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1 Ordered Fields and the Real Number Sys-

tem

1.1 Sets

A set is a collection of objects. These objects are referred to as the elements
of the set. One can specify a set by enclosing a list of suitable objects within
braces. Thus, for example, {1, 2, 3, 7} denotes the set whose elements are the
numbers 1, 2, 3 and 7. If x is an element of some set X then we denote this
fact by writing x ∈ X. Conversely, if x is not an element of the set X then
we write x 6∈ X. We denote by ∅ the empty set, which is defined to be the
set with no elements.

We denote by N the set {1, 2, 3, 4, 5 . . .} of all positive integers (also known
as natural numbers), and we denote by Z the set

{. . . ,−5,−4,−3,−2,−1, 0, 1, 2, 3, 4, 5, . . .}

of all integers (or ‘whole numbers’). We denote by Q the set of rational
numbers (i.e., numbers of the form p/q where p and q are integers and q 6= 0),
and we denote be R and C the sets of real numbers and complex numbers
respectively.

If X and Y are sets then the union X ∪ Y of X and Y is defined to
be the set of all elements that belong either to X or to Y (or to both), the
intersection X ∩ Y of X and Y is defined to be the set of all elements that
belong to both X and Y , and the difference X \ Y of X and Y is defined to
be the set of all elements that belong to X but do not belong to Y . Thus,
for example, if

X = {2, 4, 6, 8}, Y = {3, 4, 5, 6, 7}

then
X ∪ Y = {2, 3, 4, 5, 6, 7, 8}, X ∩ Y = {4, 6},

X \ Y = {2, 8}, Y \X = {3, 5, 7}.

If X and Y are sets, and if every element of X is also an element of Y
then we say that X is a subset of Y , and we write X ⊂ Y . We use the
notation {y ∈ Y : P (y)} to denote the subset of a given set Y consisting
of all elements y of Y with some given property P (y). Thus for example
{n ∈ Z : n > 0} denotes the set of all integers n satisfying n > 0 (i.e., the
set N of all positive integers).
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1.2 Rational and Irrational Numbers

Rational numbers are numbers that can be expressed as fractions of the form
p/q, where p and q are integers (i.e., ‘whole numbers’) and q 6= 0. The set
of rational numbers is denoted by Q. Operations of addition, subtraction,
multiplication and division are defined on Q in the usual manner. In addition
the set of rational numbers is ordered.

There are however certain familiar numbers which cannot be represented
in the form p/q, where p and q are integers. These include

√
2,
√

3, π and
e. Such numbers are referred to as irrational numbers. The irrationality of√

2 is an immediate consequence of the following famous result, which was
discovered by the Ancient Greeks.

Proposition 1.1 There do not exist non-zero integers p and q with the prop-
erty that p2 = 2q2.

Proof Let us suppose that there exist non-zero integers p and q with the
property that p2 = 2q2. We show that this leads to a contradiction. Without
loss of generality we may assume that p and q are not both even (since if
both p and q were even then we could replace p and q by p/2k and q/2k

respectively, where k is the largest positive integer with the property that
2k divides both p and q). Now p2 = 2q2, hence p2 is even. It follows from
this that p is even (since the square of an odd integer is odd). Therefore
p = 2r for some integer r. But then 2q2 = 4r2, so that q2 = 2r2. Therefore
q2 is even, and hence q is even. We have thus shown that both p and q are
even. But this contradicts our assumption that p and q are not both even.
This contradiction shows that there cannot exist integers p and q with the
property that p2 = 2q2, and thus proves that

√
2 is an irrational number.

This result shows that the rational numbers are not sufficient for the pur-
pose of representing lengths arising in familiar Euclidean geometry. Indeed
consider the right-angled isosceles triangle whose short sides are q units long.
Then the hypotenuse is

√
2q units long, by Pythagoras’ Theorem. Proposi-

tion 1.1 shows that it is not possible to find a unit of length for which the
two short sides of this right-angled isosceles triangle are q units long and the
hypotenuse is p units long, where both p and q are integers. We must there-
fore enlarge the system of rational numbers to obtain a number system which
contains irrational numbers such as

√
2,
√

3, π and e, and which is capable
of representing the lengths of line segments and similar quantities arising in
geometry and physics. The rational and irrational numbers belonging to this
number system are known as real numbers.
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1.3 Ordered Fields

An ordered field F consists of a set F on which are defined binary operations
+ of addition and × of multiplication, together with an ordering relation
<, where these binary operations and ordering relation satisfy the following
axioms:—

1. if u and v are elements of F then their sum u+ v is also a element of F;

2. (the Commutative Law for addition) u + v = v + u for all elements u
and v of F;

3. (the Associative Law for addition) (u + v) + w = u + (v + w) for all
elements u, v and w of F;

4. there exists an element of F, denoted by 0, with the property that
u+ 0 = x = 0 + u for all elements u of F;

5. for each element u of F there exists some element −u of F with the
property that u+ (−u) = 0 = (−u) + u;

6. if u and v are elements of F then their product u× v is also a element
of F;

7. (the Commutative Law for multiplication) u×v = v×u for all elements
u and v of F;

8. (the Associative Law for multiplication) (u× v)× w = u× (v × w) for
all elements u, v and w of F,

9. there exists an element of F, denoted by 1, with the property that
u× 1 = u = 1× u for all elements u of F, and moreover 1 6= 0,

10. for each element u of F satisfying u 6= 0 there exists some element u−1

of F with the property that u× u−1 = 1 = u−1 × u,

11. (the Distributive Law) u× (v+w) = (u× v) + (u×w) for all elements
u, v and w of F,

12. (the Trichotomy Law) if u and v are elements of F then one and only
one of the three statements u < v, u = v and u < v is true,

13. (transitivity of the ordering) if u, v and w are elements of F and if u < v
and v < w then u < w,

14. if u, v and w are elements of F and if u < v then u+ w < v + w,
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15. if u and v are elements of F which satisfy 0 < u and 0 < v then
0 < u× v,

The operations of subtraction and division are defined on an ordered
field F in terms of the operations of addition and multiplication on that field
in the obvious fashion: u− v = u + (−v) for all elements u and v of F, and
moreover u/v = uv−1 provided that v 6= 0.

