 1 for which

f(s+ h) = f(s) +
k−1∑
n=1

hn

n!
f (n)(s) +

hk

k!
f (k)(s+ θh).

Then∣∣∣∣∣f(s+ h)− f(s)−
k∑

n=1

hn

n!
f (n)(s)

∣∣∣∣∣ =
|h|k

k!
|f (k)(s+ θh)− f ((k)(s)| < ε|h|k,

as required.
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Corollary 4.23 The exponential function exp:R→ R satisfies

exp(x) =
+∞∑
n=0

xn

n!

for all real numbers x.

Proof The derivative of the exponential function is the exponential function
itself (Lemma 4.18). It follows from Taylor’s Theorem (Theorem 4.21) that

expx =
m∑
n=0

xn

n!
+

xm+1

(m+ 1)!
exp(θx)

for some real number θ satisfying 0 < θ < 1. It follows that∣∣∣∣∣expx−
m∑
n=0

xn

n!

∣∣∣∣∣ ≤ bm+1(x) exp(|x|),

where

bn(x) =
|x|n

n!

for all real numbers x and non-negative integers n. Note that bn(x) ≥ 0 for
all real numbers x and non-negative integers n.

Let N be some positive integer satisfying N ≥ 2|x|. If n is a positive
integer satisfying n ≥ N then n+ 1 > 2|x|, and therefore

bn+1(x) =
|x|
n+ 1

× bn(x) < 1
2
bn(x).

It follows that 0 ≤ bn(x) <
1

2n−N
bN(x) whenever n ≥ N , and therefore

lim
n→+∞

bn(x) = 0. Thus ∣∣∣∣∣expx−
m∑
n=0

xn

n!

∣∣∣∣∣→ 0

as m→ +∞, and thus

expx = lim
m→+∞

m∑
n=0

xn

n!
=

+∞∑
n=0

xn

n!
,

as required.
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Corollary 4.24 The sine function sin:R→ R and cosine function cos:R→
R satisfy

sinx =
+∞∑
k=0

(−1)kx2k+1

(2k + 1)!
and cosx =

+∞∑
k=0

(−1)kx2k

(2k)!

for all real numbers x.

Proof The derivatives of the sine function are given by

sin(2k)(x) = (−1)k sin(x) and sin(2k+1)(x) = (−1)k cos(x)

for all positive integers k. It follows from Taylor’s Theorem that, given any
real number x, and given any non-negative integer m, there exists some θ
satisfying 0 < θ < 1 such that

sinx =
m∑
k=0

(−1)kx2k+1

(2k + 1)!
+

(−1)m+1x2m+3

(2m+ 3)!
cos(θx)

(The value of θ will depend on x and m.) It follows that∣∣∣∣∣sinx−
m∑
k=0

(−1)kx2k+1

(2k + 1)!

∣∣∣∣∣ ≤ b2m+3(x),

for all non-negative integers m, where bn(x) = |x|n/n! for all real numbers x
and non-negative integers n. But it was shown in the proof of Corollary 4.23
that lim

n→+∞
bn(x) = 0 for all real numbers x. It follows that

sinx = lim
m→+∞

m∑
n=0

(−1)kx2k+1

(2k + 1)!
=

+∞∑
n=0

(−1)kx2k+1

(2k + 1)!
.

Similarly the derivatives of the cosine function are given by

cos(2k)(x) = (−1)k cos(x) and cos(2k−1)(x) = (−1)k sin(x)

for all positive integers k. Therefore, given any real number x, and given any
non-negative integer m, there exists some θ satisfying 0 < θ < 1 such that

cosx =
m∑
k=0

(−1)kx2k

(2k)!
+

(−1)k+1x2m+2

(2k + 2)!
cos(θx)

51



But then ∣∣∣∣∣cosx−
m∑
n=0

(−1)nx2n

(2n)!

∣∣∣∣∣ ≤ b2m+2(x),

where, as before, bn(x) = |x|n/n! for all real numbers x and non-negative
integers n. But lim

n→+∞
bn(x) = 0 for all real numbers x. It follows that

cosx = lim
m→+∞

m∑
n=0

(−1)nx2n

(2n)!
=

+∞∑
n=0

(−1)nx2n

(2n)!
,

as required.

4.12 Real-Analytic Functions

Definition A real-valued function f :D → R defined over an open subset D
of the set R of real numbers is said to be real-analytic if, given any real
number s belonging to the domain D of the function, there exists some
strictly positive real number δ such that

f(s+ h) = f(s) +
+∞∑
n=1

hn

n!
f (n)(s)

for all real numbers h satisfying |h| < δ.

It can be shown that sums, differences, products, quotients and com-
positions of real-analytic functions are themselves real-analytic over their
domains of definition. In particular, polynomial functions and quotients of
polynomial functions are real-analytic. The natural logarithm function is
real-analytic over the set of positive real numbers because its derivative is
real-analytic. It follows from Corollary 4.23 that the exponential function is
real-analytic. and it follows from Corollary 4.24 that the sine and cosine func-
tions are real-analytic. Inverses of real-analytic functions are real-analytic.

All real-analytic functions are smooth. However not all smooth functions
are real-analytic.

