
Course MA2321: Michaelmas Term 2015.

Worked Solutions to Assignment 1.

1. In answering this question, you should pay heed to the following defini-
tions.

Let D be a subset of the set R of real numbers, and let f :D →
R be a real-valued function on D. Let s be a point of D. The
function f is said to be continuous at s if, given any positive
real number ε, there exists some positive real number δ such
that |f(x)− f(s)| < ε for all x ∈ D satisfying |x− s| < δ.

Let D be a subset of the set R of real numbers, let g:D → R
be a real-valued function on D, let s be a limit point of the
set D, and let l be a real number. The real number l is
said to be the limit of g(x), as x tends to s in D, if and
only if the following criterion is satisfied: given any strictly
positive real number ε, there exists some strictly positive real
number δ such that |g(x) − l| < ε whenever x ∈ D satisfies
0 < |x− s| < δ.

(a) Let f :R→ R be defined such that

f(x) =

{
x3 cos

1

x2
if x 6= 0;

0 if x = 0.

Using the formal definition of continuity (in terms of ε and δ etc.)
prove that the function f is continuous at 0. What is the value of
lim
x→0

f(x)?

Solution. Let some positive real number ε > 0 be given. Let δ = 3
√
ε.

Now ∣∣∣∣cos
1

x2

∣∣∣∣ ≤ 1

for all non-zero real numbers x. It follows that if the real number x
satisfies 0 < |x| < δ then∣∣∣∣x3 cos

1

x2

∣∣∣∣ = |x3|
∣∣∣∣cos

1

x2

∣∣∣∣ ≤ |x3| < δ3 = ε.
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Also f(0) = 0. Thus |f(x) − f(0)| < ε whenever |x| < δ. It follows
from the definition of continuity that the function f is continuous at
0. Moroever it follows from the continuity of f at 0 (or alternatively
directly from the definition of limits and the inequalities proved above)
that lim

x→0
f(x) = f(0) = 0.

Alternative. Instead of taking δ = 3
√
ε one could choose δ = min(1, ε),

and indeed one could choose any value of δ small enough to ensure that
0 < δ3 ≤ ε.

(b) Let g:R→ R be defined such that

g(y) =

{
0 if y 6= 0;
1 if y = 0.

Explain why the limit lim
y→0

g(y) exists. What is the value of lim
y→0

g(y)?

Solution. We apply the definition of limit. Let ε > 0 be given.
Whatever positive value of δ is chosen, the function g satisfies |g(y)| < ε
whenever 0 < |y| < δ. It follows that lim

y→0
g(y) = 0.

(c) Let f :R → R and g:R → R be the functions defined in parts (a)
and (b) of this question. Determine whether or not it is the case that

lim
x→0

g(f(x)) = l, where l = lim
y→0

g(y).

Solution. It is not the case that lim
x→0

g(f(x)) = l, where l = lim
y→0

g(y).

Indeed the function g(f(x)) does not tend to any limit whatsoever as
x→ 0.

Note that l = 0, by part (b) of the question. Let

xn =
1√

(n+ 1
2
)π

for all positive integers n. Then xn → 0 as n → +∞. Now, for any
positive integer n, 1/x2n = (n+ 1

2
)π, and cos(n+ 1

2
)π = 0, and therefore

f(xn) = 0 for all positive integers n. It follows that g(f(xn)) = 1 for
all positive integers n.

Let ε be chosen satisfying 0 < ε ≤ 1 (e.g., ε = 1
2
). Given any positive

real number δ, we can chosen the positive integer n large enough to
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ensure that 0 < |xn| < δ. Then g(f(xn)) = 1 and therefore g(f(xn)) 6<
ε. Therefore lim

x→0
g(f(x)) 6= 0.

Note. Given any positive real number δ, there exist values of x sat-
isfying 0 < |x| < δ for which g(f(x)) = 0 and other values for which
g(f(x)) = 1. Therefore g(f(x)) cannot possibly tend to any limiting
value as x→ 0.

2. In this question, we employ partial derivatives, in the context of a real
valued function f :R2 → R of two real variables. We also make use of
the concept of the limit of such a function at a point of the plane R2.
Here are the definitions of the partial derivatives of the function f :—

∂f(x, y)

∂x
= lim

h→0

f(x+ h, y)− f(x, y)

h
,

∂f(x, y)

∂y
= lim

k→0

f(x, y + k)− f(x, y)

k
.