Example The rational numbers, with the standard ordering, and the stan-
dard operations of addition, subtraction, multiplication, and division consti-
tute an ordered field.

Example Let Q(
√

2) denote the set of all numbers that can be represented in
the form b+c

√
2, where b and c are rational numbers. The sum and difference

of any two numbers belonging to Q(
√

2) themselves belong to Q(
√

2). Also
the product of any two numbers Q(

√
2) itself belongs to Q(

√
2) because, for

any rational numbers b, c, e and f ,

(b+ c
√

2)(e+ f
√

2) = (be+ 2cf) + (bf + ce)
√

2,

and both be + 2cf and bf + ce are rational numbers. The reciprocal of any
non-zero element of Q(

√
2) itself belongs to Q(

√
2), because

1

b+ c
√

2
=
b− c

√
2

b2 − 2c2
.

for all rational numbers b and c. It is then a straightforward exercise to verify
that Q(

√
2) is an ordered field.

The absolute value |x| of an element number x of an ordered field F is
defined by

|x| =
{
x if x ≥ 0;
−x if x < 0.

Note that |x| ≥ 0 for all x and that |x| = 0 if and only if x = 0. Also
|x + y| ≤ |x| + |y| and |xy| = |x||y| for all elements x and y of the ordered
field F.

Let D be a subset of an ordered field F. An element u of F is said to be
an upper bound of the set D if x ≤ u for all x ∈ D. The set D is said to be
bounded above if such an upper bound exists.

Definition Let F be an ordered field, and let D be some subset of F which
is bounded above. An element s of F is said to be the least upper bound (or
supremum) of D (denoted by supD) if s is an upper bound of D and s ≤ u
for all upper bounds u of D.
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Example The rational number 2 is the least upper bound, in the ordered
field of rational numbers, of the sets {x ∈ Q : x ≤ 2} and {x ∈ Q : x < 2}.
Note that the first of these sets contains its least upper bound, whereas the
second set does not.

The axioms (1)–(15) listed above that characterize ordered fields are not
in themselves sufficient to fully characterize the real number system. (Indeed
any property of real numbers that could be derived solely from these axioms
would be equally valid in any ordered field whatsoever, and in particular
would be valid were the system of real numbers replaced by the system of
rational numbers.) We require in addition the following axiom:—

the Least Upper Bound Axiom: given any non-empty set D of
real numbers that is bounded above, there exists a real number
supD that is the least upper bound for the set D.

A lower bound of a set D of real numbers is a real number l with the
property that l ≤ x for all x ∈ D. A set D of real numbers is said to be
bounded below if such a lower bound exists. If D is bounded below, then
there exists a greatest lower bound (or infimum) inf D of the set D. Indeed
inf D = − sup{x ∈ R : −x ∈ D}.

Remark We have simply listed above a complete set of axioms for the real
number system. We have not however proved the existence of a system of
real numbers satisfying these axioms. There are in fact several constructions
of the real number system: one of the most popular of these is the represen-
tation of real numbers as Dedekind sections of the set of rational numbers.
For an account of the this construction, and for a proof that these axioms
are sufficient to characterize the real number system, see chapters 27–29 of
Calculus, by M. Spivak. The construction of the real number system using
Dedekind cuts is also described in detail in the Appendix to Chapter 1 of
Principles of Real Analysis by W. Rudin.

1.4 Remarks on the Existence of Least Upper Bounds

We present an argument here that is intended to show that if the system of
real numbers has all the properties that one would expect it to possess, then
it must satisfy the Least Upper Bound Axiom.

Let F be an ordered field that contains the field Q of rational numbers.
The set Z is a subset of Q. Thus Z ⊂ Q and Q ⊂ F, and therefore Z ⊂ F.

Definition Let F be an ordered field that contains the field of rational num-
bers. The field F is said to satisfy the Axiom of Archimedes if, given any
element x of F, there exists some integer n satisfying n ≥ x.
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The Axiom of Archimedes excludes the possibility of “infinitely large”
elements of the ordered field F. Given that all real numbers should be rep-
resentable in decimal arithmetic, any real number must be less than some
positive integer. Thus we expect the system of real numbers to satisfy the
Axiom of Archimedes.

Lemma 1.2 Let F be an ordered field that satisfies the Axiom of Archimedes.
Then, given any element x of F satisfying x > 0, there exists some positive

integer n such that x >
1

n
> 0.

Proof The Axiom of Archimedes ensures the existence of a positive integer n

satisfying n >
1

x
. Then

n− 1

x
> 0 and

x

n
= x× 1

n
> 0,

and therefore

x− 1

n
=

(
n− 1

x

)
× x

n
> 0,

and thus x >
1

n
, as required.

Now let F be an ordered field containing as a subfield the field Q of rational
numbers. We suppose also that F satisfies the Axiom of Archimedes. Let D
be a subset of F which is bounded above. The Axiom of Archimedes then
ensures that there exists some integer that is an upper bound for the set D.
It follows from this that there exists some integer m that is the largest integer
that is not an upper bound for the set D. Then m is not an upper bound
for D, but m+ 1 is. Let

E = {x ∈ F : x ≥ 0 and m+ x ∈ D}.

Then E is non-empty and x ≤ 1 for all x ∈ E. Suppose that there exists a
least upper bound supE in F for the set E. Then m+ supE is a least upper
bound for the set D, and thus supD exists, and supD = m + supE. Thus,
in order to show that every non-empty subset of D that is bounded above
has a least upper bound, it suffices to show this for subsets D of F with the
property that 0 ≤ x ≤ 1 for all x ∈ D.

Now let F be an ordered field containing the field Q of rational numbers
that satisfies the Axiom of Archimedes, and let D be a subset of F with the
property that 0 ≤ x ≤ 1 for all x ∈ D. Then, for each positive integer m, let
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um denote the largest non-negative integer for which um × (10)−m is not an
upper bound for the set D. Then 0 ≤ um < (10)m and (um + 1)(10)−m is an
upper bound for the set D. Thus if there were to exist a least upper bound s
for the set D, then s would have to satisfy

um
(10)m

< s ≤ um
(10)m

+
1

(10)m

for m = 1, 2, 3, . . .. Now if m > 1 then definitions of um and um−1 ensure
that (10um−1)× (10)−m is not an upper bound for the set D but (10um−1 +
10)× (10)−m is an upper bound for the set D. It follows that

10um−1 ≤ um < 10um−1 + 10.