4.13 Smooth Functions that are not the Sum of their
Taylor Series

Let f be an infinitely differentiable real-valued function defined around some
real number a. The infinite series

f(a) +
+∞∑
n=1

hn

n!
f (n)(a)
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is referred to as the Taylor expansion of the function f about a. For many
functions, typically including those constructed from polynomial functions,
logarithm functions, exponential functions, trigonometrical functions and
their inverses, identities of the form

f(a+ h) = f(a) +
+∞∑
n=1

hn

n!
f (n)(a) = f(a) + lim

m→+∞

(
m∑
n=1

hn

n!
f (n)(a)

)

for all sufficiently small values of h. Such functions are said to be real-
analytic. However there exist functions whose Taylor expansion about some
real number a does not converge to the given function for any non-zero value
of h. Such a function is the subject of the following lemma.

Proposition 4.25 Let f :R → R be the function mapping the set R of real
numbers to itself defined such that

f(x) =

 exp

(
−1

x

)
if x > 0;

0 if x ≤ 0.

Then the function f :R → R is smooth on R. In particular f (k)(0) = 0 for
all positive integers k.

Proof We show by induction on k that the function f is k times differentiable
on R and f (k)(0) = 0 for all positive integers k. Now it follows from standard
rules for differentiating functions that

f (k)(x) =
pk(x)

x2k
exp

(
−1

x

)
for all strictly positive real numbers x, where p1(x) = 1 and

pk+1(x) = x2p′k(x) + (1− 2kx)pk(x)
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for all k. A straightforward proof by induction shows that pk(x) is a poly-
nomial in x of degree k − 1 for all positive integers k with leading term
(−1)k−1k!xk−1.

Now
d

dt

(
tne−t

)
= tn−1(n− t)e−t

for all positive real numbers t. It follows that function sending each positive
real number t to tne−t is increasing when 0 ≤ t < n and decreasing when
t > n, and therefore tne−t ≤ Mn for all positive real numbers t, where
Mn = nne−n. It follows that

0 ≤ 1

x2k+1
exp

(
−1

x

)
≤M2k+2x

for all positive real numbers x, and therefore

lim
h→0+

1

h2k+1
exp

(
−1

h

)
= 0.

It then follows that

lim
h→0+

f (k)(h)

h
= lim

h→0+

(
pk(h)

h2k+1
exp

(
−1

h

))
= lim

h→0+
pk(h)× lim

h→0+

(
1

h2k+1
exp

(
−1

h

))
= pk(0)× 0 = 0

for all positive integers k.
Now

lim
h→0+

f(h)− f(0)

h
= lim

h→0+

f(h)

h
= 0 = lim

h→0−

f(h)− f(0)

h
.

It follows that the function f is differentiable at zero, and f ′(0) = 0.
Suppose that the function f(x) is k-times differentiable at zero for some

positive integer k, and that f (k)(0) = 0. Then

lim
h→0+

f (k)(h)− f (k)(0)

h
= lim

h→0+

f (k)(h)

h
= 0 = lim

h→0−

f (k)(h)− f (k)(0)

h
.

It then follows that the function f (k) is differentiable at zero, and moreover
the derivative f (k+1)(0) of this function at zero is equal to zero. The func-
tion f is thus (k + 1)-times differentiable at zero.

54



It now follows by induction on k that f (k)(x) exists for all positive inte-
gers k and real numbers x, and moreover

f (k)(x) =


pk(x)

x2k
exp

(
−1

x

)
if x > 0;

0 if x ≤ 0.

The function f :R→ R is thus a smooth function, as required.

Remark Note that the function f :R → R defined in the statement of
Lemma 4.25 has a well-defined Taylor expansion about x = 0. Moreover
all the terms of this Taylor expansion are zero, and therefore the Taylor ex-
pansion of f converges to the zero function. This function therefore provides
an example of a function where the Taylor expansion is well-defined but does
not converge to the given function.

Corollary 4.26 Let g:R → R be the function mapping the set R of real
numbers to itself defined such that

g(x) =

 1− exp

(
− x

1− x

)
if x < 0;

1 if x ≥ 1.

Then the function g:R → R is smooth on R. Moreover the function g is a
strictly increasing function on {x ∈ R : x < 1}, and g(0) = 0.

Proof Let f :R→ R be the real-valued function defined on the set R of real
numbers so that

f(x) =

 exp

(
−1

x

)
if x > 0;

0 if x ≤ 0.
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Now

− x

1− x
= 1− 1

1− x
for all real numbers x. It follows from the definition of the functions f and
g that g(x) = 1 − ef(1 − x) for all real numbers x, where e = exp(1). Now
Proposition 4.25 ensures that the function f is smooth on R. It follows that
the function g is also smooth on R. Also g(0) = 0. Now f(1−x) is a strictly
decreasing function of x on {x ∈ R : x < 1}. It follows that the function g is
strictly increasing on that set, as required.

Corollary 4.27 Let h:R→ R be defined such that h(x) = g(f(x)/f(1)) for
all real numbers x, where

f(x) =

 exp

(
−1

x

)
if x > 0,

0 if x ≤ 0,

g(x) =

 1− exp

(
− x

1− x

)
if x < 0;

1 if x ≥ 1.

Then the function h:R → R is smooth, h(x) = 0 whenever x ≤ 0, h(1) = 1
whenever x ≥ 1, and h(x) is a strictly increasing function of x when restricted
to the interval {x ∈ R : 0 < x < 1}.

