
Course MA2321: Michaelmas Term 2015.

Worked Solutions to Assignment II.

1. Let l, m and n be positive integers, let let D and E be open sets in Rn

and Rm respectively, let p and q be limit points of the sets D and E
respectively, where in p ∈ Rn and q ∈ Rm, let r ∈ Rl, let ϕ:D → Rm

be a function from D to Rm with the property that ϕ(D) ⊂ E, let
ψ:E → Rl be a function from E to Rl. Suppose that the following three
conditions are satisfied:

(i) lim
x→p

ϕ(x) = q;

(ii) lim
y→q

ψ(y) = r;

(iii) there exists some positive real number δ0 such that ϕ(x) 6= q for
all x ∈ D satisfying |x− p| < δ0.

Prove that lim
x→p

ψ(ϕ(x)) = r.

First Solution. Let some positive real number ε be given. Then there
exists some positive real number η such that |ψ(y) − r| < ε whenever
y ∈ E satisfies 0 < |y − q| < η. There then exists some positive
real number δ1 such that |ϕ(x) − q| < η whenever x ∈ D satisfies
0 < |x − p| < δ1. Also there exists some positive real number δ0
such that ϕ(x) 6= q whenever x ∈ D satisfies |x − p| < δ0. Let δ
be the minimum of δ0 and δ1. Then δ > 0, and 0 < |ϕ(x) − q| < η
whenever x ∈ D satisfies 0 < |x − p| < δ. But this then ensures that
|ψ(ϕ(x))− r| < ε whenever x ∈ D satisfies 0 < |x−p| < δ. The result
follows.

Second Solution. It follows from the definitions of limits that, given
any postive real number ε1, there exists some positive real number δ1
such that |ϕ(x) − q| < ε1 whenever x ∈ D satisfies 0 < |x − p| < δ1.
Also, given any postive real number ε, there exists some positive real
number δ2 such that |ψ(y) − r| < ε whenever y ∈ D satisfies 0 <
|y − q| < δ2. Let ε1 = δ2. Then |ψ(ϕ(x)) − r| < ε whenever x ∈ D
satisfies both 0 < |x − p| < δ1 and. ϕ(x) 6= q. Also there exists some
positive real number δ0 such that ϕ(x) 6= q whenever x ∈ D satisfies
|x − p| < δ0. Let δ be the minimum of δ0 and δ1. Then δ > 0, and if
x ∈ D satisfies 0 < |x − p| < δ then both 0 < |x − p| < δ1 and also
ϕ(x) 6= q, and therefore |ψ(ϕ(x))− r| < ε. The result follows.
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Further Comments

A. There were those who used an incorrect definition of limits, sup-
posing for example that lim

y→q
ψ(y) = r if and only if, given any

positive real number ε, there exists some positive real number δ2
such that |ψ(y) − r| < ε whenever y ∈ D satisfies |y − q| < δ2.
Of course this is not the definition of limits of functions given in
the lecture notes, and Question 1 on first assignment for MA2321
for Michaelmas Term 2015 should in particular have alerted those
in the class to the fact that the definition of limits as y→ q only
controls the behaviour of ψ(y) for values of y that lie sufficiently
close to q but are not equal to q.

B. Note that the fact that lim
x→p

ϕ(x) = q by itself is consistent with a

scenario in which there exists an infinite sequence x1,x2,x3, . . . of
points of D converging to p with the property that ϕ(xj) = q for
all positive integers j. It would then be the case that ψ(ϕ(xj)) =
ψ(q) for all positive integers j, and there is nothing in the re-
qurement that lim

y→q
ψ(y) = r to control the value of ψ(q). Thus

it might well be the case that ψ(q) 6= r. And in this scenario it
would not be the case that lim

x→p
ψ(ϕ(x)) = r. This is in fact the

precise scenario that was exhibited in Question 1 of the first as-
signment for MA2321 for Michaelmas Term 2015. Thus all three
conditions (i), (ii) and (iii) are required in order to ensure that
lim
x→p

ψ(ϕ(x)) = r, and a solution to the problem should make it

clear how all three conditions contribute to the result.

C. Given that conditions (i) and (iii) are both required for the re-
sult to hold, the manner in which these conditions are applied
simultaneously should be made clear in the solution, for exam-
ple by explicitly determining δ > 0 as the minimum of positive
real numbers δ1 and δ0, where δ1 comes from an application of
(i) and δ0 comes from an application of (iii). This should make
clear and explicit an understanding that the condition of the form
0 < |ϕ(x) − q| < η is required to ensure that |ψ(ϕ(x)) − r| < ε,
and that this condition is ensured by ensuring, through the appli-
cation of distinct conditions (i) and (iii), that both |ϕ(x)−q| < η
and ϕ(x) 6= q.