Let d1 = u1, and let dm = um − 10um−1 for all integers m satisfying m > 1.
Then dm is an integer satisfying 0 ≤ dm < 10 for m = 1, 2, 3, . . ., and

um
(10)m

=
dm

(10)m
+

um−1
(10)m−1

.

It follows that
um

(10)m
=

m∑
k=1

dk
(10)k

.

Any least upper bound t for the set D would therefore have to satisfy the
inequalities

m∑
k=1

dk
(10)k

< t ≤
m∑
k=1

dk
(10)k

+
1

(10)m

for all positive integers m.
Now suppose that every well-formed decimal expansion determines a cor-

responding element of the ordered field F. Assuming this, we conclude that
there must exist some element s of the ordered field F whose decimal expan-
sion takes the form

0.d1 d2 d3 d4 d5, . . .

The basic properties of decimal expansions then ensure that

m∑
k=1

dk
(10)k

≤ s ≤
m∑
k=1

dk
(10)k

+
1

(10)m
.

Let ε be an element of F satisfying ε > 0. Then, because the ordered field F
is required to satisfy the Axiom of Archimedes, a positive integer m can be
chosen large enough to ensure that 0 < (10)−m < ε. Then

s− ε <
m∑
k=1

dk
(10)k

=
um

(10)m
,
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and therefore s− ε cannot be an upper bound for the set D. Also

s+ ε >
m∑
k=1

dk
(10)k

+
1

(10)m
=

um
(10)m

+
1

(10)m
,

and therefore s + ε is an upper bound for the set D. We see therefore if s
is an element of F satisfying 0 ≤ s ≤, and if s is determined by the decimal
expansion whose successive decimal digits are d1, d2, d3, . . ., where these digits
are determined by D as described above, then s−ε cannot be an upper bound
for the set D for any ε > 0, but s+ ε must be an upper bound for the set D
for all ε > 0.

Now if there were to exist any element x of D satisfying x > s, then we
could obtain a contradiction on choosing ε ∈ F such that 0 < ε < x − s. It
follows that x ≤ s for all x ∈ D, and thus s is an upper bound for the set D.
But if ε > 0 then s − ε is not an upper bound for the set D. Therefore s
must be the least upper bound for the set D.

This analysis shows that if F is an ordered field, containing the field
of rational numbers, that satisfies the Axiom of Archimedes, and if every
decimal expansion determines a corresponding element of F then every non-
empty subset of F that is bounded above must have a least upper bound.
The ordered field F must therefore satisfy the Least Upper Bound Axiom.

This justifies the characterization of the field R of real numbers as an
ordered field that satisfies the Least Upper Bound Axiom.

1.5 Intervals

Given real numbers a and b satisfying a ≤ b, we define

[a, b] = {x ∈ R : a ≤ x ≤ b}.

If a < b then we define

(a, b) = {x ∈ R : a < x < b}, [a, b) = {x ∈ R : a ≤ x < b},

(a, b] = {x ∈ R : a < x ≤ b}.

For each real number c, we also define

[c,+∞) = {x ∈ R : c ≤ x}, (c,+∞) = {x ∈ R : c < x},

(−∞, c] = {x ∈ R : x ≤ c}, (−∞, c) = {x ∈ R : x < c}.

All these subsets of R are referred to as intervals. An interval I may be
defined as a non-empty set of real numbers with the following property: if s,
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t and u are real numbers satisfying s < t < u and if s and u both belong to
the interval I then t also belongs to the interval I. Using the Least Upper
Bound Axiom, one can prove that every interval in R is either one of the
intervals defined above, or else is the whole of R.

1.6 The Real Number System

From the time of the ancient Greeks to the present day, mathematicians
have recognized the necessity of establishing rigorous foundations for the
discipline. This led mathematicians such as Bolzano, Cauchy and Weierstrass
to establish in the nineteenth century the definitions of continuity, limits
and convergence that are required in order to establish a secure foundation
upon which to build theories of real and complex analysis that underpin the
application of standard techiques of the differential calculus in one or more
variables.

But mathematicians in the nineteenth century realised that, in order to
obtain satisfactory proofs of basic theorems underlying the applications of
calculus, they needed a deeper understanding of the nature of the real num-
ber system. Accordingly Dedekind developed a theory in which real numbers
were represented by Dedekind sections, in which each real number was char-
acterized by means of a partition of the set of rational numbers into two
subsets, where every rational number belonging to the first subset is less
than every rational number belonging to the second. Dedekind published his
construction of the real number system in 1872, in the work Stetigkeit und ir-
rationale Zahlen. In the same year, Georg Cantor published a construction of
the real number system in which real numbers are represented by sequences
of rational numbers satisfying an appropriate convegence criterion.

It has since been shown that the system of real numbers is completely
characterized by the statement that the real numbers constitute an ordered
field which satisfies the Least Upper Bound Axiom.
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2 Infinite Sequences of Real Numbers

2.1 Convergence

An infinite sequence of real numbers is a sequence of the form x1, x2, x3, . . .,
where xj is a real number for each positive integer j. (More formally, one can
view an infinite sequence of real numbers as a function from N to R which
sends each positive integer j to some real number xj.)

Definition An infinite sequence x1, x2, x3, . . . of real numbers is said to con-
verge to some real number l if and only if the following criterion is satisfied:

given any strictly positive real number ε, there exists some pos-
itive integer N such that |xj − l| < ε for all positive integers j
satisfying j ≥ N .

If the sequence x1, x2, x3, . . . converges to the limit l then we denote this fact
by writing ‘xj → l as j → +∞’, or by writing ‘ lim

j→+∞
xj = l’.

Let x and l be real numbers, and let ε be a strictly positive real number.
Then |x − l| < ε if and only if both x − l < ε and l − x < ε. It follows
that |x − l| < ε if and only if l − ε < x < l + ε. The condition |x − l| < ε
essentially requires that the value of the real number x should agree with l
to within an error of at most ε. An infinite sequence x1, x2, x3, . . . of real
numbers converges to some real number l if and only if, given any positive
real number ε, there exists some positive integer N such that l−ε < xj < l+ε
for all positive integers j satisfying j ≥ N .

