Course MA2321: Michaelmas Term 2015.

Assignment 1.
To be handed in by Thursday 26th November, 2015.
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cies with regard to plagiarism, which are published on the website
located at the following URL:

http://tcd-ie.libguides.com/plagiarism

Please complete the attached cover sheet and attach it to your
assignment, in particular signing the declaration with regard to
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1. In answering this question, you should pay heed to the following defi-
nitions.

Let D be a subset of the set R of real numbers, and let
f:D — R be a real-valued function on D. Let s be a point
of D. The function f is said to be continuous at s if, given
any positive real number e, there exists some positive real
number ¢ such that |f(x) — f(s)| < e for all z € D satisfying
|z — s < 4.

Let D be a subset of the set R of real numbers, let g: D — R
be a real-valued function on D, let s be a limit point of the
set D, and let [ be a real number. The real number [ is
said to be the limit of g(x), as = tends to s in D, if and
only if the following criterion is satisfied: given any strictly
positive real number €, there exists some strictly positive real
number 0 such that |g(z) — ] < € whenever x € D satisfies
0<|z—s]<d.

a) Let f:R — R be defined such that
(a)
23 cos 1 if x # 0;
flzx) = 2?2 ’
0 if . =0.

Using the formal definition of continuity (in terms of € and § etc.) prove
that the function f is continuous at 0. What is the value of lir% f(x)?
T—
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(b) Let g:R — R be defined such that
_J 0 ity #0;
909) _{ 1 ify=0.
Explain why the limit lim g(y) exists. What is the value of lim g(y)?
y—0 y—0

(c) Let f:R — R and g:R — R be the functions defined in parts (a)
and (b) of this question. Determine whether or not it is the case that
lim g(f(z)) =1, where I = lim g(y).

. In this question, we employ partial derivatives, in the context of a real
valued function f:R? — R of two real variables. We also make use of

the concept of the limit of such a function at a point of the plane R2.
Here are the definitions of the partial derivatives of the function f:—

ox N ill—>0 h ’
dy k—0 k '

Let D be a subset of R?. A point (u,v) of R? is said to be a limit point
of D if, given any strictly positive real number 9, there exist points
(x,y) of D that are distinct from (u,v) but lie within a distance ¢ of
(u,v). The definition of the limit of a function f of two variables may
be formally stated as follows:

Let D be a subset of R?, let (u,v) be a limit point of the
set D, let f: D — R be a real-valued function on D, and let [
be a real number. Then [ is said to be the limit of f(x,y), as
(x,y) tends to (u,v) in D if, given any strictly positive real
number g, there exists some strictly positive real number ¢
such that

‘f(xvy) - f(U,U)’ <é
for all (x,y) € D satisfying

0<+v(z—u?+(y—v)2<d

Moreover a function f of two real variables is continuous at a point
(u,v) in the interior of its domain if and only if

lim )f<x7y) = f(u,v).

(@,y)=(u,v
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Throughout the remainder of this question, let
2$2y3

if 0,0);

f<x7y): Z)’J4+y6 1 (‘Tay)7é( ’ )a

0 if (z,y) = (0,0).

Note that a certain amount of information about this function could be
obtained using various software packages, or else by typing the following

query

z=(2x"2y"3) / (x4 + y76)

into the search bar on the following website:
http://www.wolframalpha.com/

In particular, the above website will inform you that

Of(z,y)  —4a®y’ +4ay’  Of(x,y)  62°yP(a" —y°)

or  (at4+y6)2 oy (x4 y°)?
when (z,9) # (0,0).

Given any real numbers b and ¢, we define gg.:R — R to be the
function from the set R of real numbers to itself defined such that

Gve)(t) = f(tb, tc)

for all real numbers ¢, where the function f is as defined above.

(a) Prove that —1 < f(z,y) < 1 for all real numbers = and y. Prove
also that f(x,y) = 1if and only if (x,y) # (0,0) and z? = y3, and also
that f(x,y) = —1 if and only if (z,y) # (0,0) and z? = —y?>.

(b) For each ordered pair (b,c) of real numbers, show that the asso-
ciated function g, is differentiable, and determine the value of the

derivative
dgv.e) (1)
dt
for all values of the real variable ¢, including ¢ = 0.

(c) Show that the partial derivatives
of(x,y)  Of(x,y)
oxr oy

are defined when (z,y) = (0,0), and determine the value of these partial
derivatives at (z,y) = (0,0).




(d) Given any real number u, what are the supremum (i.e., the least
upper bound) and infimum (i.e., the greatest lower bound) on the values
of f(x,y) on the line z = u?

(e) Given any real number v, what are the supremum and infimum
values of the f(x,y) on the line y = v?

(f) Is the function f continuous at (0,0)? [Justify your answer rigor-
ously using an £—¢ definition of either limits of functions of two real
variables or else of continuity for functions of two real variables.]
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