2. Let ϕ:V → Rm be a function mapping some open subset V of Rn into
Rm, let h:V → R be a real-valued function on V , and let p be a limit
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point of V . Suppose that lim
x→p

ϕ(x) = 0. Suppose also that there exist

positive constants C and δ0 such that |h(x)| ≤ C for all x ∈ V satisfying
|x−p| < δ0. Using only the definition of limits (i.e., the “epsilon-delta”
definition”), without citing to any other lemmas, propositions, theorems
etc. concerning limits, prove that lim

x→p
(h(x)ϕ(x)) = 0.

Solution. It follows from the definition of limits that, given any pos-
itive number ε1, there exists some positive real number δ1 such that
|ϕ(x| < ε1 whenever x ∈ V satisfies 0 < |x − p| < δ1. Let some posi-
tive real number ε be given, and let ε1 = ε/C. Then there exists some
positive real number δ1 such that |ϕ(x| < ε/C whenever x ∈ V satisfies
0 < |x − p| < δ1. Also there exists some positive real number δ0 such
that |h(x)| ≤ C whenever whenever x ∈ V satisfies |x − p| < δ0. Let
δ be the minimum of δ0 and δ1. Then δ > 0, and if x ∈ V satisfies
0 < |x− p| < δ then |h(x)| ≤ C and |ϕ(x| < ε/C, and therefore

|h(x)ϕ(x)| < C × ε

C
= ε.

Further Comments

A. Note that the value of the positive number ε is given. You have no
control over it. All you know about it is that it is a positive real
number. You then have to determine some positive real number δ
such that |h(x)ϕ(x)| < ε whenever x ∈ V satisfies 0 < |x − p| <
δ. This is achieved by showing the existence of some positive
number δ0 such that |h(x| ≤ C whenever 0 < |x − p| < δ0,
using the definition of limits to show the existence of some positive
number δ1 such that |ϕ(x)| < ε1 whenever 0 < |x−p| < δ1, where
ε1 has been determined so that Cε1 ≤ ε. You can then take δ to
be the minimum of δ0 and δ1. But you should note that the value
of ε determines the value of ε1, and not vice versa.

B. Questions 1 and 2 on this assignment were formulated as a result
of writing up (in Section 8 of the MA2321 notes, not examinable
at the Annual and Supplemental Examinations 2016) a proof of
the Inverse Function Theorem. The Inverse Function Theorem
was examined at the Annual Examination in module MA2321 in
2015, 2014, 2013, 2012, 2011 and 2010. The intention had been
to conclude MA2321 with a proof of this theorem in Michaelmas
Term 2015, and a sketch of the proof was provided in the final
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day of lectures. However the proof of the full theorem (includ-
ing the smoothness of the inverse function), written out in full,
with all details fully worked-out to the extent that they are in
the current MA2321 notes, would have proved too long for an ex-
amination question. In writing up the proof of the Inverse Func-
tion Theorem, a section of the proof, verifying that the inverse
function is differentiable, was extracted from the main proof, and
presented as a separate lemma, numbered Lemma 8.10 in the ex-
tended notes. (This portion of the proof of the Inverse Function
Theorem corresponds to about eight lines of the proof taught in
previous years.) Nevertheless, although the proof of Lemma 8.10
might seem to be more detailed, there are a couple of principles
used in it without further explanation that correspond to ques-
tion 1 (about two-thirds of the way through the proof of Lemma
8.10) and question 2 (in the final stages of the proof of Lemma
8.10). The proof of Lemma 8.10 is written on the assumption that
those engaging with it would be sufficiently experienced with ε–δ
arguments that they could be expected to fill in any details for
themselves. But the results required were extracted and included
as the first two questions of this assignment.

3. This question concerns real-valued functions f :D → R, where either
D = Rn or else D = Rn \ {0}, and where the function satisfies an
identity, determined by a real constant s, that requires that

f(tx) = tsf(x)

for all x ∈ D and for all positive real numbers t. Functions satisfying
this condition as said to be homogeneous of degree s.

We use the notation ∂jf to denote the partial derivative of f with re-
spect to the jth coordinate on Rn, so that (∂jf)(p) denotes the value of

partial derivative
∂f

∂xj
at the point p for p ∈ D.