Proof The function h is a composition of smooth functions, and is therefore
smooth (see Lemma 4.19). If x ≤ 0 then h(x) = g(f(0)) = g(0) = 0. If
x ≥ 1 then f(x)/f(1) ≥ 1 and therefore h(x) = 1. The function sending
a real number x satisfying 0 < x < 1 to f(x)/f(1) is strictly increasing on
the interval (0, 1) and maps that interval into itself. Also the function g is
strictly increasing on the interval (0, 1). Thus the function h restricted to
the interval (0, 1) is a composition of two strictly increasing functions, and
is thus itself strictly increasing, as required.
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4.14 Historical Note

Representation of functions as sums of infinite series have been known to
mathematicians for centuries. The standard representation of the sine and
cosine and arctangent functions was known to, and presumably discovered
by, Madhava of Sangramagrama (c. 1340–c. 1425), whose work gave impetus
to the flourishing of the study of astronomy and mathematics in Kerala,
in southern India. The theory of infinite series was extensively developed in
Western Europe in the 17th century, with Isaac Newton (1642–1726/7) being
particularly active in the field. Isaac Newton’s manuscript on the Method of
fluxions and infinite series was completed in 1671, and was posthumously
published in 1736.

In 1797, Joseph-Louis Lagrange published his Théorie des fonctions ana-
lytiques. One of the primary aims of this book was to develop an approach to
the principles of differential and integral calculus taking as its starting point
the principle that functions of a real variable studied by mathematicians
could be represented around a particular value through an infinite series ex-
pansion, so that, in particular, an analytic function f(x) defined for values of
x close to some given value s could be represented through an infinite series
expansion of the form

f(s+ h) =
+∞∑
n=0

anh
n

for all sufficiently small values of the increment h. Lagrange defined the
derivative of such a function f to be the function f ′(x) whose infinite series
expansion takes the form

f ′(s+ h) =
+∞∑
n=1

nanh
n−1.

Lagrange intended that his theory of analytic functions would supply an
approach to the foundations of calculus that required neither “infinitesimal
quantities” nor the use of limits.

In 1830, William Rowan Hamilton published a paper in the Transactions
of the Royal Irish Academy entitled On the Error of a received Principle
of Analysis, respecting Functions which vanish with their Variables. In this
paper, Hamilton pointed that the function whose value at x, for non-zero real
numbers x, is e−x

−2
cannot be expressed around zero as the sum of a power

series. The following year Hamilton published a note in the Transactions of
the Royal Irish Academy to put on record the fact that, prior to Hamilton’s
earlier paper, Cauchy had published a paper citing this same function as an
example of a function whose derivatives at zero of all orders are all equal to
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zero though the function itself takes non-zero values at non-zero values of its
argument.

These examples demonstrated that the theory of calculus could not be
founded on the assumption that all functions relevant to mathematical anal-
ysis could be represented as sums of power series in the neighbourhood of any
value at which they are defined. Accordingly mathematicians in the nine-
teenth century returned to the approach of justifying the basic principles of
differential and integral calculus on the theory of limits and quadratures. A
theory of limits had already been employed by Isaac Newton, using the termi-
nology of prime and ultimate ratios. However the concept of limit employed
by Newton was only applicable to variable geometrical quantities that ap-
proached their limiting values monotonically. The Newton version of the limit

concept was not applicable to functions such as x sin

(
1

x

)
which oscillates

round zero as the value of x approaches zero from above, but nevertheless
can be made to approximate to zero to within any given margin of error,
provided that the value of x is sufficiently close to zero. The theory of limits
was accordingly generalized and further developed in the nineteenth century
by mathematicians such as Bolzano (1781–1848) and Cauchy (1789–1857) to
cover such situations. The generalized concept of limit developed by Bolzano
and Cauchy proved to be more appropriate to serve as the basis for defining
the basic concepts and proving the basic theorems that justify the principles
of calculus. The definitive treatment of mathematical analysis was provided
by Karl Weierstrass (1815–1897), whose lectures at Berlin established the
standard approach to the foundations of real and complex analysis through
the use of “epsilon-delta” definitions and proofs, together with the systematic
use of standard theorems such as the Bolzano-Weierstrass Theorem.
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5 The Riemann Integral

The approach to the theory of integration discussed below was developed
by Jean-Gaston Darboux (1842–1917). The integral defined using lower and
upper sums in the manner described below is sometimes referred to as the
Darboux integral of a function on a given interval. However the class of func-
tions that are integrable according to the definitions introduced by Darboux
is the class of Riemann-integrable functions. Thus the approach using Dar-
boux sums provides a convenient approach to define and establish the basic
properties of the Riemann integral.

A partition P of an interval [a, b] is a set {x0, x1, x2, . . . , xn} of real num-
bers satisfying a = x0 < x1 < x2 < · · · < xn−1 < xn = b.

Given any bounded real-valued function f on [a, b], the lower sum (or
lower Darboux sum) L(P, f) and the upper sum (or upper Darboux sum)
U(P, f) of f for the partition P of [a, b] are defined by

L(P, f) =
n∑
i=1

mi(xi − xi−1), U(P, f) =
n∑
i=1

Mi(xi − xi−1),

where mi = inf{f(x) : xi−1 ≤ x ≤ xi} and Mi = sup{f(x) : xi−1 ≤ x ≤ xi}.
Clearly L(P, f) ≤ U(P, f). Moreover

n∑
i=1

(xi − xi−1) = b− a, and therefore

m(b− a) ≤ L(P, f) ≤ U(P, f) ≤M(b− a),

for any real numbers m and M satisfying m ≤ f(x) ≤M for all x ∈ [a, b].

