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1 Ordered Fields and the Real Number Sys-

tem

1.1 Sets

A set is a collection of objects. These objects are referred to as the elements
of the set. One can specify a set by enclosing a list of suitable objects within
braces. Thus, for example, {1, 2, 3, 7} denotes the set whose elements are the
numbers 1, 2, 3 and 7. If x is an element of some set X then we denote this
fact by writing x ∈ X. Conversely, if x is not an element of the set X then
we write x 6∈ X. We denote by ∅ the empty set, which is defined to be the
set with no elements.

We denote by N the set {1, 2, 3, 4, 5 . . .} of all positive integers (also known
as natural numbers), and we denote by Z the set

{. . . ,−5,−4,−3,−2,−1, 0, 1, 2, 3, 4, 5, . . .}

of all integers (or ‘whole numbers’). We denote by Q the set of rational
numbers (i.e., numbers of the form p/q where p and q are integers and q 6= 0),
and we denote be R and C the sets of real numbers and complex numbers
respectively.

If X and Y are sets then the union X ∪ Y of X and Y is defined to
be the set of all elements that belong either to X or to Y (or to both), the
intersection X ∩ Y of X and Y is defined to be the set of all elements that
belong to both X and Y , and the difference X \ Y of X and Y is defined to
be the set of all elements that belong to X but do not belong to Y . Thus,
for example, if

X = {2, 4, 6, 8}, Y = {3, 4, 5, 6, 7}

then
X ∪ Y = {2, 3, 4, 5, 6, 7, 8}, X ∩ Y = {4, 6},

X \ Y = {2, 8}, Y \X = {3, 5, 7}.

If X and Y are sets, and if every element of X is also an element of Y
then we say that X is a subset of Y , and we write X ⊂ Y . We use the
notation {y ∈ Y : P (y)} to denote the subset of a given set Y consisting
of all elements y of Y with some given property P (y). Thus for example
{n ∈ Z : n > 0} denotes the set of all integers n satisfying n > 0 (i.e., the
set N of all positive integers).
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1.2 Rational and Irrational Numbers

Rational numbers are numbers that can be expressed as fractions of the form
p/q, where p and q are integers (i.e., ‘whole numbers’) and q 6= 0. The set
of rational numbers is denoted by Q. Operations of addition, subtraction,
multiplication and division are defined on Q in the usual manner. In addition
the set of rational numbers is ordered.

There are however certain familiar numbers which cannot be represented
in the form p/q, where p and q are integers. These include

√
2,
√

3, π and
e. Such numbers are referred to as irrational numbers. The irrationality of√

2 is an immediate consequence of the following famous result, which was
discovered by the Ancient Greeks.

Proposition 1.1 There do not exist non-zero integers p and q with the prop-
erty that p2 = 2q2.

Proof Let us suppose that there exist non-zero integers p and q with the
property that p2 = 2q2. We show that this leads to a contradiction. Without
loss of generality we may assume that p and q are not both even (since if
both p and q were even then we could replace p and q by p/2k and q/2k

respectively, where k is the largest positive integer with the property that
2k divides both p and q). Now p2 = 2q2, hence p2 is even. It follows from
this that p is even (since the square of an odd integer is odd). Therefore
p = 2r for some integer r. But then 2q2 = 4r2, so that q2 = 2r2. Therefore
q2 is even, and hence q is even. We have thus shown that both p and q are
even. But this contradicts our assumption that p and q are not both even.
This contradiction shows that there cannot exist integers p and q with the
property that p2 = 2q2, and thus proves that

√
2 is an irrational number.

This result shows that the rational numbers are not sufficient for the pur-
pose of representing lengths arising in familiar Euclidean geometry. Indeed
consider the right-angled isosceles triangle whose short sides are q units long.
Then the hypotenuse is

√
2q units long, by Pythagoras’ Theorem. Proposi-

tion 1.1 shows that it is not possible to find a unit of length for which the
two short sides of this right-angled isosceles triangle are q units long and the
hypotenuse is p units long, where both p and q are integers. We must there-
fore enlarge the system of rational numbers to obtain a number system which
contains irrational numbers such as

√
2,
√

3, π and e, and which is capable
of representing the lengths of line segments and similar quantities arising in
geometry and physics. The rational and irrational numbers belonging to this
number system are known as real numbers.
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1.3 Ordered Fields

An ordered field F consists of a set F on which are defined binary operations
+ of addition and × of multiplication, together with an ordering relation
<, where these binary operations and ordering relation satisfy the following
axioms:—

1. if u and v are elements of F then their sum u+ v is also a element of F;

2. (the Commutative Law for addition) u + v = v + u for all elements u
and v of F;

3. (the Associative Law for addition) (u + v) + w = u + (v + w) for all
elements u, v and w of F;

4. there exists an element of F, denoted by 0, with the property that
u+ 0 = x = 0 + u for all elements u of F;

5. for each element u of F there exists some element −u of F with the
property that u+ (−u) = 0 = (−u) + u;

6. if u and v are elements of F then their product u× v is also a element
of F;

7. (the Commutative Law for multiplication) u×v = v×u for all elements
u and v of F;

8. (the Associative Law for multiplication) (u× v)× w = u× (v × w) for
all elements u, v and w of F,

9. there exists an element of F, denoted by 1, with the property that
u× 1 = u = 1× u for all elements u of F, and moreover 1 6= 0,

10. for each element u of F satisfying u 6= 0 there exists some element u−1

of F with the property that u× u−1 = 1 = u−1 × u,

11. (the Distributive Law) u× (v+w) = (u× v) + (u×w) for all elements
u, v and w of F,

12. (the Trichotomy Law) if u and v are elements of F then one and only
one of the three statements u < v, u = v and u < v is true,

13. (transitivity of the ordering) if u, v and w are elements of F and if u < v
and v < w then u < w,

14. if u, v and w are elements of F and if u < v then u+ w < v + w,
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15. if u and v are elements of F which satisfy 0 < u and 0 < v then
0 < u× v,

The operations of subtraction and division are defined on an ordered
field F in terms of the operations of addition and multiplication on that field
in the obvious fashion: u− v = u + (−v) for all elements u and v of F, and
moreover u/v = uv−1 provided that v 6= 0.

Example The rational numbers, with the standard ordering, and the stan-
dard operations of addition, subtraction, multiplication, and division consti-
tute an ordered field.

Example Let Q(
√

2) denote the set of all numbers that can be represented in
the form b+c

√
2, where b and c are rational numbers. The sum and difference

of any two numbers belonging to Q(
√

2) themselves belong to Q(
√

2). Also
the product of any two numbers Q(

√
2) itself belongs to Q(

√
2) because, for

any rational numbers b, c, e and f ,

(b+ c
√

2)(e+ f
√

2) = (be+ 2cf) + (bf + ce)
√

2,

and both be + 2cf and bf + ce are rational numbers. The reciprocal of any
non-zero element of Q(

√
2) itself belongs to Q(

√
2), because

1

b+ c
√

2
=
b− c

√
2

b2 − 2c2
.

for all rational numbers b and c. It is then a straightforward exercise to verify
that Q(

√
2) is an ordered field.

The absolute value |x| of an element number x of an ordered field F is
defined by

|x| =
{
x if x ≥ 0;
−x if x < 0.

Note that |x| ≥ 0 for all x and that |x| = 0 if and only if x = 0. Also
|x + y| ≤ |x| + |y| and |xy| = |x||y| for all elements x and y of the ordered
field F.