Moreover, given v ∈ Rn, where (v1, v2, . . . vn), the value (Df)x v re-
sulting from the action of the (total) derivative (Df)x on the vector v
is expressed in terms of the partial derivatives of f according to the
following formula:

(Df)x v =
n∑
j=1

vj(∂jf)(x).
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Throughout this question, let f :D → R be a differentiable real-valued
function defined on D, where either D = Rn or D = Rn \ {0} that
satisfies the identity f(tx) = tsf(x) for all x ∈ D and for all positive
real numbers t.

(a) Suppose that the function f is differentiable. For each positive
real number t, let λt:Rn → Rn be the function defined such that
λt(x) = tx for all x ∈ Rn. The Chain Rule guarantees that

D(f ◦ λt)x = (Df)λt(x) (Dλt)x.

The function λt:Rn → Rn is a linear transformation, and the
derivative of any linear transformation is that linear transforma-
tion itself (see Lemma 7.4). Explain briefly why

(∂jf)(tx) = ts−1(∂jf)(x)

for j = 1, 2, . . . , n, for all x ∈ D and for all positive real numbers t.

First Solution. Let v ∈ Rn. Then

(Dλt)xv = λt(v) = tv,

and therefore

D(f ◦ λt)xv = (Df)λt(x)(Dλt)xv = (Df)λt(x)(tv)

= t(Df)λt(x)v = t
n∑
j=1

vj(∂jf)λt(x)

for all v ∈ Rn. But f(λt(x)) = tsx for all x ∈ D and t > 0. It
follows that

D(f ◦ λt)xv = ts(Df)xv = ts
n∑
j=1

vj(∂jf)x

for all v ∈ Rn where v = (v1, v2, . . . , vn). It follows that t(∂jf)λt(x) =
ts(∂jf)x, and thus (∂jf)λt(x) = ts−1(∂jf)x for j = 1, 2, . . . , n, as
required.

Second Solution. We apply a more traditional version of the
Chain Rule in partial derivatives (as it would be understood by
mathematicians of the 18th and early 19th centuries). Let the
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positive real number t be regarded as a fixed constant, and let
real variables u1, u2, . . . , un be defined so that uj = txj for j =
1, 2, . . . , n, so that u1, u2, . . . , un are dependent variables that de-
pend on the independent variables x1, x2, . . . , xn. Then

∂f(tx1, tx2, . . . , txn)

∂xj
=

n∑
k=1

∂f(u1, u2, . . . , un)

∂uk

∂uk
∂xj

.

But
∂uk
∂xj

=

{
t if k = j;
0 if k 6= j.

It follows that

∂f(tx1, tx2, . . . , txn)

∂xj
= t

∂f(u1, u2, . . . , un)

∂uj
= t(∂jf)(u)

= t(∂jf)(tx)

for j = 1, 2, . . . , n. But

∂f(tx1, tx2, . . . , txn)

∂xj
=

∂(tsf(x1, x2, . . . , xn))

∂xj

= ts
∂f(x1, x2, . . . , xn)

∂xj
= ts(∂jf)(x).

Thus (∂jf)(tx) = ts−1(∂jf)(x), as required.

(b) Again suppose that the function f is differentiable. Let P = {t ∈
R : t > 0}, and let µx:P → Rn be defined such that µx(t) = tx for
all t ∈ P and x ∈ D. The Chain Rule (Theorem 7.9) guarantees
that

D(f ◦ µx)t = (Df)µx(t) (Dµx)t,

where

D(f ◦ µx)t =
d

dt
((f ◦ µx)(t)) =

d

dt
(f(tx)) .

Use this result to prove that

n∑
j=1

xj(∂jf)(x) = sf(x),
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or, in traditional notation,

n∑
j=1

xj
∂f

∂xj
= sf.

First Solution. For this part, x is to be considered fixed, and we
examine the dependence of f(tx) as t varies. The linear transfor-
mation µx:R → Rn maps R into Rn, and the same is true of its
derivative: for any t > 0, the linear transformation (Dµx)t maps
a real number v to an n-dimensional vector (Dµx)tv. Moreover
µx is a linear transformation, and therefore its derivative at t is
equal to µx itself. Thus

(Dµx)tv = µx(v) = vx

for all real numbers v. It follows that

D(f ◦ µx)tv = (Df)µx(t) (Dµx)tv = (Df)µx(t)(vx)

= v(Df)µx(t)x = v
n∑
j=1

xj(∂jf)(tx).