Definition Let f be a bounded real-valued function on the interval [a, b],

where a < b. The upper Riemann integral U
∫ b
a
f(x) dx (or upper Darboux

integral) and the lower Riemann integral L
∫ b
a
f(x) dx (or lower Darboux

integral) of the function f on [a, b] are defined by

U
∫ b

a

f(x) dx ≡ inf {U(P, f) : P is a partition of [a, b]} ,

L
∫ b

a

f(x) dx ≡ sup {L(P, f) : P is a partition of [a, b]}

(i.e., U
∫ b
a
f(x) dx is the infimum of the values of U(P, f) and L

∫ b
a
f(x) dx is

the supremum of the values of L(P, f) as P ranges over all possible partitions
of the interval [a, b]). If

U
∫ b

a

f(x) dx = L
∫ b

a

f(x) dx
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The upper sum U(P, f)

The lower sum L(P, f)
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then the function f is said to be Riemann-integrable (or Darboux-integrable)

on [a, b], and the Riemann integral
∫ b
a
f(x) dx (or Darboux integral) of f on

[a, b] is defined to be the common value of U
∫ b
a
f(x) dx and L

∫ b
a
f(x) dx.

When a > b we define∫ b

a

f(x) dx = −
∫ a

b

f(x) dx

for all Riemann-integrable functions f on [b, a]. We set
∫ b
a
f(x) = 0 when

b = a.
If f and g are bounded Riemann-integrable functions on the interval

[a, b], and if f(x) ≤ g(x) for all x ∈ [a, b], then
∫ b
a
f(x) dx ≤

∫ b
a
g(x) dx, since

L(P, f) ≤ L(P, g) and U(P, f) ≤ U(P, g) for all partitions P of [a, b].

Definition Let P and R be partitions of [a, b], given by P = {x0, x1, . . . , xn}
and R = {u0, u1, . . . , um}. We say that the partition R is a refinement of P
if P ⊂ R, so that, for each xi in P , there is some uj in R with xi = uj.

Lemma 5.1 Let R be a refinement of some partition P of [a, b]. Then

L(R, f) ≥ L(P, f) and U(R, f) ≤ U(P, f)

for any bounded function f : [a, b]→ R.

Proof Let P = {x0, x1, . . . , xn} and R = {u0, u1, . . . , um}, where a = x0 <
x1 < · · · < xn = b and a = u0 < u1 < · · · < um = b. Now for each
integer i between 0 and n there exists some integer j(i) between 0 and m
such that xi = uj(i) for each i, since R is a refinement of P . Moreover 0 =
j(0) < j(1) < · · · < j(n) = n. For each i, let Ri be the partition of [xi−1, xi]

given by Ri = {uj : j(i − 1) ≤ j ≤ j(i)}. Then L(R, f) =
n∑
i=1

L(Ri, f) and

U(R, f) =
n∑
i=1

U(Ri, f). Moreover

mi(xi − xi−1) ≤ L(Ri, f) ≤ U(Ri, f) ≤Mi(xi − xi−1),

since mi ≤ f(x) ≤ Mi for all x ∈ [xi−1, xi]. On summing these inequal-
ities over i, we deduce that L(P, f) ≤ L(R, f) ≤ U(R, f) ≤ U(P, f), as
required.

Given any two partitions P and Q of [a, b] there exists a partition R of
[a, b] which is a refinement of both P and Q. For example, we can take
R = P ∪ Q. Such a partition is said to be a common refinement of the
partitions P and Q.
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Lemma 5.2 Let f be a bounded real-valued function on the interval [a, b].
Then

L
∫ b

a

f(x) dx ≤ U
∫ b

a

f(x) dx.

Proof Let P and Q be partitions of [a, b], and let R be a common refinement
of P and Q. It follows from Lemma 5.1 that L(P, f) ≤ L(R, f) ≤ U(R, f) ≤
U(Q, f). Thus, on taking the supremum of the left hand side of the inequality
L(P, f) ≤ U(Q, f) as P ranges over all possible partitions of the interval [a, b],

we see that L
∫ b
a
f(x) dx ≤ U(Q, f) for all partitions Q of [a, b]. But then,

taking the infimum of the right hand side of this inequality as Q ranges over
all possible partitions of [a, b], we see that L

∫ b
a
f(x) dx ≤ U

∫ b
a
f(x) dx, as

required.

Example Let f(x) = cx+d, where c ≥ 0. We shall show that f is Riemann-

integrable on [0, 1] and evaluate
∫ 1

0
f(x) dx from first principles.

For each positive integer n, let Pn denote the partition of [0, 1] into n
subintervals of equal length. Thus Pn = {x0, x1, . . . , xn}, where xi = i/n.
Now the function f takes values between (i− 1)c/n+ d and ic/n+ d on the
interval [xi−1, xi], and therefore

mi =
(i− 1)c

n
+ d, Mi =

ic

n
+ d

where mi = inf{f(x) : xi−1 ≤ x ≤ xi} and Mi = sup{f(x) : xi−1 ≤ x ≤ xi}.
Thus

L(Pn, f) =
n∑
i=1

mi(xi − xi−1) =
1

n

n∑
i=1

(
ci

n
+ d− c

n

)
=

c(n+ 1)

2n
+ d− c

n
=
c

2
+ d− c

2n
,

U(Pn, f) =
n∑
i=1

Mi(xi − xi−1) =
1

n

n∑
i=1

(
ci

n
+ d

)
=

c(n+ 1)

2n
+ d =

c

2
+ d+

c

2n
.