Let D be a subset of an ordered field F. An element u of F is said to be
an upper bound of the set D if x ≤ u for all x ∈ D. The set D is said to be
bounded above if such an upper bound exists.

Definition Let F be an ordered field, and let D be some subset of F which
is bounded above. An element s of F is said to be the least upper bound (or
supremum) of D (denoted by supD) if s is an upper bound of D and s ≤ u
for all upper bounds u of D.
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Example The rational number 2 is the least upper bound, in the ordered
field of rational numbers, of the sets {x ∈ Q : x ≤ 2} and {x ∈ Q : x < 2}.
Note that the first of these sets contains its least upper bound, whereas the
second set does not.

The axioms (1)–(15) listed above that characterize ordered fields are not
in themselves sufficient to fully characterize the real number system. (Indeed
any property of real numbers that could be derived solely from these axioms
would be equally valid in any ordered field whatsoever, and in particular
would be valid were the system of real numbers replaced by the system of
rational numbers.) We require in addition the following axiom:—

the Least Upper Bound Axiom: given any non-empty set D of
real numbers that is bounded above, there exists a real number
supD that is the least upper bound for the set D.

A lower bound of a set D of real numbers is a real number l with the
property that l ≤ x for all x ∈ D. A set D of real numbers is said to be
bounded below if such a lower bound exists. If D is bounded below, then
there exists a greatest lower bound (or infimum) inf D of the set D. Indeed
inf D = − sup{x ∈ R : −x ∈ D}.

Remark We have simply listed above a complete set of axioms for the real
number system. We have not however proved the existence of a system of
real numbers satisfying these axioms. There are in fact several constructions
of the real number system: one of the most popular of these is the represen-
tation of real numbers as Dedekind sections of the set of rational numbers.
For an account of the this construction, and for a proof that these axioms
are sufficient to characterize the real number system, see chapters 27–29 of
Calculus, by M. Spivak. The construction of the real number system using
Dedekind cuts is also described in detail in the Appendix to Chapter 1 of
Principles of Real Analysis by W. Rudin.

1.4 Remarks on the Existence of Least Upper Bounds

We present an argument here that is intended to show that if the system of
real numbers has all the properties that one would expect it to possess, then
it must satisfy the Least Upper Bound Axiom.

Let F be an ordered field that contains the field Q of rational numbers.
The set Z is a subset of Q. Thus Z ⊂ Q and Q ⊂ F, and therefore Z ⊂ F.

Definition Let F be an ordered field that contains the field of rational num-
bers. The field F is said to satisfy the Axiom of Archimedes if, given any
element x of F, there exists some integer n satisfying n ≥ x.
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The Axiom of Archimedes excludes the possibility of “infinitely large”
elements of the ordered field F. Given that all real numbers should be rep-
resentable in decimal arithmetic, any real number must be less than some
positive integer. Thus we expect the system of real numbers to satisfy the
Axiom of Archimedes.

Lemma 1.2 Let F be an ordered field that satisfies the Axiom of Archimedes.
Then, given any element x of F satisfying x > 0, there exists some positive

integer n such that x >
1

n
> 0.

Proof The Axiom of Archimedes ensures the existence of a positive integer n

satisfying n >
1

x
. Then

n− 1

x
> 0 and

x

n
= x× 1

n
> 0,

and therefore

x− 1

n
=

(
n− 1

x

)
× x

n
> 0,

and thus x >
1

n
, as required.

Now let F be an ordered field containing as a subfield the field Q of rational
numbers. We suppose also that F satisfies the Axiom of Archimedes. Let D
be a subset of F which is bounded above. The Axiom of Archimedes then
ensures that there exists some integer that is an upper bound for the set D.
It follows from this that there exists some integer m that is the largest integer
that is not an upper bound for the set D. Then m is not an upper bound
for D, but m+ 1 is. Let

E = {x ∈ F : x ≥ 0 and m+ x ∈ D}.

Then E is non-empty and x ≤ 1 for all x ∈ E. Suppose that there exists a
least upper bound supE in F for the set E. Then m+ supE is a least upper
bound for the set D, and thus supD exists, and supD = m + supE. Thus,
in order to show that every non-empty subset of D that is bounded above
has a least upper bound, it suffices to show this for subsets D of F with the
property that 0 ≤ x ≤ 1 for all x ∈ D.

Now let F be an ordered field containing the field Q of rational numbers
that satisfies the Axiom of Archimedes, and let D be a subset of F with the
property that 0 ≤ x ≤ 1 for all x ∈ D. Then, for each positive integer m, let
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um denote the largest non-negative integer for which um × (10)−m is not an
upper bound for the set D. Then 0 ≤ um < (10)m and (um + 1)(10)−m is an
upper bound for the set D. Thus if there were to exist a least upper bound s
for the set D, then s would have to satisfy

um
(10)m

< s ≤ um
(10)m

+
1

(10)m

for m = 1, 2, 3, . . .. Now if m > 1 then definitions of um and um−1 ensure
that (10um−1)× (10)−m is not an upper bound for the set D but (10um−1 +
10)× (10)−m is an upper bound for the set D. It follows that

10um−1 ≤ um < 10um−1 + 10.

Let d1 = u1, and let dm = um − 10um−1 for all integers m satisfying m > 1.
Then dm is an integer satisfying 0 ≤ dm < 10 for m = 1, 2, 3, . . ., and

um
(10)m

=
dm

(10)m
+

um−1
(10)m−1

.

It follows that
um

(10)m
=

m∑
k=1

dk
(10)k

.

Any least upper bound t for the set D would therefore have to satisfy the
inequalities

m∑
k=1

dk
(10)k

< t ≤
m∑
k=1

dk
(10)k

+
1

(10)m

for all positive integers m.
Now suppose that every well-formed decimal expansion determines a cor-

responding element of the ordered field F. Assuming this, we conclude that
there must exist some element s of the ordered field F whose decimal expan-
sion takes the form

0.d1 d2 d3 d4 d5, . . .

The basic properties of decimal expansions then ensure that

m∑
k=1

dk
(10)k

≤ s ≤
m∑
k=1

dk
(10)k

+
1

(10)m
.

Let ε be an element of F satisfying ε > 0. Then, because the ordered field F
is required to satisfy the Axiom of Archimedes, a positive integer m can be
chosen large enough to ensure that 0 < (10)−m < ε. Then

s− ε <
m∑
k=1

dk
(10)k

=
um

(10)m
,
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and therefore s− ε cannot be an upper bound for the set D. Also

s+ ε >
m∑
k=1

dk
(10)k

+
1

(10)m
=

um
(10)m

+
1

(10)m
,

and therefore s + ε is an upper bound for the set D. We see therefore if s
is an element of F satisfying 0 ≤ s ≤, and if s is determined by the decimal
expansion whose successive decimal digits are d1, d2, d3, . . ., where these digits
are determined by D as described above, then s−ε cannot be an upper bound
for the set D for any ε > 0, but s+ ε must be an upper bound for the set D
for all ε > 0.

Now if there were to exist any element x of D satisfying x > s, then we
could obtain a contradiction on choosing ε ∈ F such that 0 < ε < x − s. It
follows that x ≤ s for all x ∈ D, and thus s is an upper bound for the set D.
But if ε > 0 then s − ε is not an upper bound for the set D. Therefore s
must be the least upper bound for the set D.

This analysis shows that if F is an ordered field, containing the field
of rational numbers, that satisfies the Axiom of Archimedes, and if every
decimal expansion determines a corresponding element of F then every non-
empty subset of F that is bounded above must have a least upper bound.
The ordered field F must therefore satisfy the Least Upper Bound Axiom.