But

D(f ◦ µx)tv =
df(tx)

dt
v =

d

dt
(tsf(x)) v = sts−1f(x)v.

Combining the above identities, we find that

n∑
j=1

xj(∂jf)(tx) = sts−1f(x).

Thus if we set t = 1, we obtain the identity

n∑
j=1

xj(∂jf)(x) = sf(x).

Second Solution. Again we apply a traditional version of the Chain
Rule in partial derivatives, regarding the components x1, x2, . . . , xn of
the vector x as fixed quantities. Let real variables u1, u2, . . . , un be
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defined so that uj = txj for j = 1, 2, . . . , n. We treat u1, u2, . . . , un as
dependent variables that depend on the independent variable t. Then

df(tx1, tx2, . . . , txn)

dt
=

n∑
k=1

∂f(u1, u2, . . . , un)

∂uk

duk
dt

=
n∑
k=1

∂f(u1, u2, . . . , un)

∂uk
xj

=
n∑
k=1

xj(∂jf)(tx).

But

df(tx1, tx2, . . . , txn)

dt
=

∂(tsf(x1, x2, . . . , xn))

∂xj

=
d

dt
(ts)f(x1, x2, . . . , xn)

= sts−1f(x1, x2, . . . , xn),

and therefore

n∑
k=1

xj(∂jf)(tx) = sts−1f(x1, x2, . . . , xn).

On setting t = 1, we find that

n∑
k=1

xj(∂jf)(x) = sf(x1, x2, . . . , xn),

as required.

Comment on Notation. The mathematics of the 20th and 21st cen-
turies typically employs an extraordinary wide range of notations. This
is particularly the case in areas such as differential geometry that are
fundamental to areas of theoretical physics like general relativity and
string theory. Those seriously engaging with mathematics and theo-
retical physics therefore need to be flexible and adaptable in adjusting
to new notations. The Chain Rule for differentiating compositions of
functions of several variables may be stated in 19th century notation
(as it is to be found in calculus textbooks). But to progress further, one
must engage with the more abstract account of differentiability in which
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the derivative of a smooth function ϕ:V → Rm at a point x of an open
set V in Rn is a linear transformation (Dϕ)x:Rn → Rm. This linear
transformation provides the best linear approximation to the behaviour
of the function ϕ around the point x. The Chain Rule in this context
then states that the derivative of a composition of differentiable func-
tions is the composition of the derivatives of those functions. Where
those derivatives are represented, with respect to appropriate bases, by
matrices, then the derivative of the composition is evaluated by multi-
plying together the matrices representing those derivatives with respect
to the relevant bases. This leads on to the notion of the derivative of a
smooth mapping between smooth manifolds as being a linear transfor-
mation between tangent spaces to those smooth manifolds. In addition
to the MA2321 notes, the basic theory is presented in Chapter 2 of the
textbook Analysis on Manifolds by James R. Munkres recommended
for the MA2322 Calculus on Manifolds course. (Note that Munkres
adopts the notation (Dϕ)(x), not (Dϕ)x, for the derivative of ϕ at a
point x of the domain of the function ϕ.) The final chapter (Chapter
9) of Analysis on Manifolds proceeds further in the direction one must
travel to arrive at differential geometry and its applications to areas
of theoretical physics such as general relativity and string theory. Ide-
ally the approaches adopted in both the first and second solutions to
parts (a) and (b) should be understood, as should the correspondences
between them.

4. Throughout this question, let s be a real number, and let f :Rn\{0} → R
be a continuous (but not necessarily differentiable) function that also
satisfies the identity f(tx) = tsf(x) for all x ∈ D and for all positive
real numbers t, where s is a real constant. Let Sn−1 denote the unit
sphere in Rn, defined so that

Sn−1 = {x ∈ Rn : |x| = 1}.
The set Sn−1 is a closed bounded subset of Euclidean space. The Ex-
treme Value Theorem (Theorem 6.21) therefore guarantees the existence
of points u and v on the unit sphere Sn−1 such that f(u) ≤ f(x) ≤ f(v)
for all x ∈ Sn−1.

(a) Let f :Rn \ {0} → R satisfy the conditions stated above. In the
case where s > 0 prove that lim

x→0
f(x) = 0.