Example A straightforward application of the definition of convergence
shows that 1/j → 0 as j → +∞. Indeed suppose that we are given any
strictly positive real number ε. If we pick some positive integer N large
enough to satisfy N > 1/ε then |1/j| < ε for all positive integers j satisfying
j ≥ N , as required.

Example We show that (−1)j/j2 → 0 as j → +∞. Indeed, given any
strictly positive real number ε, we can find some positive integer N satisfying
N2 > 1/ε. If j ≥ N then |(−1)j/j2| < ε, as required.

Example The infinite sequence x1, x2, x3, . . . defined by xj = j is not con-
vergent. To prove this formally, we suppose that it were the case that
lim

j→+∞
xj = l for some real number l, and derive from this a contradiction. On

setting ε = 1 (say) in the formal definition of convergence, we would deduce
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that there would exist some positive integer N such that |xj − l| < 1 for all
j ≥ N . But then xj < l + 1 for all j ≥ N , which is impossible. Thus the
sequence cannot converge.

Example The infinite sequence u1, u2, u3, . . . defined by uj = (−1)j is not
convergent. To prove this formally, we suppose that it were the case that
lim

j→+∞
uj = l for some real number l. On setting ε = 1

2
in the criterion for

convergence, we would deduce the existence of some positive integer N such
that |uj − l| < 1

2
for all j ≥ N . But then

|uj − uj+1| ≤ |uj − l|+ |l − uj+1| < 1
2

+ 1
2

= 1

for all j ≥ N , contradicting the fact that uj − uj+1 = ±2 for all j. Thus the
sequence cannot converge.

Definition We say that an infinite sequence x1, x2, x3, . . . of real numbers is
bounded above if there exists some real number B such that xj ≤ B for all
positive integers j. Similarly we say that this sequence is bounded below if
there exists some real number A such that xj ≥ A for all positive integers j.
A sequence is said to be bounded if it is bounded above and bounded below.
Thus a sequence is bounded if and only if there exist real numbers A and B
such that A ≤ xj ≤ B for all positive integers j.

Lemma 2.1 Every convergent sequence of real numbers is bounded.

Proof Let x1, x2, x3, . . . be a sequence of real numbers converging to some
real number l. On applying the formal definition of convergence (with ε = 1),
we deduce the existence of some positive integer N such that |xj − l| < 1
for all j ≥ N . But then A ≤ xj ≤ B for all positive integers j, where
A is the minimum of x1, x2, . . . , xN−1 and l − 1, and B is the maximum of
x1, x2, . . . , xN−1 and l + 1.

Proposition 2.2 Let x1, x2, x3, . . . and y1, y2, y3, be convergent infinite se-
quences of real numbers. Then the sum, difference and product of these se-
quences are convergent, and

lim
j→+∞

(xj + yj) = lim
j→+∞

xj + lim
j→+∞

yj,

lim
j→+∞

(xj − yj) = lim
j→+∞

xj − lim
j→+∞

yj,

lim
j→+∞

(xjyj) =

(
lim

j→+∞
xj

)(
lim

j→+∞
yj

)
.
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If in addition yj 6= 0 for all positive integers j and lim
j→+∞

yj 6= 0, then the

quotient of the sequences (xj) and (yj) is convergent, and

lim
j→+∞

xj
yj

=
lim

j→+∞
xj

lim
j→+∞

yj
.

Proof Throughout this proof let l = lim
j→+∞

xj and m = lim
j→+∞

yj.

First we prove that xj + yj → l + m as j → +∞. Let some strictly
positive real number ε be given. We must show that there exists some positive
integer N such that |xj + yj − (l + m)| < ε whenever j ≥ N . Now xj → l
as j → +∞, and therefore, given any strictly positive real number ε1, there
exists some positive integer N1 with the property that |xj− l| < ε1 whenever
j ≥ N1. In particular, there exists a positive integer N1 with the property
that |xj−l| < 1

2
ε whenever j ≥ N1. (To see this, let ε1 = 1

2
ε.) Similarly there

exists some positive integer N2 such that |yj − m| < 1
2
ε whenever j ≥ N2.

Let N be the maximum of N1 and N2. If j ≥ N then

|xj + yj − (l +m)| = |(xj − l) + (yj −m)| ≤ |xj − l|+ |yj −m|
< 1

2
ε+ 1

2
ε = ε.

Thus xj + yj → l +m as j → +∞.
Let c be some real number. We show that cyj → cm as j → +∞. The

case when c = 0 is trivial. Suppose that c 6= 0. Let some strictly positive
real number ε be given. Then there exists some positive integer N such that
|yj − m| < ε/|c| whenever j ≥ N . But then |cyj − cm| = |c||yj − m| < ε
whenever j ≥ N . Thus cyj → cm as j → +∞.

If we combine this result, for c = −1, with the previous result, we see
that −yj → −m as j → +∞, and therefore xj − yj → l −m as j → +∞.

Next we show that if u1, u2, u3, . . . and v1, v2, v3, . . . are infinite sequences,
and if uj → 0 and vj → 0 as j → +∞, then ujvj → 0 as j → +∞. Let some
strictly positive real number ε be given. Then there exist positive integers
N1 and N2 such that |uj| <

√
ε whenever j ≥ N1 and |vj| <

√
ε whenever

j ≥ N2. Let N be the maximum of N1 and N2. If j ≥ N then |ujvj| < ε.
We deduce that ujvj → 0 as j → +∞.

We can apply this result with uj = xj − l and vj = yj −m for all positive
integers j. Using the results we have already obtained, we see that

0 = lim
j→+∞

(ujvj) = lim
j→+∞

(xjyj − xjm− lyj + lm)

= lim
j→+∞

(xjyj)−m lim
j→+∞

xj − l lim
j→+∞

yj + lm = lim
j→+∞

(xjyj)− lm.
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Thus xjyj → lm as j → +∞.
Next we show that if w1, w2, w3, . . . is an infinite sequence of non-zero real

numbers, and if wj → 1 as j → +∞ then 1/wj → 1 as j → +∞. Let some
strictly positive real number ε be given. Let ε0 be the minimum of 1

2
ε and 1

2
.