Let D be a subset of R2. A point (u, v) of R2 is said to be a limit point
of D if, given any strictly positive real number δ, there exist points
(x, y) of D that are distinct from (u, v) but lie within a distance δ of
(u, v). The definition of the limit of a function f of two variables may
be formally stated as follows:

Let D be a subset of R2, let (u, v) be a limit point of the
set D, let f :D → R be a real-valued function on D, and let l
be a real number. Then l is said to be the limit of f(x, y), as
(x, y) tends to (u, v) in D if, given any strictly positive real
number ε, there exists some strictly positive real number δ
such that

|f(x, y)− f(u, v)| < ε

for all (x, y) ∈ D satisfying

0 <
√

(x− u)2 + (y − v)2 < δ

Moreover a function f of two real variables is continuous at a point
(u, v) in the interior of its domain if and only if

lim
(x,y)→(u,v)

f(x, y) = f(u, v).

Throughout the remainder of this question, let

f(x, y) =


2x2y3

x4 + y6
if (x, y) 6= (0, 0);

0 if (x, y) = (0, 0).
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Note that a certain amount of information about this function could be
obtained using various software packages, or else by typing the following
query

z = (2 x^2 y^3) / (x^4 + y^6)

into the search bar on the following website:

http://www.wolframalpha.com/

In particular, the above website will inform you that

∂f(x, y)

∂x
=
−4x5y3 + 4xy9

(x4 + y6)2
,

∂f(x, y)

∂y
=

6x2y2(x4 − y6)
(x4 + y6)2

when (x, y) 6= (0, 0).

Given any real numbers b and c, we define g(b,c):R → R to be the
function from the set R of real numbers to itself defined such that

g(b,c)(t) = f(tb, tc)

for all real numbers t, where the function f is as defined above.

(a) Prove that −1 ≤ f(x, y) ≤ 1 for all real numbers x and y. Prove
also that f(x, y) = 1 if and only if (x, y) 6= (0, 0) and x2 = y3, and also
that f(x, y) = −1 if and only if (x, y) 6= (0, 0) and x2 = −y3.

Let a and b be real numbers. Then (a−b)2 = a2+b2−2ab, and therefore
2ab ≤ a2 + b2. Moreover 2ab = a2 + b2 if and only if a = b. Applying
this result with a = x2 and b = y3, we see that 2x2y3 ≤ x4 + y6, and
moreover 2x2y3 = x4 + y6 if and only if x2 = y3. Similarly if we apply
the result with a = x2 and b = −y3 we find that −2x2y3 ≤ x4 + y6,
and moreover −2x2y3 = x4 + y6 if and only if x2 = −y3. It follows that
−1 ≤ f(x, y) ≤ 1 for all (x, y) ∈ R2, and moreover f(x, y) = 1 if and
only if x2 = y3 and f(x, y) = −1 if and only if x2 = −y3.

(b) For each ordered pair (b, c) of real numbers, show that the associated
function g(b,c) is differentiable, and determine the value of the derivative

dg(b,c)(t)

dt

for all values of the real variable t, including t = 0.
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If b = 0 then g(b,c)(t) = 0 for all real numbers t, and therefore the
derivative g′(b,c) of g(b,c) satisfies g′(b,c)(t) = 0 for all real numbers t.

If b 6= 0 and t 6= 0 then

gb,c(t) =
b2c3t5

b4t4 + c6t6
=

b2c3t

b4 + c6t2
.

It follows that if b 6= 0 then

gb,c(t) =
b2c3t

b4 + c6t2
,

for all real numbers t, and, applying the quotient rule, we find that

dgb,c(t)

dt
=

b2c3(b4 + c6t2)− 2b2c9t2

(b4 + c6t2)2

=
b2c3(b4 − c6t2)

(b4 + c6t2)2
.

Note. Once g(b,c) has been expressed as a ratio of differentiable func-
tions, where the denominator is non-zero for all real numbers t, the
Quotient Rule can be applied. Indeed the use of the Quotient Rule in
such situations has been shown to be valid. There is no need or reason
in such a situation to differentiate the function from first principles,
unless the questions specifically asks for this.

(c) Show that the partial derivatives

∂f(x, y)

∂x
,

∂f(x, y)

∂y

are defined when (x, y) = (0, 0), and determine the value of these partial
derivatives at (x, y) = (0, 0).

The function f satisfies f(x, 0) = 0 for all real numbers x, and therefore

∂f(x, y)

∂x

∣∣∣∣
(x,y)=(0,0)

=
df(x, 0)

dx

∣∣∣∣
x=0

= 0.

Similarly the function f satisfies f(0, y) = 0 for all real numbers y, and
therefore

∂f(x, y)

∂y

∣∣∣∣
(x,y)=(0,0)

=
df(0, y)

dy

∣∣∣∣
y=0

= 0.

(d) Given any real number u, what are the supremum (i.e., the least
upper bound) and infimum (i.e., the greatest lower bound) on the values
of f(x, y) on the line x = u?
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If u = 0 then f(u, y) = 0 for all real numbers y, and therefore the
supremum and infimum on the values of f in this line are both equal
to zero.