Also, in the case where s < 0, prove that if the function f is non-
zero at any point of Rn\{0} then a value f(0, 0) for f at the origin
(0, 0) cannot be determined that will make the function continuous
at (0, 0).
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Solution. We consider first the case s > 0. In this case the func-
tion f :Rn \ {0} → R is continuous, but not necessarily differen-
tiable, on Rn \{0} → R and satisfies the condition f(tx) = tsf(x)
for all x ∈ Rn \ {0} and for all positive real numbers t.

The restriction of the function f to the unit sphere Sn−1 is con-
tinuous, and therefore there exist u,v ∈ Sn−1 such that f(u) ≤
f(x) ≤ f(v) for all x ∈ Sn−1. Let K be a positive real num-
ber for which |f(u)| ≤ K and |f(v)| ≤ K. Then |f(x)| ≤ K
whenever |x| = 1. It then follows from the homogeneity of the
function f that |f(x)| ≤ K|x|s for all x ∈ Rn \ {0}. Given a
positive real number ε, there exists a positive real number δ such
that Kδs ≤ ε. (Indeed we can take δ = s

√
ε/K.) If 0 ≤ |x| < δ

then |f(x)| < Kδs ≤ ε. Thus lim
x→0

f(x) = 0.

The case when s < 0 is more straightforward. Suppose that f(z) >
0 for some z ∈ Rn \ {0}. Then f(2−jz) → +∞ as j → +∞.
Alternatively if f(z) < 0 then f(2−jz) → −∞ as j → +∞. It
follows that if f(z) 6= 0 for at least one z ∈ Rn \{0} then lim

x→0
f(x)

cannot exist.

Comment. Many attempted to prove the result in the case where
s > 0 as follows. It is clear that

lim
t→0

f(tx) = lim
t→0

tsf(x) = 0

for all x ∈ Rn \ {0}. It was claimed that

“ lim
x→0

f(x) = lim
t→0

f(tx) ”.

It was then claimed that, because the limit on the right hand side
of this purported identity exists for all non-zero x, the limit on
the left hand side must also exist. This argument is fallacious.
If the limit on the left hand side of the identity exists, then the
limit on the right hand side exists and equals that on the left hand
side. But the converse result is in general false. The existence of
the limit on the right hand side for all non-zero x ∈ Rn does not
ensure the existence of the limit on the left hand side. One coun-
terexample is provided by Question 2 on the first assignment for
MA2321 in Michaelmas Term 2015, where the function in question
was defined such that

f(x, y) =


2x2y3

x4 + y6
if (x, y) 6= (0, 0);

0 if (x, y) = (0, 0).
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The restriction to this function to any line passing through the ori-
gin is differentiable and thus continuous. (Indeed, more generally,
the restriction of this function to any line in R2 is continuous on
that line.) But the function takes the value 1 at all non-zero points
of the curve x2 = y3 and takes the value −1 at all non-zero points
of the curve x2 = −y3. The curves x2 = y3 and x2 = −y3 each
pass through the origin. It follows that lim

(x,y)→(0,0)
f(x, y) does not

exist, though lim
t→0

f(ta, tb) exists for all (a, b) ∈ R2\{(0, 0)}. A sim-

ilar example is found in the MA2321 lecture notes for Michaelmas
Term 2015 preceding Proposition 7.10. The function in question
is g:R2 → R, where

g(x, y) =


xy2

x2 + y4
if (x, y) 6= (0, 0);

0 if (x, y) = (0, 0).

It should also be noted that, had this fallacious argument been
valid, it would have provided a way of proving the Extreme Value
Theorem for continuous functions on the unit sphere Sn−1 with-
out using the Bolzano-Weierstrass or any of the deep results re-
lated to “compactness”. But some sort of tool dependent on the
Bolzano-Weierstrass Theorem, the Heine-Borel Theorem or some
other manifestation of “compactness” would be required to obtain
a result equivalent to the Extreme Value Theorem for continuous
real-valued functions on unit spheres in Euclidean spaces.

(b) The function f is Ck if all partial derivatives of the function of
order less than or equal to k are defined and continuous throughout
the domain. Prove that if a function f defined over the whole of
Rn satisfies the conditions stated at the beginning of this question,
and if it is Ck throughout Rn (and in particular at and around the
origin) then either s is a non-negative integer or else s ≥ k. (It
follows from this that if f is smooth then s must necessarily be a
non-negative integer.)