This justifies the characterization of the field R of real numbers as an
ordered field that satisfies the Least Upper Bound Axiom.

1.5 Intervals

Given real numbers a and b satisfying a ≤ b, we define

[a, b] = {x ∈ R : a ≤ x ≤ b}.

If a < b then we define

(a, b) = {x ∈ R : a < x < b}, [a, b) = {x ∈ R : a ≤ x < b},

(a, b] = {x ∈ R : a < x ≤ b}.

For each real number c, we also define

[c,+∞) = {x ∈ R : c ≤ x}, (c,+∞) = {x ∈ R : c < x},

(−∞, c] = {x ∈ R : x ≤ c}, (−∞, c) = {x ∈ R : x < c}.

All these subsets of R are referred to as intervals. An interval I may be
defined as a non-empty set of real numbers with the following property: if s,
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t and u are real numbers satisfying s < t < u and if s and u both belong to
the interval I then t also belongs to the interval I. Using the Least Upper
Bound Axiom, one can prove that every interval in R is either one of the
intervals defined above, or else is the whole of R.

1.6 The Real Number System

From the time of the ancient Greeks to the present day, mathematicians
have recognized the necessity of establishing rigorous foundations for the
discipline. This led mathematicians such as Bolzano, Cauchy and Weierstrass
to establish in the nineteenth century the definitions of continuity, limits
and convergence that are required in order to establish a secure foundation
upon which to build theories of real and complex analysis that underpin the
application of standard techiques of the differential calculus in one or more
variables.

But mathematicians in the nineteenth century realised that, in order to
obtain satisfactory proofs of basic theorems underlying the applications of
calculus, they needed a deeper understanding of the nature of the real num-
ber system. Accordingly Dedekind developed a theory in which real numbers
were represented by Dedekind sections, in which each real number was char-
acterized by means of a partition of the set of rational numbers into two
subsets, where every rational number belonging to the first subset is less
than every rational number belonging to the second. Dedekind published his
construction of the real number system in 1872, in the work Stetigkeit und ir-
rationale Zahlen. In the same year, Georg Cantor published a construction of
the real number system in which real numbers are represented by sequences
of rational numbers satisfying an appropriate convegence criterion.

It has since been shown that the system of real numbers is completely
characterized by the statement that the real numbers constitute an ordered
field which satisfies the Least Upper Bound Axiom.
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2 Infinite Sequences of Real Numbers

2.1 Convergence

An infinite sequence of real numbers is a sequence of the form x1, x2, x3, . . .,
where xj is a real number for each positive integer j. (More formally, one can
view an infinite sequence of real numbers as a function from N to R which
sends each positive integer j to some real number xj.)

Definition An infinite sequence x1, x2, x3, . . . of real numbers is said to con-
verge to some real number l if and only if the following criterion is satisfied:

given any strictly positive real number ε, there exists some pos-
itive integer N such that |xj − l| < ε for all positive integers j
satisfying j ≥ N .

If the sequence x1, x2, x3, . . . converges to the limit l then we denote this fact
by writing ‘xj → l as j → +∞’, or by writing ‘ lim

j→+∞
xj = l’.

Let x and l be real numbers, and let ε be a strictly positive real number.
Then |x − l| < ε if and only if both x − l < ε and l − x < ε. It follows
that |x − l| < ε if and only if l − ε < x < l + ε. The condition |x − l| < ε
essentially requires that the value of the real number x should agree with l
to within an error of at most ε. An infinite sequence x1, x2, x3, . . . of real
numbers converges to some real number l if and only if, given any positive
real number ε, there exists some positive integer N such that l−ε < xj < l+ε
for all positive integers j satisfying j ≥ N .

Example A straightforward application of the definition of convergence
shows that 1/j → 0 as j → +∞. Indeed suppose that we are given any
strictly positive real number ε. If we pick some positive integer N large
enough to satisfy N > 1/ε then |1/j| < ε for all positive integers j satisfying
j ≥ N , as required.

Example We show that (−1)j/j2 → 0 as j → +∞. Indeed, given any
strictly positive real number ε, we can find some positive integer N satisfying
N2 > 1/ε. If j ≥ N then |(−1)j/j2| < ε, as required.

Example The infinite sequence x1, x2, x3, . . . defined by xj = j is not con-
vergent. To prove this formally, we suppose that it were the case that
lim

j→+∞
xj = l for some real number l, and derive from this a contradiction. On

setting ε = 1 (say) in the formal definition of convergence, we would deduce
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that there would exist some positive integer N such that |xj − l| < 1 for all
j ≥ N . But then xj < l + 1 for all j ≥ N , which is impossible. Thus the
sequence cannot converge.

Example The infinite sequence u1, u2, u3, . . . defined by uj = (−1)j is not
convergent. To prove this formally, we suppose that it were the case that
lim

j→+∞
uj = l for some real number l. On setting ε = 1

2
in the criterion for

convergence, we would deduce the existence of some positive integer N such
that |uj − l| < 1

2
for all j ≥ N . But then

|uj − uj+1| ≤ |uj − l|+ |l − uj+1| < 1
2

+ 1
2

= 1

for all j ≥ N , contradicting the fact that uj − uj+1 = ±2 for all j. Thus the
sequence cannot converge.

Definition We say that an infinite sequence x1, x2, x3, . . . of real numbers is
bounded above if there exists some real number B such that xj ≤ B for all
positive integers j. Similarly we say that this sequence is bounded below if
there exists some real number A such that xj ≥ A for all positive integers j.
A sequence is said to be bounded if it is bounded above and bounded below.
Thus a sequence is bounded if and only if there exist real numbers A and B
such that A ≤ xj ≤ B for all positive integers j.

Lemma 2.1 Every convergent sequence of real numbers is bounded.

Proof Let x1, x2, x3, . . . be a sequence of real numbers converging to some
real number l. On applying the formal definition of convergence (with ε = 1),
we deduce the existence of some positive integer N such that |xj − l| < 1
for all j ≥ N . But then A ≤ xj ≤ B for all positive integers j, where
A is the minimum of x1, x2, . . . , xN−1 and l − 1, and B is the maximum of
x1, x2, . . . , xN−1 and l + 1.

Proposition 2.2 Let x1, x2, x3, . . . and y1, y2, y3, be convergent infinite se-
quences of real numbers. Then the sum, difference and product of these se-
quences are convergent, and

lim
j→+∞

(xj + yj) = lim
j→+∞

xj + lim
j→+∞

yj,

lim
j→+∞

(xj − yj) = lim
j→+∞

xj − lim
j→+∞

yj,

lim
j→+∞

(xjyj) =

(
lim

j→+∞
xj

)(
lim

j→+∞
yj

)
.
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If in addition yj 6= 0 for all positive integers j and lim
j→+∞

yj 6= 0, then the

quotient of the sequences (xj) and (yj) is convergent, and

lim
j→+∞

xj
yj

=
lim

j→+∞
xj

lim
j→+∞

yj
.

Proof Throughout this proof let l = lim
j→+∞

xj and m = lim
j→+∞

yj.

First we prove that xj + yj → l + m as j → +∞. Let some strictly
positive real number ε be given. We must show that there exists some positive
integer N such that |xj + yj − (l + m)| < ε whenever j ≥ N . Now xj → l
as j → +∞, and therefore, given any strictly positive real number ε1, there
exists some positive integer N1 with the property that |xj− l| < ε1 whenever
j ≥ N1. In particular, there exists a positive integer N1 with the property
that |xj−l| < 1

2
ε whenever j ≥ N1. (To see this, let ε1 = 1

2
ε.) Similarly there

exists some positive integer N2 such that |yj − m| < 1
2
ε whenever j ≥ N2.