If u 6= 0 then f(u,
3
√
u2) = 1 and f(u,

3
√
u2) = −1. Moreover it follows

from (a) that −1 ≤ f(u, y) ≤ 1 for all real numbers y. Therefore the
supremum is 1 and the infimum is −1.

(e) Given any real number v, what are the supremum and infimum
values of the f(x, y) on the line y = v?

If v = 0 then f(x, v) = 0 for all real numbers x, and therefore the
supremum and infimum on the values of f in this line are both equal
to zero.

If v > 0 then f(
√
v3, v) = 1. Moreover f(x, v) ≥ 0 for all real num-

bers x, and it follows from (a) that f(x, v) ≤ 1 for all real numbers x.
Therefore the supremum is 1 and the infimum is 0.

If v < 0 then f(
√
−v3, v) = −1. Moreover f(x, v) ≤ 0 for all real num-

bers x, and it follows from (a) that f(x, v) ≥ −1 for all real numbers x.
Therefore the supremum is 0 and the infimum is −1.

(f) Is the function f continuous at (0, 0)? [Justify your answer rigor-
ously using an ε–δ definition of either limits of functions of two real
variables or else of continuity for functions of two real variables.]

The function f is not continuous at (0, 0). Take, for example, ε = 1
2
.

Then, given any δ < 1 we can find a positive real number y small
enough to ensure that 0 < y < 1 and y < 1

2
δ. Let x =

√
y3. Then

0 < x < y < 1
2
δ, and therefore 0 < x2 + y2 < δ2. But f(x, y) = 1, and

therefore f(x, y) 6< ε. Thus the “epsilon-delta” definition of continuity
is not satisfied by the function f at zero.

Remarks.

• Let

C++ = {(x, y) : x > 0, y > 0 and x2 = y3},
C−+ = {(x, y) : x < 0, y > 0 and x2 = y3},
C+− = {(x, y) : x > 0, y < 0 and x2 = y3},
C−− = {(x, y) : x < 0, y < 0 and x2 = y3},
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Then C++ and C−+ are curves in the plane on which the func-
tion achieves its maximum value of 1. Similarly C+− and C−− are
curves in the plane on which the function achieves its minimum
value of −1. Each of these curves approaches the origin so as to
come within any specified distance from the origin, no matter how
small. It should be clear from this that the function f could not
possibly be continuous at (0, 0). Parts (a), (d) and (e) of the ques-
tion were intended to drive home to those attempting the question
these particular features of the function: they were not intended
as exercises involving computation of partial derivatives and ap-
plication of the complicated machinery of multivariate calculus!
But on the other hand the function f is smooth along any line in
R2 and the partial derivatives of this function with respect to the
coordinate functions x and y are defined throughout R2. This is
established through parts (b) and (c) of the question, taking it for
granted that the function f is well-behaved away from the origin.

• In tackling an open-ended question like 2(f) (or 1(c)) one should
analyse the behaviour of the function, decide whether one can
show that it is continuous or discontinuous, and decide on a strat-
egy that provides the required formal proof. It is not a good idea
to embark on pages of calculations with epsilons and deltas with-
out an idea of whether one is heading for the correct destination,
and, if so, how to arrive at that destination. In such situations,
one would probably eventually make a mistake in, for example,
manipulating inequalities, which would make nonsense of the re-
mainder of the attempt. In answering an open-ended question
such as 2(f), one should ponder the question of whether or not
the function is continuous as (0, 0). If the function is thought to
be continuous then, given any positive epsilon, how would one
go about finding a valid value for the corresponding delta? If
the function is thought not to be continuous, then how could one
choose an epsilon small enough to ensure that no corresponding
delta could be found? Are there “obvious” sequences tending to
the limit point (0, 0) where the values of the function along the
sequence clearly do not converge to the value at (0, 0)? Such con-
siderations can be worked through with mental thought and rough
working, and a strategy for answering the question can be devised
before setting out to write out the final solution.

• In a situation such as a homework assignment where one has com-
puter access or web access, then the computer can prove to be
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a useful tool, and not only checking that calculus computations
have been carried through correctly. For example, in the case of
the function of question 2, entering the formula for the function
(in the form “z = . . .”) into the Wolfram Alpha should result in a
page of information about the function, including an attempt at
a 3D plot of its graph and a contour diagram. Of course, in cases
where the function is, or may be, discontinuous, such plots can
only be approximations, or will not necessarily tell the full story.
But nevertheless one can use the website to explore how the func-
tion behaves around the origin, and, ultimately, one can hopefully
explain the features apparent in the presented 3D plot or contour
diagram in terms of what you have ultimately learned about the
function. And the website can provide both reality check and a
tool for checking computations. After all, would it be advisable
for anyone to submit a homework assignment asking them to find
the solution of, for example, a simple ordinary differential equa-
tion without typing the differential equation into the search bar
of a website like Wolfram Alpha, or using symbolical computation
software, to check that they have arrived at the correct answer?
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