Solution. It follows from repeated application of 3(a) that the
partial derivatives of the partial derivatives of f of order k must be
homogeneous of degree s−k on the complement of the origin. If it
were the case that some kth order partial derivative of f were non-
zero at some point of Rn away from the origin, where k > s then
it would follow from part (a) of this question that the limit of that
kth order partial derivative would not exist at the origin. It follows
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that if f is Ck and k > s then the kth order partial derivatives of f
must be zero throughout Rn. This can only happen if the partial
derivatives of order k−1 are constant throughout Rn. Now a non-
zero function that is constant must be homogeneous of degree zero.
Thus if m + 1 is the smallest non-negative integer for which all
partial derivatives of f of order m + 1 are zero, then some mth
order partial derivative of f must be a non-zero constant function,
and must therefore be homogeneous of degree zero. But any mth
order partial derivative of f is homogeneous of order s − m. It
follows that s = m. We deduce from this that if f is Ck for some
integer k satisfying k > s then s must be an integer, and the
partial derivatives of f of order s must be constant functions. We
deduce that if the function f is Ck and is homogeneous of degree s
then either s ≥ k or else s is a non-negative integer.

(In the case when s is a non-negative integer, some functions ho-
mogeneous of degree s will be smooth, but others will not be.
Question 6 on this assignment provides results relevant to the
case s = 2 and n = 2.)

5. Let f :Rn → R be a continuous function on Rn that is homogeneous of
degree 1 (see Question 3). Suppose that f is differentiable at the origin
(0, 0). Prove that f is a linear transformation.

Solution. The function f is continuous at zero, because it is dif-
ferentiable there. The continuity and homogeneity of f ensure that
f(0) = 0. It follows that

(Df)0(v) = lim
t→0

(
1

t
(f(0 + tv)− f(0))

)
= lim

t→0

(
1

t
f(tv)

)
= lim

t→0

(
1

t
(tf(v))

)
= lim

t→0
f(v) = f(v).

Thus f = (Df)0.

Now the derivative (Df)0 of f at the origin is a linear transformation.
It follows that f must itself be a linear transformation, as required.

6. Let f :R2 → R be a real-valued function on R2 that is homogeneous of
degree two. Suppose that f is continuously differentiable on R2 \ {0},
so that the first order partial derivatives exist at and are continuous
around all points of R2 with the possible exception of the origin (0, 0).
We denote the partial derivatives of f with respect to the Cartesian
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coordinates x and y by fx and fy respectively. We consider the possible
existence and values of second order partial derivatives at the origin.

(a) Prove that
∂2f

∂x2

∣∣∣∣
(0,0)

exists if and only if f(1, 0) = f(−1, 0) in

which case
∂2f

∂x2

∣∣∣∣
(0,0)

= 2f(1, 0).

Solution. It follows from 3(b) that xfx(x, y)+yfy(x, y) = 2f(x, y)
for all x and y. It follows that

tfx(t, 0) = 2f(t, 0) = 2t2f(1, 0),

and thus fx(t, 0) = 2tf(1, 0) for all t > 0. Similarly

−tfx(−t, 0) = 2f(−t, 0) = 2t2f(−1, 0),

and thus fx(−t, 0) = −2tf(−1, 0) for all t > 0. Also continuity of
fx ensures that fx(0, 0) = 0. It follows that

lim
h→0+

fx(h, 0)− fx(0, 0)

h
= lim

t→0+

fx(t, 0)

t
= fx(1, 0) = 2f(1, 0)

and

lim
h→0−

fx(h, 0)− fx(0, 0)

h
= − lim

t→0+

fx(−t, 0)

t
= −fx(−1, 0) = 2f(−1, 0).

It follows that the one-sided limits

lim
h→0+

fx(h, 0)− fx(0, 0)

h
and lim

h→0−

fx(h, 0)− fx(0, 0)

h

exist. The second order partial derivative
∂2f

∂x2

∣∣∣∣
(0,0

exists if and

only if the above one-sided limits are equal to one another, in

which case f(−1, 0) = f(1, 0) and
∂2f

∂x2

∣∣∣∣
(0,0

= 2f(1, 0).
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(b) Prove that
∂2f

∂x ∂y

∣∣∣∣
(0,0)

exists if and only if fy(1, 0) = −fy(−1, 0)

in which case
∂2f

∂x ∂y

∣∣∣∣
(0,0)

= fy(1, 0).