Let N be the maximum of N1 and N2. If j ≥ N then

|xj + yj − (l +m)| = |(xj − l) + (yj −m)| ≤ |xj − l|+ |yj −m|
< 1

2
ε+ 1

2
ε = ε.

Thus xj + yj → l +m as j → +∞.
Let c be some real number. We show that cyj → cm as j → +∞. The

case when c = 0 is trivial. Suppose that c 6= 0. Let some strictly positive
real number ε be given. Then there exists some positive integer N such that
|yj − m| < ε/|c| whenever j ≥ N . But then |cyj − cm| = |c||yj − m| < ε
whenever j ≥ N . Thus cyj → cm as j → +∞.

If we combine this result, for c = −1, with the previous result, we see
that −yj → −m as j → +∞, and therefore xj − yj → l −m as j → +∞.

Next we show that if u1, u2, u3, . . . and v1, v2, v3, . . . are infinite sequences,
and if uj → 0 and vj → 0 as j → +∞, then ujvj → 0 as j → +∞. Let some
strictly positive real number ε be given. Then there exist positive integers
N1 and N2 such that |uj| <

√
ε whenever j ≥ N1 and |vj| <

√
ε whenever

j ≥ N2. Let N be the maximum of N1 and N2. If j ≥ N then |ujvj| < ε.
We deduce that ujvj → 0 as j → +∞.

We can apply this result with uj = xj − l and vj = yj −m for all positive
integers j. Using the results we have already obtained, we see that

0 = lim
j→+∞

(ujvj) = lim
j→+∞

(xjyj − xjm− lyj + lm)

= lim
j→+∞

(xjyj)−m lim
j→+∞

xj − l lim
j→+∞

yj + lm = lim
j→+∞

(xjyj)− lm.

12



Thus xjyj → lm as j → +∞.
Next we show that if w1, w2, w3, . . . is an infinite sequence of non-zero real

numbers, and if wj → 1 as j → +∞ then 1/wj → 1 as j → +∞. Let some
strictly positive real number ε be given. Let ε0 be the minimum of 1

2
ε and 1

2
.

Then there exists some positive integer N such that |wj − 1| < ε0 whenever
j ≥ N . Thus if j ≥ N then |wj − 1| < 1

2
ε and 1

2
< wj <

3
2
. But then∣∣∣∣ 1

wj

− 1

∣∣∣∣ =

∣∣∣∣1− wj

wj

∣∣∣∣ =
|wj − 1|
|wj|

< 2|wj − 1| < ε.

We deduce that 1/wj → 1 as j → +∞.
Finally suppose that lim

j→+∞
xj = l and lim

j→+∞
yj = m, where m 6= 0. Let

wj = yj/m. Then wj → 1 as j → +∞, and hence 1/wj → 1 as j → +∞.
We see therefore that m/yj → 1, and thus 1/yj → 1/m, as j → +∞. The
result we have already obtained for products of sequences then enables us to
deduce that xj/yj → l/m as j → +∞.

Example We shall show that if sj → 2 as j → +∞, where sj =
6j2 − 4j

3j2 + 7
for all positive integers j. Now neither 6j2− 4j nor 3j2 + 7 converges to any
(finite) limit as j → +∞; and therefore we cannot directly apply the result in
Proposition 2.2 concerning the convergence of the quotient of two convergent
sequences. However on dividing both the numerator and the denominator of
the fraction defining sj by j2, we see that

sj =
6j2 − 4j

3j2 + 7
=

6− 4

j

3 +
7

j2

.

Moreover 6− 4

j
→ 6 and 3 +

7

j2
→ 3 as j → +∞, and therefore, on applying

Proposition 2.2, we see that

lim
j→+∞

6j2 − 4j

3j2 + 7
= lim

j→+∞

6− 4

j

3 +
7

j2

=

lim
j→+∞

(
6− 4

j

)
lim

j→+∞

(
3 +

7

j2

) =
6

3
= 2.

2.2 Monotonic Sequences

An infinite sequence x1, x2, x3, . . . of real numbers is said to be strictly increas-
ing if xj+1 > xj for all positive integers j, strictly decreasing if xj+1 < xj for

13



all positive integers j, non-decreasing if xj+1 ≥ xj for all positive integers j,
non-increasing if xj+1 ≤ xj for all positive integers j. A sequence satisfy-
ing any one of these conditions is said to be monotonic; thus a monotonic
sequence is either non-decreasing or non-increasing.

Theorem 2.3 Any non-decreasing sequence of real numbers that is bounded
above is convergent. Similarly any non-increasing sequence of real numbers
that is bounded below is convergent.

Proof Let x1, x2, x3, . . . be a non-decreasing sequence of real numbers that
is bounded above. It follows from the Least Upper Bound Axiom that there
exists a least upper bound l for the set {xj : j ∈ N}. We claim that the
sequence converges to l.

Let some strictly positive real number ε be given. We must show that
there exists some positive integer N such that |xj − l| < ε whenever j ≥ N .
Now l− ε is not an upper bound for the set {xj : j ∈ N} (since l is the least
upper bound), and therefore there must exist some positive integer N such
that xN > l− ε. But then l− ε < xj ≤ l whenever j ≥ N , since the sequence
is non-decreasing and bounded above by l. Thus |xj−l| < ε whenever j ≥ N .
Therefore xj → l as j → +∞, as required.

If the sequence x1, x2, x3, . . . is non-increasing and bounded below then
the sequence −x1,−x2,−x3, . . . is non-decreasing and bounded above, and
is therefore convergent. It follows that the sequence x1, x2, x3, . . . is also
convergent.

Example Let x1 = 2 and

xj+1 = xj −
x2j − 2

2xj

for all positive integers j. Now

xj+1 =
x2j + 2

2xj
and x2j+1 = x2j − (x2j − 2) +

(
x2j − 2

2xj

)2

= 2 +

(
x2j − 2

2xj

)2

.

It therefore follows by induction on j that xj > 0 and x2j > 2 for all positive
integers j. But then xj+1 < xj for all j, and thus the sequence x1, x2, x3, . . .
is decreasing and bounded below. It follows from Theorem 2.3 that this
sequence converges to some real number α. Also xj > 1 for all positive
integers j (since xj > 0 and x2j > 2), and therefore α ≥ 1. But then, on
applying Proposition 2.2, we see that

α = lim
j→+∞

xj+1 = lim
j→+∞

(
xj −

x2j − 2

2xj

)
= α− α2 − 2

2α
.

Thus α2 = 2, and so α =
√

2.

14



2.3 Subsequences of Sequences of Real Numbers

Definition Let x1, x2, x3, . . . be an infinite sequence of real numbers. A
subsequence of this infinite sequence is a sequence of the form xj1 , xj2 , xj3 , . . .
where j1, j2, j3, . . . is an infinite sequence of positive integers with

j1 < j2 < j3 < · · · .

Let x1, x2, x3, . . . be an infinite sequence of real numbers. The following
sequences are examples of subsequences of the above sequence:—

x1, x3, x5, x7, . . .

x1, x4, x9, x16, . . .

2.4 The Bolzano-Weierstrass Theorem

Proposition 2.4 Let x1, x2, x3, . . . be a bounded infinite sequence of real
numbers. Then there exists a real number c with the property that, given
any strictly positive real number ε, there are infinitely many positive inte-
gers j for which c− ε < xj < c+ ε.