Then there exists some positive integer N such that |wj − 1| < ε0 whenever
j ≥ N . Thus if j ≥ N then |wj − 1| < 1

2
ε and 1

2
< wj <

3
2
. But then∣∣∣∣ 1

wj
− 1

∣∣∣∣ =

∣∣∣∣1− wjwj

∣∣∣∣ =
|wj − 1|
|wj|

< 2|wj − 1| < ε.

We deduce that 1/wj → 1 as j → +∞.
Finally suppose that lim

j→+∞
xj = l and lim

j→+∞
yj = m, where m 6= 0. Let

wj = yj/m. Then wj → 1 as j → +∞, and hence 1/wj → 1 as j → +∞.
We see therefore that m/yj → 1, and thus 1/yj → 1/m, as j → +∞. The
result we have already obtained for products of sequences then enables us to
deduce that xj/yj → l/m as j → +∞.

Example We shall show that if sj → 2 as j → +∞, where sj =
6j2 − 4j

3j2 + 7
for all positive integers j. Now neither 6j2− 4j nor 3j2 + 7 converges to any
(finite) limit as j → +∞; and therefore we cannot directly apply the result in
Proposition 2.2 concerning the convergence of the quotient of two convergent
sequences. However on dividing both the numerator and the denominator of
the fraction defining sj by j2, we see that

sj =
6j2 − 4j

3j2 + 7
=

6− 4

j

3 +
7

j2

.

Moreover 6− 4

j
→ 6 and 3 +

7

j2
→ 3 as j → +∞, and therefore, on applying

Proposition 2.2, we see that

lim
j→+∞

6j2 − 4j

3j2 + 7
= lim

j→+∞

6− 4

j

3 +
7

j2

=

lim
j→+∞

(
6− 4

j

)
lim

j→+∞

(
3 +

7

j2

) =
6

3
= 2.

2.2 Monotonic Sequences

An infinite sequence x1, x2, x3, . . . of real numbers is said to be strictly increas-
ing if xj+1 > xj for all positive integers j, strictly decreasing if xj+1 < xj for
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all positive integers j, non-decreasing if xj+1 ≥ xj for all positive integers j,
non-increasing if xj+1 ≤ xj for all positive integers j. A sequence satisfy-
ing any one of these conditions is said to be monotonic; thus a monotonic
sequence is either non-decreasing or non-increasing.

Theorem 2.3 Any non-decreasing sequence of real numbers that is bounded
above is convergent. Similarly any non-increasing sequence of real numbers
that is bounded below is convergent.

Proof Let x1, x2, x3, . . . be a non-decreasing sequence of real numbers that
is bounded above. It follows from the Least Upper Bound Axiom that there
exists a least upper bound l for the set {xj : j ∈ N}. We claim that the
sequence converges to l.

Let some strictly positive real number ε be given. We must show that
there exists some positive integer N such that |xj − l| < ε whenever j ≥ N .
Now l− ε is not an upper bound for the set {xj : j ∈ N} (since l is the least
upper bound), and therefore there must exist some positive integer N such
that xN > l− ε. But then l− ε < xj ≤ l whenever j ≥ N , since the sequence
is non-decreasing and bounded above by l. Thus |xj−l| < ε whenever j ≥ N .
Therefore xj → l as j → +∞, as required.

If the sequence x1, x2, x3, . . . is non-increasing and bounded below then
the sequence −x1,−x2,−x3, . . . is non-decreasing and bounded above, and
is therefore convergent. It follows that the sequence x1, x2, x3, . . . is also
convergent.

Example Let x1 = 2 and

xj+1 = xj −
x2j − 2

2xj

for all positive integers j. Now

xj+1 =
x2j + 2

2xj
and x2j+1 = x2j − (x2j − 2) +

(
x2j − 2

2xj

)2

= 2 +

(
x2j − 2

2xj

)2

.

It therefore follows by induction on j that xj > 0 and x2j > 2 for all positive
integers j. But then xj+1 < xj for all j, and thus the sequence x1, x2, x3, . . .
is decreasing and bounded below. It follows from Theorem 2.3 that this
sequence converges to some real number α. Also xj > 1 for all positive
integers j (since xj > 0 and x2j > 2), and therefore α ≥ 1. But then, on
applying Proposition 2.2, we see that

α = lim
j→+∞

xj+1 = lim
j→+∞

(
xj −

x2j − 2

2xj

)
= α− α2 − 2

2α
.

Thus α2 = 2, and so α =
√

2.

14



2.3 Subsequences of Sequences of Real Numbers

Definition Let x1, x2, x3, . . . be an infinite sequence of real numbers. A
subsequence of this infinite sequence is a sequence of the form xj1 , xj2 , xj3 , . . .
where j1, j2, j3, . . . is an infinite sequence of positive integers with

j1 < j2 < j3 < · · · .

Let x1, x2, x3, . . . be an infinite sequence of real numbers. The following
sequences are examples of subsequences of the above sequence:—

x1, x3, x5, x7, . . .

x1, x4, x9, x16, . . .

2.4 The Bolzano-Weierstrass Theorem

Proposition 2.4 Let x1, x2, x3, . . . be a bounded infinite sequence of real
numbers. Then there exists a real number c with the property that, given
any strictly positive real number ε, there are infinitely many positive inte-
gers j for which c− ε < xj < c+ ε.

First Proof The infinite sequence (xj : j ∈ N) is bounded, and therefore
there exist real numbers A and B such that A ≤ xj ≤ B for all positive
integers j. For each real number s let

Qs = {j ∈ N : xj > s}.

Then Qs = ∅ whenever s ≥ B, and Qs = N whenever s < A.
Let S be the set consisting of all real numbers s for which the correspond-

ing set Qs is infinite. Then s 6∈ S whenever s ≥ B, and s ∈ S whenever
s < A. It follows that the set S is a non-empty subset of R that is bounded
above by B. The Least Upper Bound Principle therefore ensures that the
set S has a well-defined least upper bound. Let c be the least upper bound
bound of the set S.