Solution. It follows from 3(a) that fy is homogeneous of degree
one, and therefore and thus fy(t, 0) = tfy(1, 0) for all t > 0.
Similarly and thus fy(−t, 0) = tfy(−1, 0) for all t > 0. Also
continuity of fy ensures that fy(0, 0) = 0. It follows that

lim
h→0+

fy(h, 0)− fy(0, 0)

h
= lim

t→0+

fy(t, 0)

t
= fy(1, 0)

and

lim
h→0−

fy(h, 0)− fy(0, 0)

h
= − lim

t→0+

fy(−t, 0)

t
= −fy(−1, 0).

It follows that the one-sided limits

lim
h→0+

fy(h, 0)− fy(0, 0)

h
and lim

h→0−

fy(h, 0)− fy(0, 0)

h

exist. The second order partial derivative
∂2f

∂x ∂y

∣∣∣∣
(0,0

exists if and

only if the above one-sided limits are equal to one another, in

which case fy(−1, 0) = −fy(1, 0) and
∂2f

∂x2

∣∣∣∣
(0,0

= fy(1, 0).

(c) Prove that if f :R2 → R is a function that is twice continuously
differentiable throughout R2 (including at (0, 0)), and if the func-
tion f is homogeneous of degree two, then there exist constants E,
F and G such that

f(x, y) = Ex2 + 2Fxy +Gy2.

Solution. If the function f is twice continuously differentiable
then its first derivatives must be continuously differentiable and
homogeneous of degree 1. It then follows from Question 5 above

14



that fx and fy must be linear transformations. Therefore there
must exist constants p, q, r and s such that

fx(x, y) = px+ qy, fy(x, y) = rx+ sy.

But it follows from 3(b) that

f(x, y) = 1
2
(xfx(x, y) + yfy(x, y))

= 1
2
(px2 + (q + r)xy + sy2)

The result follows.

Further Comments.

A. Questions 3 to 6 arose from reflection on the example preceding
Theorem 7.13 in the lecture notes for module MA2321 in Michael-
mas Term 2015. That example considered the function f :R2 → R
defined such that

f(x, y) =


xy(x2 − y2)
x2 + y2

if (x, y) 6= (0, 0);

0 if (x, y) = (0, 0).

The example in the notes involves explicit expressions for the first
order partial derivatives fx and fy of the function f that are mod-
erately complicated.

The function f above is homogeneous of degree 2, and its first
order partial derivatives are therefore homogeneous of degree 1.
The homogeneity of the function f ensures that the function and
its first order partial derivatives are determined by the values of
the function on the unit circle x2 + y2 = 1. It is therefore possible
use information about the function and its derivatives on the unit
circle to deduce results concerning the behaviour of the function
at the origin, and the methods could be generalized so as to apply
more generally in situations where a function is determined by its
values on the unit circle so as to be homogeneous of degree two
throughout the plane R2.

Question 3 establishes the homogeneity of partial derivatives of a
homogeneous function, and also Euler’s Law concerning the rela-
tion between a differentiable homogeneous function and its first
order partial derivatives. Question 4 establishes that a homoge-
neous function can only be smooth at the origin if its degree of
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homogeneneity is a non-negative integer. (Even then the require-
ment that the degree of homogeneity is a non-negative integer
would not be enough to ensure smoothness.) Of course a function
on the unit circle can be extended to R2 so as to be continuous
homogeneous of degree s, for any desired non-negative real num-
ber s. Question 5 considers the particular case of differentiable
homogeneous functions of degree one, showing that such a func-
tion has to be a linear transformation. (This result is used in
6(a).) This leads on to Question 6 itself.

Consider the amount of freedom there is in constructing a func-
tion f that is homogeneous of degree two on R2 and is twice dif-
ferentiable at all points of R2 with the possible exception of the
origin (0, 0). Such a function is determined by its values on the
unit circle, and we can write

f(r cos θ, f sin θ) = r2g(θ)

for all positive real numbers r and for all real numbers θ, where
g:R→ R is a twice-differentiable function satisfying g(θ + 2π) =
g(θ) for all real numbers θ. Moreover, given any continuous real-
valued function h defined over some open interval containing the
closed interval [0, 2π], we can determine a real-valued function H
on [0, 2π] that satisfies H ′′(θ) = h(θ) by integrating twice. We can
then determine constants p, q and r so as to ensure that if

g(θ) = H(θ) + p+ qθ + rθ2

then g(0) = g(2π), g′(0) = g′(2π) and g′′(0) = g′′(2π). The func-
tion g can then be extended to the whole of R so as to satisfy
g(θ + 2π) = g(θ) for all real numbers r. The resulting function
will be twice-differentiable on R and will therefore give rise to a
real-valued function f on R2 that is homogeneous of degree 2 and
is twice-differentiable on the complement of the origin. The func-
tion h used to construct g need not be differentiable anywhere,
and there is no linkage relating its behaviour around one point θ1
of [0, 2π] to its behaviour around any other point θ2 of [0, 2π].