First Proof The infinite sequence (xj : j ∈ N) is bounded, and therefore
there exist real numbers A and B such that A ≤ xj ≤ B for all positive
integers j. For each real number s let

Qs = {j ∈ N : xj > s}.

Then Qs = ∅ whenever s ≥ B, and Qs = N whenever s < A.
Let S be the set consisting of all real numbers s for which the correspond-

ing set Qs is infinite. Then s 6∈ S whenever s ≥ B, and s ∈ S whenever
s < A. It follows that the set S is a non-empty subset of R that is bounded
above by B. The Least Upper Bound Principle therefore ensures that the
set S has a well-defined least upper bound. Let c be the least upper bound
bound of the set S.

Let some strictly positive real number ε be given. Let v satisfy c < v <
c+ ε. Then v 6∈ S, because c is an upper bound for the set S, and therefore
the set Qv is a finite subset of N. Also c − ε is not an upper bound for the
set S, because c is the least upper bound for this set, and therefore there
exists some element u of S satisfying c − ε < u ≤ c. Then Qu is an infinite
subset of N. It follows that the complement Qu \Qv of Qv in Qu is a subset
of N with infinitely many elements.

Now

Qu \Qv = {j ∈ N : xj > u} \ {j ∈ N : xj > v} = {j ∈ N : u < xj ≤ v}.
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Thus c − ε < u < xj ≤ v < c + ε for all j ∈ Qu \ Qv. Therefore the
number of positive integers j for which c − ε < xj < c + ε must be infinite,
as required.

Theorem 2.5 (Bolzano-Weierstrass) Every bounded sequence of real num-
bers has a convergent subsequence.

First Proof Let x1, x2, x3, . . . be an bounded infinite sequence of real num-
bers. It follows from Proposition 2.4 that there exists a real number c with
the property that, given any strictly positive real number ε, there are in-
finitely many positive integers j for which c − ε < xj < c + ε. There then
exists some positive integer k1 such that c− 1 < xk1 < c+ 1.

Now suppose that positive integers k1, k2, . . . , km have been determined
such that k1 < k2 < · · · < km and

c− 1

j
< xkj < c+

1

j

for j = 1, 2, . . . ,m. The interval{
x ∈ R : c− 1

m+ 1
< x < c+

1

m+ 1

}
must then contain infinitely many members of the original sequence, and
therefore there exists some positive integer km+1 for which km < km+1 and

c− 1

m+ 1
< xkm+1 < c+

1

m+ 1
.

Thus we can construct in this fashion a subsequence xk1 , xk2 , xk3 , . . . of the
original sequence with the property that

c− 1

j
< xkj < c+

1

j

for all positive integers j. This subsequence then converges to c. The given
sequence therefore has a convergent subsequence, as required.

Second Proof Let a1, a2, a3, . . . be a bounded sequence of real numbers,
and let

S = {j ∈ N : aj ≥ ak for all k ≥ j}

(i.e., S is the set of all positive integers j with the property that aj is greater
than or equal to all the succeeding members of the sequence).
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First let us suppose that the set S is infinite. Arrange the elements of S
in increasing order so that S = {j1, j2, j3, j4, . . .}, where j1 < j2 < j3 < j4 <
· · ·. It follows from the manner in which the set S was defined that aj1 ≥
aj2 ≥ aj3 ≥ aj4 ≥ · · · . Thus aj1 , aj2 , aj3 , . . . is a non-increasing subsequence
of the original sequence a1, a2, a3, . . .. This subsequence is bounded below
(since the original sequence is bounded). It follows from Theorem 2.3 that
aj1 , aj2 , aj3 , . . . is a convergent subsequence of the original sequence.

Now suppose that the set S is finite. Choose a positive integer j1 which
is greater than every positive integer belonging to S. Then j1 does not
belong to S. Therefore there must exist some positive integer j2 satisfying
j2 > j1 such that aj2 > aj1 . Moreover j2 does not belong to S (since j2
is greater than j1 and j1 is greater than every positive integer belonging
to S). Therefore there must exist some positive integer j3 satisfying j3 > j2
such that aj3 > aj2 . We can continue in this way to construct (by induction
on j) a strictly increasing subsequence aj1 , aj2 , aj3 , . . . of our original sequence.
This increasing subsequence is bounded above (since the original sequence is
bounded) and thus is convergent, by Theorem 2.3. This completes the proof
of the Bolzano-Weierstrass Theorem.

2.5 Cauchy’s Criterion for Convergence

Definition A sequence x1, x2, x3, . . . of real numbers is said to be a Cauchy
sequence if the following condition is satisfied:

given any strictly positive real number ε, there exists some pos-
itive integer N such that |xj − xk| < ε for all positive integers j
and k satisfying j ≥ N and k ≥ N .

Lemma 2.6 Every Cauchy sequence of real numbers is bounded.

Proof Let x1, x2, x3, . . . be a Cauchy sequence. Then there exists some pos-
itive integer N such that |xj − xk| < 1 whenever j ≥ N and k ≥ N . In par-
ticular, |xj| ≤ |xN | + 1 whenever j ≥ N . Therefore |xj| ≤ R for all positive
integers j, where R is the maximum of the real numbers |x1|, |x2|, . . . , |xN−1|
and |xN |+ 1. Thus the sequence is bounded, as required.

The following important result is known as Cauchy’s Criterion for con-
vergence, or as the General Principle of Convergence.

Theorem 2.7 (Cauchy’s Criterion for Convergence) An infinite sequence of
real numbers is convergent if and only if it is a Cauchy sequence.
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Proof First we show that convergent sequences are Cauchy sequences. Let
x1, x2, x3, . . . be a convergent sequence of real numbers, and let l = lim

j→+∞
xj.

Let some strictly positive real number ε be given. Then there exists some
positive integer N such that |xj − l| < 1

2
ε for all j ≥ N . Thus if j ≥ N and

k ≥ N then |xj − l| < 1
2
ε and |xk − l| < 1

2
ε, and hence

|xj − xk| = |(xj − l)− (xk − l)| ≤ |xj − l|+ |xk − l| < ε.

Thus the sequence x1, x2, x3, . . . is a Cauchy sequence.
Conversely we must show that any Cauchy sequence x1, x2, x3, . . . is con-

vergent. Now Cauchy sequences are bounded, by Lemma 2.6. The sequence
x1, x2, x3, . . . therefore has a convergent subsequence xk1 , xk2 , xk3 , . . ., by the
Bolzano-Weierstrass Theorem (Theorem 2.5). Let l = limj→+∞ xkj . We
claim that the sequence x1, x2, x3, . . . itself converges to l.

Let some strictly positive real number ε be given. Then there exists some
positive integer N such that |xj − xk| < 1

2
ε whenever j ≥ N and k ≥ N

(since the sequence is a Cauchy sequence). Let m be chosen large enough to
ensure that km ≥ N and |xkm − l| < 1

2
ε. Then

|xj − l| ≤ |xj − xkm|+ |xkm − l| < 1
2
ε+ 1

2
ε = ε

whenever j ≥ N . It follows that xj → l as j → +∞, as required.
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3 Continuity for Functions of a Real Variable

3.1 The Definition of Continuity for Functions of a
Real Variable

Definition Let D be a subset of R, and let f :D → R be a real-valued
function on D. Let s be a point of D. The function f is said to be continuous
at s if, given any positive real number ε, there exists some positive real
number δ such that |f(x)− f(s)| < ε for all x ∈ D satisfying |x− s| < δ. If
f is continuous at every point of D then we say that f is continuous on D.