Let some strictly positive real number ε be given. Let v satisfy c < v <
c+ ε. Then v 6∈ S, because c is an upper bound for the set S, and therefore
the set Qv is a finite subset of N. Also c − ε is not an upper bound for the
set S, because c is the least upper bound for this set, and therefore there
exists some element u of S satisfying c − ε < u ≤ c. Then Qu is an infinite
subset of N. It follows that the complement Qu \Qv of Qv in Qu is a subset
of N with infinitely many elements.

Now

Qu \Qv = {j ∈ N : xj > u} \ {j ∈ N : xj > v} = {j ∈ N : u < xj ≤ v}.
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Thus c − ε < u < xj ≤ v < c + ε for all j ∈ Qu \ Qv. Therefore the
number of positive integers j for which c − ε < xj < c + ε must be infinite,
as required.

Theorem 2.5 (Bolzano-Weierstrass) Every bounded sequence of real num-
bers has a convergent subsequence.

First Proof Let x1, x2, x3, . . . be an bounded infinite sequence of real num-
bers. It follows from Proposition 2.4 that there exists a real number c with
the property that, given any strictly positive real number ε, there are in-
finitely many positive integers j for which c − ε < xj < c + ε. There then
exists some positive integer k1 such that c− 1 < xk1 < c+ 1.

Now suppose that positive integers k1, k2, . . . , km have been determined
such that k1 < k2 < · · · < km and

c− 1

j
< xkj < c+

1

j

for j = 1, 2, . . . ,m. The interval{
x ∈ R : c− 1

m+ 1
< x < c+

1

m+ 1

}
must then contain infinitely many members of the original sequence, and
therefore there exists some positive integer km+1 for which km < km+1 and

c− 1

m+ 1
< xkm+1 < c+

1

m+ 1
.

Thus we can construct in this fashion a subsequence xk1 , xk2 , xk3 , . . . of the
original sequence with the property that

c− 1

j
< xkj < c+

1

j

for all positive integers j. This subsequence then converges to c. The given
sequence therefore has a convergent subsequence, as required.

Second Proof Let a1, a2, a3, . . . be a bounded sequence of real numbers,
and let

S = {j ∈ N : aj ≥ ak for all k ≥ j}

(i.e., S is the set of all positive integers j with the property that aj is greater
than or equal to all the succeeding members of the sequence).
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First let us suppose that the set S is infinite. Arrange the elements of S
in increasing order so that S = {j1, j2, j3, j4, . . .}, where j1 < j2 < j3 < j4 <
· · ·. It follows from the manner in which the set S was defined that aj1 ≥
aj2 ≥ aj3 ≥ aj4 ≥ · · · . Thus aj1 , aj2 , aj3 , . . . is a non-increasing subsequence
of the original sequence a1, a2, a3, . . .. This subsequence is bounded below
(since the original sequence is bounded). It follows from Theorem 2.3 that
aj1 , aj2 , aj3 , . . . is a convergent subsequence of the original sequence.

Now suppose that the set S is finite. Choose a positive integer j1 which
is greater than every positive integer belonging to S. Then j1 does not
belong to S. Therefore there must exist some positive integer j2 satisfying
j2 > j1 such that aj2 > aj1 . Moreover j2 does not belong to S (since j2
is greater than j1 and j1 is greater than every positive integer belonging
to S). Therefore there must exist some positive integer j3 satisfying j3 > j2
such that aj3 > aj2 . We can continue in this way to construct (by induction
on j) a strictly increasing subsequence aj1 , aj2 , aj3 , . . . of our original sequence.
This increasing subsequence is bounded above (since the original sequence is
bounded) and thus is convergent, by Theorem 2.3. This completes the proof
of the Bolzano-Weierstrass Theorem.

2.5 Cauchy’s Criterion for Convergence

Definition A sequence x1, x2, x3, . . . of real numbers is said to be a Cauchy
sequence if the following condition is satisfied:

given any strictly positive real number ε, there exists some pos-
itive integer N such that |xj − xk| < ε for all positive integers j
and k satisfying j ≥ N and k ≥ N .

Lemma 2.6 Every Cauchy sequence of real numbers is bounded.

Proof Let x1, x2, x3, . . . be a Cauchy sequence. Then there exists some pos-
itive integer N such that |xj − xk| < 1 whenever j ≥ N and k ≥ N . In par-
ticular, |xj| ≤ |xN | + 1 whenever j ≥ N . Therefore |xj| ≤ R for all positive
integers j, where R is the maximum of the real numbers |x1|, |x2|, . . . , |xN−1|
and |xN |+ 1. Thus the sequence is bounded, as required.

The following important result is known as Cauchy’s Criterion for con-
vergence, or as the General Principle of Convergence.

Theorem 2.7 (Cauchy’s Criterion for Convergence) An infinite sequence of
real numbers is convergent if and only if it is a Cauchy sequence.
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Proof First we show that convergent sequences are Cauchy sequences. Let
x1, x2, x3, . . . be a convergent sequence of real numbers, and let l = lim

j→+∞
xj.

Let some strictly positive real number ε be given. Then there exists some
positive integer N such that |xj − l| < 1

2
ε for all j ≥ N . Thus if j ≥ N and

k ≥ N then |xj − l| < 1
2
ε and |xk − l| < 1

2
ε, and hence

|xj − xk| = |(xj − l)− (xk − l)| ≤ |xj − l|+ |xk − l| < ε.

Thus the sequence x1, x2, x3, . . . is a Cauchy sequence.
Conversely we must show that any Cauchy sequence x1, x2, x3, . . . is con-

vergent. Now Cauchy sequences are bounded, by Lemma 2.6. The sequence
x1, x2, x3, . . . therefore has a convergent subsequence xk1 , xk2 , xk3 , . . ., by the
Bolzano-Weierstrass Theorem (Theorem 2.5). Let l = limj→+∞ xkj . We
claim that the sequence x1, x2, x3, . . . itself converges to l.