But L(Pn, f) ≤ L
∫ b
a
f(x) dx ≤ U

∫ b
a
f(x) dx ≤ U(Pn, f) for all n. It follows

that L
∫ b
a
f(x) dx = 1

2
c+ d = U

∫ b
a
f(x) dx. Thus f is Riemann-integrable on

the interval [0, 1], and
∫ 1

0
f(x) dx = 1

2
c+ d.
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Example Let f : [0, 1]→ R be the function defined by

f(x) =

{
1 if x is rational;
0 if x is irrational.

Let P be a partition of the interval [0, 1] given by P = {x0, x1, x2, . . . , xn},
where 0 = x0 < x1 < x2 < · · · < xn = 1. Then

inf{f(x) : xi−1 ≤ x ≤ xi} = 0, sup{f(x) : xi−1 ≤ x ≤ xi} = 1,

for i = 1, 2, . . . , n, and thus L(P, f) = 0 and U(P, f) = 1 for all partitions P

of the interval [0, 1]. It follows that L
∫ 1

0
f(x) dx = 0 and U

∫ 1

0
f(x) dx = 1,

and therefore the function f is not Riemann-integrable on the interval [0, 1].

It can be shown that sums and products of Riemann-integrable functions
are themselves Riemann-integrable.

Proposition 5.3 Let f be a bounded real-valued function on the interval
[a, c]. Suppose that f is Riemann-integrable on the intervals [a, b] and [b, c],
where a < b < c. Then f is Riemann-integrable on [a, c], and∫ c

a

f(x) dx =

∫ b

a

f(x) dx+

∫ c

b

f(x) dx.

Proof Let Q and R be any partitions of the intervals [a, b] and [b, c] respec-
tively. These partitions combine to give a partition Q ∪ R of the interval
[a, c]: thus if Q = {a, x1, . . . , xn−1, b} and R = {b, u1, . . . , um−1, c}, where

a < x1 < x2 < · · · < xn−1 < b < u1 < u2 < · · · < um−1 < c,

then Q∪R = {a, x1, . . . , xn−1, b, u1, . . . , um−1, c}. Clearly the lower and upper
sums of f satisfy L(Q, f) +L(R, f) = L(Q∪R, f) and U(Q, f) +U(R, f) =
U(Q ∪R, f). It follows that

L(Q, f) + L(R, f) ≤ L
∫ c

a

f(x) dx.

Taking the supremum of the left hand side of this inequality over all parti-
tions Q of [a, b] and all partitions R of [b, c], we deduce that∫ b

a

f(x) dx+

∫ c

b

f(x) dx ≤ L
∫ c

a

f(x) dx.
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Similarly U(Q, f) + U(R, f) ≥ U
∫ c
a
f(x) dx, and hence∫ b

a

f(x) dx+

∫ c

b

f(x) dx ≥ U
∫ c

a

f(x) dx.

But L
∫ c
a
f(x) dx ≤ U

∫ c
a
f(x) dx by Lemma 5.2. It follows that

L
∫ c

a

f(x) dx =

∫ b

a

f(x) dx+

∫ c

b

f(x) dx = U
∫ c

a

f(x) dx,

as required.

5.1 Integrability of Monotonic functions

Let a and b be real numbers satisfying a < b. A real-valued function
f : [a, b] → R defined on the closed bounded interval [a, b] is said to be non-
decreasing if f(u) ≤ f(v) for all real numbers u and v satisfying a ≤ u ≤ v ≤
b. Similarly f : [a, b] → R is said to be non-increasing if f(u) ≥ f(v) for all
real numbers u and v satisfying a ≤ u ≤ v ≤ b. The function f : [a, b]→ R is
said to be monotonic on [a, b] if either it is non-decreasing on [a, b] or else it
is non-increasing on [a, b].

Proposition 5.4 Let a and b be real numbers satisfying a < b. Then every
monotonic function on the interval [a, b] is Riemann-integrable on [a, b].

Proof Let f : [a, b]→ R be a non-decreasing function on the closed bounded
interval [a, b]. Then f(a) ≤ f(x) ≤ f(b) for all x ∈ [a, b], and therefore the
function f is bounded on [a, b]. Let some positive real number ε be given.
Let δ be some strictly positive real number for which (f(b)−f(a))δ < ε, and
let P be a partition of [a, b] of the form P = {x0, x1, x2, . . . , xn}, where

a = x0 < x1 < x2 < · · · < xn−1 < xn = b

and xi−xi−1 < δ for i = 1, 2, . . . , n. Then the maximum and minimum values
of f(x) on the interval [xi−1, xi] are attained at xi and xi−1 respectively, and
therefore the upper sum U(P, f) and L(P, f) of f for the partition P satisfy

U(P, f) =
n∑
i=1

f(xi)(xi − xi−1) and L(P, f) =
n∑
i=1

f(xi−1)(xi − xi−1).