Example Consider the function f :R→ R defined by

f(x) =

{
1 if x > 0;
0 if x ≤ 0.

The function f is not continuous at 0. To prove this formally we note that
when 0 < ε ≤ 1 there does not exist any strictly positive real number δ
with the property that |f(x) − f(0)| < ε for all x satisfying |x| < δ (since
|f(x)− f(0)| = 1 for all x > 0).

Example Let g:R→ R be the function defined by

g(x) =

{
sin

1

x
if x 6= 0;

0 if x = 0.

We show that this function is not continuous at 0. Suppose that ε is chosen
to satisfy 0 < ε < 1. No matter how small we choose the strictly positive real
number δ, we can always find x ∈ R for which |x| < δ and |g(x)− g(0)| ≥ ε.
Indeed, given any strictly positive real number δ, we can choose some integer j
large enough to ensure that 0 < xj < δ, where xj satisfies 1/xj = (4j+1)π/2.
Moreover g(xj) = 1. This shows that the criterion defining the concept of
continuity is not satisfied at x = 0.

Example Let h:R→ R be the function defined by

h(x) =

{
3x sin

1

x
if x 6= 0;

0 if x = 0.

We claim that the function h is continuous at 0. To prove this, we must apply
the definition of continuity directly. Let some strictly positive real number ε
be given. If δ = 1

3
ε then |h(x)| ≤ 3|x| < ε for all real numbers x satisfying

|x| < δ, as required.
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Lemma 3.1 Let D be a subset of R, let f :D → R and g:D → R be real-
valued functions on D, and let s ∈ D. Suppose that the functions f and g are
continuous at s. Then so is the function f+g, where (f+g)(x) = f(x)+g(x)
for all x ∈ D.

Proof Suppose that f :D → R and g:D → R are continuous at s, where
s ∈ D. We show that f + g is continuous at s. Let some strictly positive
real number ε be given. Then there exist strictly positive real numbers δ1
and δ2 such that |f(x)− f(s)| < 1

2
ε for all x ∈ D satisfying |x− s| < δ1, and

|g(x)−g(s)| < 1
2
ε for all x ∈ D satisfying |x−s| < δ2. Let δ be the minimum

of δ1 and δ2. If |x− s| < δ then

|f(x) + g(x)− (f(s) + g(s))| ≤ |f(x)− f(s)|+ |g(x)− g(s)| < 1
2
ε+ 1

2
ε = ε,

showing that f + g is continuous at s, as required.

Lemma 3.2 Let D be a subset of R, let f :D → R be a real-valued function
on D, let c be a real number, and let s ∈ D. Suppose that the function f is
continuous at s. Then so is the function cf , where (cf)(x) = cf(x) for all
x ∈ D.

Proof If c = 0 then the function cf is the zero function, and is therefore
continuous. We may therefore restrict attention to the case where c 6= 0.

Let some strictly positive real number ε be given, and let ε0 = ε/|c|.
Then ε0 > 0, and the continuity of f at s then ensures the existence of some
strictly positive real number δ such that |f(x)− f(s)| < ε0 whenever x ∈ D
satisfies |x− s| < δ. But then

|cf(x)− cf(s)| = |c| |f(x)− f(s)| < |c|ε0 = ε

whenever x ∈ D satisfies |x − s| < δ. This shows that the function cf is
continuous as s, as required.

Lemma 3.3 Let D be a subset of R, let f :D → R and g:D → R be real-
valued functions on D, and let s ∈ D. Suppose that the functions f and g
are continuous at s. Then so is the function f ·g, where (f ·g)(x) = f(x)g(x)
for all x ∈ D.

Proof Let some strictly positive real number ε be given. Then there exist
strictly positive real numbers δ1 and δ2 such that |f(x)−f(s)| <

√
ε whenever

x ∈ D satisfies |x− s| < δ1 and |g(x)− g(s)| <
√
ε whenever x ∈ D satisfies
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|x−s| < δ2. Let δ be the minimum of δ1 and δ2. Then δ > 0, and if |x−s| < δ
then

|(f(x)− f(s)(g(x)− g(s))| = |(f(x)− f(s)| |(g(x)− g(s))| <
√
ε×
√
ε = ε.

But

(f(x)− f(s)(g(x)− g(s)) = f(x)g(x)− f(s)g(x)− g(s)f(x) + f(s)g(s)

= h(x)− h(s),

where h:D → R is the real-valued function on D defined such that

h(x) = f(x)g(x)− f(s)g(x)− g(s)f(x)

for all x ∈ D. It follows that |h(x) − h(s)| < ε whenever x ∈ D satisfies
|x− s| < δ. We conclude from this that the function h:D → R is continuous
at s. Now

f(x)g(x) = h(x) + f(s)g(x) + g(s)f(x).

It therefore follows from Lemma 3.1 and Lemma 3.2 that the function f · g
is continuous as s, as required.

Proposition 3.4 Let f :D → R and g:E → R be functions defined on D
and E respectively, where D and E are subsets of R satisfying f(D) ⊂ E.
Let s be an element of D. Suppose that the function f is continuous at s and
that the function g is continuous at f(s). Then the composition g ◦ f of f
and g is continuous at s.

Proof Let some strictly positive real number ε be given. Then there exists
some strictly positive real number η such that |g(u) − g(f(s))| < ε for all
u ∈ E satisfying |u− f(s)| < η. But then there exists some strictly positive
real number δ such that |f(x)−f(s)| < η for all x ∈ D satisfying |x−s| < δ.
Thus if |x − s| < δ then |g(f(x)) − g(f(s))| < ε. Hence g ◦ f is continuous
at s.

Lemma 3.5 Let f :D → R be a function defined on a subset D of R, and
let s be an element of D. Suppose that f(x) 6= 0 for all x ∈ D and that the
function f is continuous at s for some s ∈ D. Then the function 1/f is also
continuous at s, where (1/f)(x) = 1/f(x) for all x ∈ D.

Proof Let r:R\{0} → R be defined such that r(t) = 1/t for all non-zero real
numbers t. We show that the function r is continuous. Let u be a non-zero
real number, and let some strictly positive real number ε be given. Then

r(t)− r(u) =
1

t
− 1

u
=
u− t
tu
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for all non-zero real numbers t. Let δ be the minimum of 1
2
|u| and 1

2
|u|2ε. If

t is a non-zero real number, and if |t− u| < δ then |t| ≥ |u| − |t− u| ≥ 1
2
|u|,

and therefore

|r(t)− r(u)| ≤ 2

|u|2
|t− u| < 2

|u|2
δ ≤ ε.

It follows that the function r:R \ {0} → R is continuous at u.
Now 1/f(x) = r(f(x)) for all x ∈ X. Moreover the function f is continu-

ous at s, and the function f is continuous at f(s). It follows from Lemma 3.4
that the composition function r◦f is continuous at s. Thus the function 1/f
is continuous at s, as required.

Proposition 3.6 Let f :D → R and g:D → R be functions defined over
some subset D of R. Suppose that f and g are continuous at some point s
of D. Then the functions f + g, f − g and f · g are also continuous at s. If
moreover the function g is everywhere non-zero on D then the function f/g
is continuous at s.

Proof Now f−g = f+(−g), and it follows from Lemma 3.2 that the function
−g is continuous on D. Lemma 3.1 therefore ensures that both f+g and f−g
are continuous at s. Lemma 3.3 ensures that f ·g is continuous at s. Moreover
if the function g is everywhere non-zero on D then f/g = f · (1/g), and
Lemma 3.5 ensures that the function 1/g is continuous on D. It then follows
from Lemma 3.3 that the function f/g is continuous on D, as required.