Let some strictly positive real number ε be given. Then there exists some
positive integer N such that |xj − xk| < 1

2
ε whenever j ≥ N and k ≥ N

(since the sequence is a Cauchy sequence). Let m be chosen large enough to
ensure that km ≥ N and |xkm − l| < 1

2
ε. Then

|xj − l| ≤ |xj − xkm|+ |xkm − l| < 1
2
ε+ 1

2
ε = ε

whenever j ≥ N . It follows that xj → l as j → +∞, as required.
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3 Continuity for Functions of a Real Variable

3.1 The Definition of Continuity for Functions of a
Real Variable

Definition Let D be a subset of R, and let f :D → R be a real-valued
function on D. Let s be a point of D. The function f is said to be continuous
at s if, given any positive real number ε, there exists some positive real
number δ such that |f(x)− f(s)| < ε for all x ∈ D satisfying |x− s| < δ. If
f is continuous at every point of D then we say that f is continuous on D.

Example Consider the function f :R→ R defined by

f(x) =

{
1 if x > 0;
0 if x ≤ 0.

The function f is not continuous at 0. To prove this formally we note that
when 0 < ε ≤ 1 there does not exist any strictly positive real number δ
with the property that |f(x) − f(0)| < ε for all x satisfying |x| < δ (since
|f(x)− f(0)| = 1 for all x > 0).

Example Let g:R→ R be the function defined by

g(x) =

{
sin

1

x
if x 6= 0;

0 if x = 0.

We show that this function is not continuous at 0. Suppose that ε is chosen
to satisfy 0 < ε < 1. No matter how small we choose the strictly positive real
number δ, we can always find x ∈ R for which |x| < δ and |g(x)− g(0)| ≥ ε.
Indeed, given any strictly positive real number δ, we can choose some integer j
large enough to ensure that 0 < xj < δ, where xj satisfies 1/xj = (4j+1)π/2.
Moreover g(xj) = 1. This shows that the criterion defining the concept of
continuity is not satisfied at x = 0.

Example Let h:R→ R be the function defined by

h(x) =

{
3x sin

1

x
if x 6= 0;

0 if x = 0.

We claim that the function h is continuous at 0. To prove this, we must apply
the definition of continuity directly. Let some strictly positive real number ε
be given. If δ = 1

3
ε then |h(x)| ≤ 3|x| < ε for all real numbers x satisfying

|x| < δ, as required.
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Lemma 3.1 Let D be a subset of R, let f :D → R and g:D → R be real-
valued functions on D, and let s ∈ D. Suppose that the functions f and g are
continuous at s. Then so is the function f+g, where (f+g)(x) = f(x)+g(x)
for all x ∈ D.

Proof Suppose that f :D → R and g:D → R are continuous at s, where
s ∈ D. We show that f + g is continuous at s. Let some strictly positive
real number ε be given. Then there exist strictly positive real numbers δ1
and δ2 such that |f(x)− f(s)| < 1

2
ε for all x ∈ D satisfying |x− s| < δ1, and

|g(x)−g(s)| < 1
2
ε for all x ∈ D satisfying |x−s| < δ2. Let δ be the minimum

of δ1 and δ2. If |x− s| < δ then

|f(x) + g(x)− (f(s) + g(s))| ≤ |f(x)− f(s)|+ |g(x)− g(s)| < 1
2
ε+ 1

2
ε = ε,

showing that f + g is continuous at s, as required.

Lemma 3.2 Let D be a subset of R, let f :D → R be a real-valued function
on D, let c be a real number, and let s ∈ D. Suppose that the function f is
continuous at s. Then so is the function cf , where (cf)(x) = cf(x) for all
x ∈ D.

Proof If c = 0 then the function cf is the zero function, and is therefore
continuous. We may therefore restrict attention to the case where c 6= 0.

Let some strictly positive real number ε be given, and let ε0 = ε/|c|.
Then ε0 > 0, and the continuity of f at s then ensures the existence of some
strictly positive real number δ such that |f(x)− f(s)| < ε0 whenever x ∈ D
satisfies |x− s| < δ. But then

|cf(x)− cf(s)| = |c| |f(x)− f(s)| < |c|ε0 = ε

whenever x ∈ D satisfies |x − s| < δ. This shows that the function cf is
continuous as s, as required.

Lemma 3.3 Let D be a subset of R, let f :D → R and g:D → R be real-
valued functions on D, and let s ∈ D. Suppose that the functions f and g
are continuous at s. Then so is the function f ·g, where (f ·g)(x) = f(x)g(x)
for all x ∈ D.

Proof Let some strictly positive real number ε be given. Then there exist
strictly positive real numbers δ1 and δ2 such that |f(x)−f(s)| <

√
ε whenever

x ∈ D satisfies |x− s| < δ1 and |g(x)− g(s)| <
√
ε whenever x ∈ D satisfies
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|x−s| < δ2. Let δ be the minimum of δ1 and δ2. Then δ > 0, and if |x−s| < δ
then

|(f(x)− f(s)(g(x)− g(s))| = |(f(x)− f(s)| |(g(x)− g(s))| <
√
ε×
√
ε = ε.

But

(f(x)− f(s)(g(x)− g(s)) = f(x)g(x)− f(s)g(x)− g(s)f(x) + f(s)g(s)

= h(x)− h(s),

where h:D → R is the real-valued function on D defined such that

h(x) = f(x)g(x)− f(s)g(x)− g(s)f(x)

for all x ∈ D. It follows that |h(x) − h(s)| < ε whenever x ∈ D satisfies
|x− s| < δ. We conclude from this that the function h:D → R is continuous
at s. Now

f(x)g(x) = h(x) + f(s)g(x) + g(s)f(x).

It therefore follows from Lemma 3.1 and Lemma 3.2 that the function f · g
is continuous as s, as required.

Proposition 3.4 Let f :D → R and g:E → R be functions defined on D
and E respectively, where D and E are subsets of R satisfying f(D) ⊂ E.
Let s be an element of D. Suppose that the function f is continuous at s and
that the function g is continuous at f(s). Then the composition g ◦ f of f
and g is continuous at s.

Proof Let some strictly positive real number ε be given. Then there exists
some strictly positive real number η such that |g(u) − g(f(s))| < ε for all
u ∈ E satisfying |u− f(s)| < η. But then there exists some strictly positive
real number δ such that |f(x)−f(s)| < η for all x ∈ D satisfying |x−s| < δ.
Thus if |x − s| < δ then |g(f(x)) − g(f(s))| < ε. Hence g ◦ f is continuous
at s.