Moreover f(xi)− f(xi−1) ≥ 0 for i = 1, 2, . . . , n. It follows that

U(P, f)− L(P, f) =
n∑
i=1

(f(xi)− f(xi−1)(xi − xi−1)

< δ

n∑
i=1

(f(xi)− f(xi−1) = δ(f(b)− f(a)) < ε.
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We have thus shown that

U
∫ b

a

f(x) dx− L
∫ b

a

f(x) dx < ε

for all strictly positive numbers ε. But U
∫ b

a

f(x) dx ≥ L
∫ b

a

f(x) dx. It

follows that

U
∫ b

a

f(x) dx = L
∫ b

a

f(x) dx,

and thus the function f is Riemann-integrable on [a, b].
Now let f : [a, b]→ R be a non-increasing function on [a, b]. Then −f is a

non-decreasing function on [a, b] and it follows from what we have just shown
that −f is Riemann-integrable on [a, b]. It follows that the function f itself
must be Riemann-integrable on [a, b], as required.

Corollary 5.5 Let a and b be real numbers satisfing a < b, and let f : [a, b]→
R be a real-valued function on the interval [a, b]. Suppose that there exist real
numbers x0, x1, . . . , xn, where

a = x0 < x1 < x2 < · · · < xn−1 < xn = b,

such that the function f restricted to the interval [xi−1, xi] is monotonic on
[xi−1, xi] for i = 1, 2, . . . , n. Then f is Riemann-integrable on [a, b].

Proof The result follows immediately on applying the results of Proposi-
tion 5.3 and Proposition 5.4.

Remark The result and proof of Proposition 5.4 are to be found in their es-
sentials, though expressed in different language, in Isaac Newton, Philosophiae
naturalis principia mathematica (1686), Book 1, Section 1, Lemmas 2 and 3.

5.2 Integrability of Continuous functions

Theorem 5.6 Let a and b be real numbers satisfying a < b. Then any
continuous real-valued function on the interval [a, b] is Riemann-integrable.

Proof Let f be a continuous real-valued function on [a, b]. It follows from
the Extreme Value Theorem (Theorem 3.15) that f is bounded above and
below on the interval [a, b].

Let some strictly positive real number ε be given. It follows from Propo-
sition 3.16 that the function f is uniformly continuous on the interval [a, b],
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and therefore there exists some strictly positive real number δ such that
|f(x) − f(y)| < ε whenever x, y ∈ [a, b] satisfy |x − y| < δ. Choose a
partition P of the interval [a, b] such that each subinterval in the parti-
tion has length less than δ. Write P = {x0, x1, . . . , xn}, where a = x0 <
x1 < · · · < xn = b. Now if xi−1 ≤ x ≤ xi then |x − xi| < δ, and hence
f(xi)− ε < f(x) < f(xi) + ε. It follows that

f(xi)− ε ≤ mi ≤Mi ≤ f(xi) + ε (i = 1, 2, . . . , n),

where mi = inf{f(x) : xi−1 ≤ x ≤ xi} and Mi = sup{f(x) : xi−1 ≤ x ≤ xi}.
Therefore

n∑
i=1

f(xi)(xi − xi−1)− ε(b− a) ≤ L(P, f) ≤ U(P, f)

≤
n∑
i=1

f(xi)(xi − xi−1) + ε(b− a),

where L(P, f) and U(P, f) denote the lower and upper sums of the function f
for the partition P , and hence

0 ≤ U
∫ b

a

f(x) dx− L
∫ b

a

f(x) dx ≤ U(P, f)− L(P, f) ≤ 2ε(b− a).

But this inequality must be satisfied for any strictly positive real number ε.
Therefore

U
∫ b

a

f(x) dx = L
∫ b

a

f(x) dx,

and thus the function f is Riemann-integrable on [a, b].

5.3 The Fundamental Theorem of Calculus

Let a and b be real numbers satisfying a < b. One can show that all continu-
ous functions on the interval [a, b] are Riemann-integrable (see Theorem 5.6).
However the task of calculating the Riemann integral of a continuous func-
tion directly from the definition is difficult if not impossible for all but the
simplest functions. Thus to calculate such integrals one makes use of the
Fundamental Theorem of Calculus.

Theorem 5.7 (The Fundamental Theorem of Calculus) Let f be a contin-
uous real-valued function on the interval [a, b], where a < b. Then

d

dx

(∫ x

a

f(t) dt

)
= f(x)

for all x satisfying a < x < b.
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Proof Let F (s) =
∫ s
a
f(t) dt for all s ∈ (a, b). Now the function f is contin-

uous at x, where a < x < b. Thus, given any strictly positive real number ε,
there exists some strictly positive real number δ such that |f(t)− f(x)| < 1

2
ε

for all t ∈ [a, b] satisfying |t− x| < δ. Now

F (x+ h)− F (x)

h
− f(x) =

1

h

∫ x+h

x

f(t) dt− f(x) =
1

h

∫ x+h

x

(f(t)− f(x)) dt.

But if 0 < |h| < δ and x+h ∈ [a, b] then
∣∣∣∫ x+hx

(f(t)− f(x)) dt
∣∣∣ ≤ 1

2
ε|h|, and

thus ∣∣∣∣F (x+ h)− F (x)

h
− f(x)

∣∣∣∣ ≤ 1
2
ε < ε.

It follows that

d

dx

(∫ x

a

f(t) dt

)
= lim

h→0

F (x+ h)− F (x)

h
= f(x),

as required.

Let f : [a, b] → R be a continuous function on a closed interval [a, b]. We
say that f is continuously differentiable on [a, b] if the derivative f ′(x) of f
exists for all x satisfying a < x < b, the one-sided derivatives

f ′(a) = lim
h→0+

f(a+ h)− f(a)

h
, f ′(b) = lim

h→0−

f(b+ h)− f(b)

h

exist at the endpoints of [a, b], and the function f ′ is continuous on [a, b].
If f : [a, b] → R is continuous, and if F (x) =

∫ x
a
f(t) dt for all x ∈ [a, b]

then the one-sided derivatives of F at the endpoints of [a, b] exist, and

lim
h→0+

F (a+ h)− F (a)

h
= f(a), lim

h→0−

F (b+ h)− F (b)

h
= f(b).