We shall show that if f :D → R is a continuous real-valued function
defined over some subset D of R, then so is |f |:D → R, where |f |(x) = |f(x)|
for all x ∈ D.

Let u and v be real numbers. Then∣∣∣|u| − |v|∣∣∣ ≤ |u− v|.
To see this, note that u = (u − v) + v and v = (v − u) + u and therefore
|u| ≤ |u − v| + |v| and |v| ≤ |v − u| + |u|. But |u − v| = |v − u|. It follows
that |u| − |v| ≤ |u− v| and |v| − |u| ≤ |u− v|, and therefore∣∣∣|u| − |v|∣∣∣ ≤ |u− v|.
We apply this inequality in the proof of the next lemma.

Lemma 3.7 Let D be a subset of R, let f :D → R be a real-valued function
on D, and let s ∈ D. Suppose that the function f is continuous at s. Then
so is the function |f |, where |f |(x) = |f(x)| for all x ∈ D.
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Proof Let some strictly positive real number ε be given. Then there exists
some strictly positive real number δ such that |f(x)−f(s)| < ε for all x ∈ D
satisfying |x− s| < δ. But then∣∣∣|f(x)| − |f(s)|

∣∣∣ ≤ |f(x)− f(s)| < ε

for all x ∈ D satisfying |x− s| < δ. It follows that |f |:D → R is continuous
at s, as required.

Lemma 3.8 Let f :D → R be a function defined on some subset D of R,
and let x1, x2, x3, . . . be a sequence of real numbers belonging to D. Suppose
that xj → s as j → +∞, where s ∈ D, and that f is continuous at s. Then
f(xj)→ f(s) as j → +∞.

Proof Let some positive real number ε be given. Then there exists some
positive real number δ such that |f(x) − f(s)| < ε for all x ∈ D satisfying
|x−s| < δ. But then there exists some positive integerN such that |xj−s| < δ
for all j satisfying j ≥ N . Thus |f(xj)− f(s)| < ε whenever j ≥ N . Hence
f(xj)→ f(s) as j → +∞.

3.2 Limits of Functions of One Real Variable

Definition Let D be a subset of R, and let s ∈ R. The real number s is said
to be a limit point of the set D if, given any strictly positive real number δ,
there exists some real number x belonging to D such that 0 < |x− s| < δ.

It follows easily from the definition of convergence of sequences of real
numbers that if D is a subset of the set R of real numbers, and if s is a point
of R then the point s is a limit point of the set D if and only if there exists
an infinite sequence x1, x2, x3, . . . of points of D, all distinct from the point s,
such that lim

j→+∞
xj = s.

Definition Let D be a subset of the set R of real numbers, let f :D → R be
a real-valued function on D, let s be a limit point of the set D, and let l be
a real number. The real number l is said to be the limit of f(x), as x tends
to s in D, if and only if the following criterion is satisfied:—

given any strictly positive real number ε, there exists some strictly
positive real number δ such that |f(x) − l| < ε whenever x ∈ D
satisfies 0 < |x− s| < δ.
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Let D be a subset of the set R of real numbers, let f :D → R be a real-
valued function on D, let s be a limit point of the set D, and let l be a real
number. If l is the limit of f(x) as x tends to s in D then we can denote this
fact by writing lim

x→s
f(x) = l.

Proposition 3.9 Let D be a subset of the set R of real numbers, let f :D →
R be a real-valued function on D, let s be a limit point of the set D, and let
l be a real number. Let D̃ = D ∪ {s}, and let f̃ : D̃ → R be defined such that

f̃(x) =

{
f(x) if x 6= s;
l if x = s.

Then lim
x→s

f(x) = l if and only if the function f̃ is continuous at s.

Proof The result follows directly on comparing the relevant definitions.

Corollary 3.10 Let D be a subset of R, let f :D → R be a real-valued func-
tion on D, and let s be a point of the set D that is also a limit point of D.
Then the function f is continuous at the point s if and only if lim

x→s
f(x) = f(s).

Let D be a subset of R, and let s be a real number belonging to the
set D. Suppose that s is not a limit point of the set D. Then there exists
some strictly positive real number δ0 such that |x − s| ≥ δ0 for all x ∈ X.
The point s is then said to be an isolated point of D.

Let D be a subset of R. The definition of continuity then ensures that
any real-valued function f :D → R on D is continuous at any isolated point
of its domain D.

Corollary 3.11 Let D be a subset of R, let f :D → R and g:D → R be real-
valued functions on D, and let s be a limit point of the set D. Suppose that
lim
x→s

f(x) and lim
x→s

g(x) both exist. Then so do lim
x→s

(f(x) + g(x)), lim
x→s

(f(x) −
g(x)) and lim

x→s
(f(x)g(x)), and moreover

lim
x→s

(f(x) + g(x)) = lim
x→s

f(x) + lim
x→s

g(x),

lim
x→s

(f(x)− g(x)) = lim
x→s

f(x)− lim
x→s

g(x),

lim
x→s

(f(x)g(x)) = lim
x→s

f(x)× lim
x→s

g(x).

If moreover g(x) 6= 0 for all x ∈ X and limx→s g(x) 6= 0 then

lim
x→s

f(x)

g(x)
=

lim
x→s

f(x)

lim
x→s

g(x)
.
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Proof Let D̃ = X ∪ {s}, and let f̃ : D̃ → R and g̃: D̃ → R be defined such
that

f̃(x) =

{
f(x) if x 6= s;
l if x = s.

g̃(x) =

{
g(x) if x 6= s;
m if x = s.

,

where l = lim
x→s

f(x) and m = lim
x→s

g(x). Then the functions f̃ and g̃ are

continuous at s. The result therefore follows on applying Proposition 3.6.

3.3 The Intermediate Value Theorem

Proposition 3.12 Let f : [a, b] → Z continuous integer-valued function de-
fined on a closed interval [a, b]. Then the function f is constant.

Proof Let

S = {x ∈ [a, b] : f is constant on the interval [a, x]},

and let s = supS. Now s ∈ [a, b], and therefore the function f is continuous
at s. Therefore there exists some strictly positive real number δ such that
|f(x)− f(s)| < 1

2
for all x ∈ [a, b] satisfying |x− s| < δ. But the function f

is integer-valued. It follows that f(x) = f(s) for all x ∈ [a, b] satisfying
|x − s| < δ. Now s − δ is not an upper bound for the set S. Therefore
there exists some element x0 of S satisfying s − δ < x0 ≤ s. But then
f(s) = f(x0) = f(a), and therefore the function f is constant on the interval
[a, x] for all x ∈ [a, b] satisfying s ≤ x < s+δ. Thus x ∈ [a, b]∩ [s, s+δ) ⊂ S.
In particular s ∈ S. Now S cannot contain any elements x of [a, b] satisfying
x > s. Therefore [a, b] ∩ [s, s + δ) = {s}, and therefore s = b. This shows
that b ∈ S, and thus the function f is constant on the interval [a, b], as
required.

Theorem 3.13 (The Intermediate Value Theorem) Let a and b be real num-
bers satisfying a < b, and let f : [a, b] → R be a continuous function defined
on the interval [a, b]. Let c be a real number which lies between f(a) and f(b)
(so that either f(a) ≤ c ≤ f(b) or else f(a) ≥ c ≥ f(b).) Then there exists
some s ∈ [a, b] for which f(s) = c.