Now Question 6 shows that
∂2f

∂x2
is only defined at the origin when

f(1, 0) = f(−1, 0). For a “general” function f constructed as de-
scribed above, there is no more reason to suppose that f(1, 0) =
f(−1, 0) than there is to suppose that, if temperature were rep-
resented by a twice-differentiable function on the surface of the
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earth, the temperature at any one point would equal the tempera-
ture at the antipodal point on the other side of the earth. Similarly
∂2f

∂x ∂y
is only defined at the origin when fy(1, 0) = −fy(−1, 0). In-

terchanging x and y, and combining results, we see that in order
that the identity

∂2f

∂x ∂y
=

∂2f

∂y ∂x

be satisfied at the origin, where f is homogenous of degree 2 and
is twice-differentiable away from the origin, the identities

fy(1, 0) = −fy(−1, 0) = fx(0, 1) = −fx(0,−1).

must be satisfied. If the function f is constructed from an arbi-
trary continuous real-valued function h on [0, 2π] in the manner
described above, it would definitely be the exception rather than
the rule for such identities to link the behaviour of the function f
around the points (1, 0), (0, 1), (−1, 0) and (0,−1) of the unit
circle.

B. Question 6(c) should drive home the point that the only real-
valued functions on R2 that are homogeneous of degree two and
are also twice-continuously-differentiable throughout R2 are poly-
nomial functions of degree two. Amongst homogeneous functions
of degree two that are twice-continuously-differentiable away from
the origin, the polynomial functions surely represent the exception
rather than the rule.

C. Theorem 7.13 in the lecture notes for module MA2321 in Michael-
mas Term 2015 shows that a real-valued function f :V → R de-
fined over an open set V in R2, then

∂2f

∂x ∂y
=

∂2f

∂y ∂x

provided that

∂f

∂x
,

∂f

∂y
,

∂2f

∂x ∂y
and

∂2f

∂y ∂x

exist and are continuous throughout V . Corollary 7.14 general-
izes this result to real-valued functions defined over open sets in
n-dimensional Euclidean space. Those who have taken module
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MA2322 (Calculus on Manifolds) should be aware that the exte-
rior derivative operator d operating on smooth differential forms
over a smooth manifold satisfies d(dω) = 0. This result depends
on the result of Corollary 7.14, and if the result of Corollary 7.14
were not valid, then an enormous amount of differential geometry
related to notions of “curvature” would just disappear, along with
the theory of general relativity and much else. But contininuity
of second order partial order derivatives is necessary in order to
ensure equality of mixed second order partial derivatives.

D. Next we note that, given a function that fails to satisfy a differ-
entiability condition at a single point, we can construct another
function that fails to be differentiable at a dense set of points.
For simplicity we move to one dimension. Consider the function
f :R→ R where

f(x) =
1

1 + |x|
for all real numbers x. This function is not differentiable at the
zero, those it is differentiable for all non-zero values of x. It is
also “Lipschitz continuous” as it satisfies the condition |f(u) −
f(v)| ≤ |u − v| for all real numbers u and v. Let q1, q2, q3, . . . be
an infinite sequence in which every rational number occurs exactly
once. (The set of rational numbers is “countable”, and thus such
an infinite sequence exists.) Let

g(x) =
∞∑
j=1

2−jf(x− qj).

Then the function g:R → R is a continuous function that is not
differentiable for any rational value of its argument. (The con-
tinuity of g follows from the standard result that the sum of a
uniformly convergent sequence of continuous functions is guaran-
teed to be continuous.) Other more sophisticated examples of
“mathematical pathology” include Weierstrass’s examples of real-
valued functions that are continuous everywhere but differentiable
nowhere, and the “Peano space-filling curve” that is a continuous
surjective function from the closed interval [0, 1] to the closed unit
square [0, 1]2. For further information, see the Wikipedia article
on “Pathological (mathematics)” at the following URL:

https://en.wikipedia.org/wiki/Pathological_%28mathematics%29
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It is a mistake to think that the functions represented by alge-
braic expressions, combined with trigonometric, exponential and
logarithms functions, such as one finds in Calculus textbooks have
behaviour that is typical of continuous, differentiable or smooth
functions in general.
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