One can verify these results by adapting the proof of the Fundamental The-
orem of Calculus.

Corollary 5.8 Let f be a continuously differentiable real-valued function on
the interval [a, b]. Then ∫ b

a

df(x)

dx
dx = f(b)− f(a)
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Proof Define g: [a, b]→ R by

g(x) = f(x)− f(a)−
∫ x

a

df(t)

dt
dt.

Then g(a) = 0, and

dg(x)

dx
=
df(x)

dx
− d

dx

(∫ x

a

df(t)

dt
dt

)
= 0

for all x satisfing a < x < b, by the Fundamental Theorem of Calculus. Now
it follows from the Mean Value Theorem (Theorem 4.6) that there exists
some s satisfying a < s < b for which g(b)− g(a) = (b− a)g′(s). We deduce
therefore that g(b) = 0, which yields the required result.

Corollary 5.9 (Integration by Parts) Let f and g be continuously differen-
tiable real-valued functions on the interval [a, b]. Then∫ b

a

f(t)
dg(x)

dx
dx = f(b)g(b)− f(a)g(a)−

∫ b

a

df(x)

dx
g(x) dx.

Proof This result follows from Corollary 5.8 on integrating the identity

f(x)
dg(x)

dx
=

d

dx
(f(x)g(x))− df(x)

dx
g(x).

Corollary 5.10 (Integration by Substitution) Let u: [a, b]→ R be a contin-
uously differentiable monotonically increasing function on the interval [a, b],
and let c = u(a) and d = u(b). Then∫ d

c

f(x) dx =

∫ b

a

f(u(t))
du(t)

dt
dt.

for all continuous real-valued functions f on [c, d].

Proof Let F and G be the functions on [a, b] defined by

F (x) =

∫ u(x)

c

f(y)dy, G(x) =

∫ x

a

f(u(t))
du(t)

dt
dt.

Then F (a) = 0 = G(a). Moreover F (x) = H(u(x)), where

H(s) =

∫ s

c

f(y) dy,

and H ′(s) = f(s) for all s ∈ [a, b]. Using the Chain Rule and the Fundamen-
tal Theorem of Calculus, we deduce that

F ′(x) = H ′(u(x))u′(x) = f(u(x))u′(x) = G′(x)

for all x ∈ (a, b). On applying the Mean Value Theorem (Theorem 4.6) to the
function F−G on the interval [a, b], we see that F (b)−G(b) = F (a)−G(a) =
0. Thus F (b) = G(b) = H(d), which yields the required identity.
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5.4 Interchanging Limits and Integrals, Uniform Con-
vergence

Let f1, f2, f3, . . . be a sequence of Riemann-integrable functions defined over
the interval [a, b], where a and b are real numbers satisfying a ≤ b. Suppose
that the sequence f1(x), f2(x), f3(x) converges for all x ∈ [a, b]. We wish to
determine whether or not

lim
j→+∞

∫ b

a

fj(x) dx =

∫ b

a

(
lim

j→+∞
fj(x)

)
dx.

The following example demonstrates that this identity can fail to hold, even
when the functions involved are well-behaved polynomial functions.

Example Let f1, f2, f3, . . . be the sequence of continuous functions on the
interval [0, 1] defined by fj(x) = j(xj − x2j). Now

lim
j→+∞

∫ 1

0

fj(x) dx = lim
j→+∞

(
j

j + 1
− j

2j + 1

)
=

1

2
.

On the other hand, we shall show that lim
j→+∞

fj(x) = 0 for all x ∈ [0, 1]. Thus

one cannot interchange limits and integrals in this case.
Suppose that 0 ≤ x < 1. We claim that jxj → 0 as j → +∞. To

verify this, choose u satisfying x < u < 1. Then 0 ≤ (j + 1)uj+1 ≤ nuj for
all positive integers j satisfying j > u/(1 − u). Therefore there exists some
constant B with the property that 0 ≤ nuj ≤ B for all positive integers j.
But then 0 ≤ jxj ≤ B(x/u)j for all positive integers j, and (x/u)j → 0 as
j → +∞. Therefore jxj → 0 as j → +∞, as claimed. It follows that

lim
j→+∞

fj(x) =

(
lim

j→+∞
jxj
)(

lim
j→+∞

(1− xj)
)

= 0

for all x satisfying 0 ≤ x < 1. Also fj(1) = 0 for all positive integers j. We
conclude that lim

j→+∞
fj(x) = 0 for all x ∈ [0, 1], which is what we set out to

show.

We now introduce the concept of uniform convergence. Later shall show
that, given a sequence f1, f2, f3, . . . of Riemann-integrable functions on some
interval [a, b], the identity

lim
j→+∞

∫ b

a

fj(x) dx =

∫ b

a

(
lim

j→+∞
fj(x)

)
dx.

is valid, provided that the sequence f1, f2, f3, . . . of functions converges uni-
formly on the interval [a, b].
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Definition Let f1, f2, f3, . . . be a sequence of real-valued functions defined
on some subset D of R. The sequence (fj) is said to converge uniformly to a
function f on D as j → +∞ if and only if the following criterion is satisfied:

given any strictly positive real number ε, there exists some positive integer N
such that |fj(x) − f(x)| < ε for all x ∈ D and for all positive integers j
satisfying j ≥ N (where the value of N is independent of x).