Proof The result is trivially true in the cases where c = f(a) or x = f(b). We
may therefore suppose that either f(a) < c < f(b) or else f(a) > c > f(b).
In either case, let gc:R \ {c} → Z be the continuous integer-valued function
on R \ {c} defined such that gc(x) = 0 whenever x < c and gc(x) = 1 if
x > c. Suppose that c were not in the range of the function f . Then the
composition function gc ◦ f : [a, b]→ R would be a continuous integer-valued
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function defined throughout the interval [a, b]. This function would not be
constant, since gc(f(a)) 6= gc(f(b)). But every continuous integer-valued
function on the interval [a, b] is constant (Proposition 3.12). It follows that
every real number c lying between f(a) and f(b) must belong to the range
of the function f , as required.

Corollary 3.14 Let f : [a, b]→ [c, d] be a strictly increasing continuous func-
tion mapping an interval [a, b] into an interval [c, d], where a, b, c and d are
real numbers satisfying a < b and c < d. Suppose that f(a) = c and f(b) = d.
Then the function f has a continuous inverse f−1: [c, d]→ [a, b].

Proof Let x1 and x2 be distinct real numbers belonging to the interval [a, b]
then either x1 < x2, in which case f(x1) < f(x2) or x1 > x2, in which case
f(x1) > f(x2). Thus f(x1) 6= f(x2) whenever x1 6= x2. It follows that the
function f is injective. The Intermediate Value Theorem (Theorem 3.13)
ensures that f is surjective. It follows that the function f has a well-defined
inverse f−1: [c, d]→ [a, b]. It only remains to show that this inverse function
is continuous.

Let y be a real number satisfying c < y < d, and let x be the unique real
number such that a < x < b and f(x) = y. Let some strictly positive real
number ε be given. We can then choose x1, x2 ∈ [a, b] such that x−ε < x1 <
x < x2 < x+ ε. Let y1 = f(x1) and y2 = f(x2). Then y1 < y < y2. Choose a
strictly positive real number δ for which δ < y−y1 and δ < y2−y. If v ∈ [c, d]
satisfies |v − y| < δ then y1 < v < y2 and therefore x1 < f−1(v) < x2. But
then |f−1(v)− f−1(y)| < ε. We conclude that the function f−1: [c, d]→ [a, b]
is continuous at all points in the interior of the interval [a, b]. A similar
argument shows that it is continuous at the endpoints of this interval. Thus
the function f has a continuous inverse, as required.

3.4 The Extreme Value Theorem

Theorem 3.15 (The Extreme Value Theorem) Let a and b be real numbers
satisfying a < b, and let f : [a, b] → R be a continuous real-valued function
defined on the closed interval [a, b]. Then there exist real numbers u and v
belonging to the interval [a, b] such that f(u) ≤ f(x) ≤ f(v) for all x ∈ [a, b].

Proof We prove the result for an arbitrary continuous real-valued function
f : [a, b]→ R by showing that the result holds for a related continuous func-
tion g: [a, b]→ R that is known to be bounded above and below on [a, b]. Let
h:R→ R be the continuous function defined such that

h(t) =
t

1 + |t|
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for all t ∈ R. If t1 and t2 are real numbers satisfying 0 ≤ t1 < t2 then

h(t2)− h(t1) =
t2

1 + t2
− t1

1 + t1
=

t2 − t1
(1 + t1)(1 + t2)

> 0,

and thus h(t1) < h(t2). Thus the function h is strictly increasing on the set
of non-negative real numbers. Moreover h(0) = 0 and h(−t) = −h(t) for
all real numbers t. It follows easily from this that the continuous function
h:R→ R is increasing. Moreover −1 ≤ h(t) ≤ 1 for all t ∈ R.

Let f : [a, b] → R be a continuous real-valued function on the closed
bounded interval [a, b], and let g: [a, b] → R be the continuous real-valued
function defined on [a, b] such that

g(x) = h(f(x)) =
f(x)

1 + |f(x)|

for all x ∈ [a, b]. Then −1 ≤ g(x) ≤ 1 for all x ∈ [a, b]. The set of values
of the function g is then non-empty and bounded above, and therefore has a
least upper bound. Let

M = sup{g(x) : a ≤ x ≤ b}.

Then, for each positive integer j, the real number M − j−1 is not an upper
bound for the set of values of the function g, and therefore there exists some
real number xj satisfying a ≤ xj ≤ b for which M − j−1 < g(xj) ≤ M . The
sequence x1, x2, x3, . . . is then a bounded sequence of real numbers. It follows
from the Bolzano-Weierstrass Theorem that this sequence has a subsequence
xk1 , xk2 , xk3 , . . . which converges to some real number v, where a ≤ v ≤ b.
Now

M − 1

kj
< g(xkj) ≤M

for all positive integers j, and therefore g(xkj) → M as j → +∞. It then
follows from Lemma 3.8 that

g(v) = g

(
lim

j→+∞
xkj

)
= lim

j→+∞
g(xkj) = M.

But g(x) ≤ M for all x ∈ [a, b]. It follows that h(f(x)) = g(x) ≤ g(v) =
h(f(v)) for all x ∈ [a, b]. Moreover h:R → R is an increasing function. It
follows therefore that f(x) ≤ f(v) for all x ∈ [a, b].

On applying this result with the continuous function f replaced by the
function −f , we conclude also that there exists some real number u satisfying
a ≤ u ≤ b such that f(u) ≤ f(x) for all x ∈ [a, b]. The result follows.
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3.5 Uniform Continuity

Definition A function f :D → R is said to be uniformly continuous over a
subset D of R if, given any strictly positive real number ε, there exists some
strictly positive real number δ such that |f(u)− f(v)| < ε for all u, v ∈ [a, b]
satisfying |u− v| < δ. (where δ does not depend on u or v).

A continuous function defined over a subset D of R is not necessarily
uniformly continuous on D. (One can verify for example that the function
sending a non-zero real number x to 1/x is not uniformly continuous on the
set of all non-zero real numbers.) However we show that continuity does
imply uniform continuity when D = [a, b] for some real numbers a and b
satisfying a < b.

Theorem 3.16 Let f : [a, b] → R be a continuous real-valued function on a
closed bounded interval [a, b]. Then the function f is uniformly continuuous
on [a, b].

Proof Let some strictly positive real number ε be given. Suppose that there
did not exist any strictly positive real number δ such that |f(u)− f(v)| < ε
whenever |u − v| < δ. Then, for each positive integer j, there would exist
values uj and vj in the interval [a, b] such that |uj − vj| < 1/j and |f(uj)−
f(vj)| ≥ ε. But the sequence u1, u2, u3, . . . would be bounded (since a ≤ uj ≤
b for all j) and thus would possess a convergent subsequence uk1 , uk2 , uk3 , . . .,
by the Bolzano-Weierstrass Theorem (Theorem 2.5). Let l = lim

j→+∞
ukj . Then

l = lim
j→+∞

vkj also, since lim
j→+∞

(vkj − ukj) = 0. Moreover a ≤ l ≤ b. It

follows from the continuity of f that lim
j→+∞

f(ukj) = lim
j→+∞

f(vkj) = f(l)

(see Lemma 3.8). Thus lim
j→+∞

(
f(ukj)− f(vkj)

)
= 0. But this is impossible,

since uj and vj have been chosen so that |f(uj)− f(vj)| ≥ ε for all positive
integers j. We conclude therefore that there must exist some strictly positive
real number δ with the required property.
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