Let f1, f2, f3, . . . be a sequence of bounded real-valued functions on some
subset D of R which converges uniformly on D to the zero function. For each
positive integer j, let Mj = sup{fj(x) : x ∈ D}. We claim that Mj → 0 as
j → +∞. To prove this, let some strictly positive real number ε be given.
Then there exists some positive integer N such that |fj(x)| < 1

2
ε for all x ∈ D

and j ≥ N . Thus if j ≥ N then Mj ≤ 1
2
ε < ε. This shows that Mj → 0 as

j → +∞, as claimed.

Example Let (fj : n ∈ N) be the sequence of continuous functions on
the interval [0, 1] defined by fj(x) = j(xj − x2j). We have already shown
(in an earlier example) that lim

j→+∞
fj(x) = 0 for all x ∈ [0, 1]. However a

straightforward exercise in Calculus shows that the maximum value attained

by the function fj is j/4 (which is attained at x = 1/2
1
j ), and j/4 → +∞

as j → +∞. It follows from this that the sequence f1, f2, f3, . . . does not
converge uniformly to the zero function on the interval [0, 1].

Proposition 5.11 Let f1, f2, f3, . . . be a sequence of continuous real-valued
functions defined on some subset D of R. Suppose that this sequence con-
verges uniformly on D to some real-valued function f . Then f is continuous
on D.

Proof Let s be an element of D, and let some strictly positive real number ε
be given. If j is chosen sufficiently large then |f(x) − fj(x)| < 1

3
ε for all

x ∈ D, since fj → f uniformly on D as j → +∞. It then follows from the
continuity of fj that there exists some strictly positive real number δ such
that |fj(x)− fj(s)| < 1

3
ε for all x ∈ D satisfying |x− s| < δ. But then

|f(x)−f(s)| ≤ |f(x)−fj(x)|+|fj(x)−fj(s)|+|fj(s)−f(s)| < 1
3
ε+ 1

3
ε+ 1

3
ε = ε

whenever |x−s| < δ. Thus the function f is continuous at s, as required.

Theorem 5.12 Let f1, f2, f3, . . . be a sequence of continuous real-valued
functions which converges uniformly on the interval [a, b] to some continuous
real-valued function f . Then

lim
j→+∞

∫ b

a

fj(x) dx =

∫ b

a

f(x) dx.
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Proof Let some strictly positive real number ε. Choose ε0 small enough to
ensure that 0 < ε0(b − a) < ε. Then there exists some positive integer N
such that |fj(x)− f(x)| < ε0 for all x ∈ [a, b] and j ≥ N , since the sequence
f1, f2, f3, . . . of functions converges uniformly to f on [a, b]. Now

−
∫ b

a

|fj(x)− f(x)| dx ≤
∫ b

a

fj(x) dx−
∫ b

a

f(x) dx ≤
∫ b

a

|fj(x)− f(x)| dx.

It follows that∣∣∣∣∫ b

a

fj(x) dx−
∫ b

a

f(x) dx

∣∣∣∣ ≤ ∫ b

a

|fj(x)− f(x)| dx ≤ ε0(b− a) < ε,

whenever j ≥ N . The result follows.

5.5 Integrals over Unbounded Intervals

We define integrals over unbounded intervals by appropriate limiting pro-
cesses. Given any function f that is bounded and Riemann-integrable over
each closed bounded subinterval of [a,+∞), we define∫ +∞

a

f(x) dx = lim
b→+∞

∫ b

a

f(x) dx,

provided that this limit is well-defined. Similarly, given any function f that
is bounded and Riemann-integrable over each closed bounded subinterval of
(−∞, b], we define ∫ b

−∞
f(x) dx = lim

a→−∞

∫ b

a

f(x) dx,

provided that this limit is well-defined. If f is bounded and Riemann inte-
grable over each closed bounded interval in R then we define∫ +∞

−∞
f(x) dx = lim

a→−∞,b→+∞

∫ b

a

f(x) dx,

provided that this limit exists.

Remark Using techniques of complex analysis, it can be shown that

lim
b→+∞

∫ b

0

sinx

x
dx =

π

2
.
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However it can also be shown that∫ b

0

| sinx|
x

dx→ +∞ as b→ +∞.

Therefore, in the standard theory of the Riemann integral, the integral of the

function (sinx)/x on the interval [0,+∞) is defined, and

∫ +∞

0

sinx

x
dx =

π

2
.

There is an alternative theory of integration, due to Lebesgue, which is
generally more powerful. All bounded Riemann-integrable functions on a
closed bounded interval are Lebesgue-integrable on that interval. But a real-
valued function f on a “measure space” is Lebesgue-integrable if and only if
|f | is Lebesgue-integrable on that measure space. Let f : [0,+∞)→ R be the
real-valued function defined such that f(0) = 1 and f(x) = (sinx)/x for all
positive real numbers x. Then the function |f | is neither Riemann-integrable
nor Lebesgue-integrable on [0,+∞). It follows that the function f itself is
not Lebesgue-integrable on [0,+∞). But, as we have remarked, the theory

of the Riemann integral assigns a value of π
2

to
+∞∫
0

f(x) dx.

72