Lemma 3.5 Let f :D → R be a function defined on a subset D of R, and
let s be an element of D. Suppose that f(x) 6= 0 for all x ∈ D and that the
function f is continuous at s for some s ∈ D. Then the function 1/f is also
continuous at s, where (1/f)(x) = 1/f(x) for all x ∈ D.

Proof Let r:R\{0} → R be defined such that r(t) = 1/t for all non-zero real
numbers t. We show that the function r is continuous. Let u be a non-zero
real number, and let some strictly positive real number ε be given. Then

r(t)− r(u) =
1

t
− 1

u
=
u− t
tu
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for all non-zero real numbers t. Let δ be the minimum of 1
2
|u| and 1

2
|u|2ε. If

t is a non-zero real number, and if |t− u| < δ then |t| ≥ |u| − |t− u| ≥ 1
2
|u|,

and therefore

|r(t)− r(u)| ≤ 2

|u|2
|t− u| < 2

|u|2
δ ≤ ε.

It follows that the function r:R \ {0} → R is continuous at u.
Now 1/f(x) = r(f(x)) for all x ∈ X. Moreover the function f is continu-

ous at s, and the function f is continuous at f(s). It follows from Lemma 3.4
that the composition function r◦f is continuous at s. Thus the function 1/f
is continuous at s, as required.

Proposition 3.6 Let f :D → R and g:D → R be functions defined over
some subset D of R. Suppose that f and g are continuous at some point s
of D. Then the functions f + g, f − g and f · g are also continuous at s. If
moreover the function g is everywhere non-zero on D then the function f/g
is continuous at s.

Proof Now f−g = f+(−g), and it follows from Lemma 3.2 that the function
−g is continuous on D. Lemma 3.1 therefore ensures that both f+g and f−g
are continuous at s. Lemma 3.3 ensures that f ·g is continuous at s. Moreover
if the function g is everywhere non-zero on D then f/g = f · (1/g), and
Lemma 3.5 ensures that the function 1/g is continuous on D. It then follows
from Lemma 3.3 that the function f/g is continuous on D, as required.

We shall show that if f :D → R is a continuous real-valued function
defined over some subset D of R, then so is |f |:D → R, where |f |(x) = |f(x)|
for all x ∈ D.

Let u and v be real numbers. Then∣∣∣|u| − |v|∣∣∣ ≤ |u− v|.
To see this, note that u = (u − v) + v and v = (v − u) + u and therefore
|u| ≤ |u − v| + |v| and |v| ≤ |v − u| + |u|. But |u − v| = |v − u|. It follows
that |u| − |v| ≤ |u− v| and |v| − |u| ≤ |u− v|, and therefore∣∣∣|u| − |v|∣∣∣ ≤ |u− v|.
We apply this inequality in the proof of the next lemma.

Lemma 3.7 Let D be a subset of R, let f :D → R be a real-valued function
on D, and let s ∈ D. Suppose that the function f is continuous at s. Then
so is the function |f |, where |f |(x) = |f(x)| for all x ∈ D.
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Proof Let some strictly positive real number ε be given. Then there exists
some strictly positive real number δ such that |f(x)−f(s)| < ε for all x ∈ D
satisfying |x− s| < δ. But then∣∣∣|f(x)| − |f(s)|

∣∣∣ ≤ |f(x)− f(s)| < ε

for all x ∈ D satisfying |x− s| < δ. It follows that |f |:D → R is continuous
at s, as required.

Lemma 3.8 Let f :D → R be a function defined on some subset D of R,
and let x1, x2, x3, . . . be a sequence of real numbers belonging to D. Suppose
that xj → s as j → +∞, where s ∈ D, and that f is continuous at s. Then
f(xj)→ f(s) as j → +∞.

Proof Let some positive real number ε be given. Then there exists some
positive real number δ such that |f(x) − f(s)| < ε for all x ∈ D satisfying
|x−s| < δ. But then there exists some positive integerN such that |xj−s| < δ
for all j satisfying j ≥ N . Thus |f(xj)− f(s)| < ε whenever j ≥ N . Hence
f(xj)→ f(s) as j → +∞.

3.2 Limits of Functions of One Real Variable

Definition Let D be a subset of R, and let s ∈ R. The real number s is said
to be a limit point of the set D if, given any strictly positive real number δ,
there exists some real number x belonging to D such that 0 < |x− s| < δ.

It follows easily from the definition of convergence of sequences of real
numbers that if D is a subset of the set R of real numbers, and if s is a point
of R then the point s is a limit point of the set D if and only if there exists
an infinite sequence x1, x2, x3, . . . of points of D, all distinct from the point s,
such that lim

j→+∞
xj = s.

Definition Let D be a subset of the set R of real numbers, let f :D → R be
a real-valued function on D, let s be a limit point of the set D, and let l be
a real number. The real number l is said to be the limit of f(x), as x tends
to s in D, if and only if the following criterion is satisfied:—

given any strictly positive real number ε, there exists some strictly
positive real number δ such that |f(x) − l| < ε whenever x ∈ D
satisfies 0 < |x− s| < δ.
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Let D be a subset of the set R of real numbers, let f :D → R be a real-
valued function on D, let s be a limit point of the set D, and let l be a real
number. If l is the limit of f(x) as x tends to s in D then we can denote this
fact by writing lim

x→s
f(x) = l.

Proposition 3.9 Let D be a subset of the set R of real numbers, let f :D →
R be a real-valued function on D, let s be a limit point of the set D, and let
l be a real number. Let D̃ = D ∪ {s}, and let f̃ : D̃ → R be defined such that

f̃(x) =

{
f(x) if x 6= s;
l if x = s.

Then lim
x→s

f(x) = l if and only if the function f̃ is continuous at s.

Proof The result follows directly on comparing the relevant definitions.

Corollary 3.10 Let D be a subset of R, let f :D → R be a real-valued func-
tion on D, and let s be a point of the set D that is also a limit point of D.
Then the function f is continuous at the point s if and only if lim

x→s
f(x) = f(s).

Let D be a subset of R, and let s be a real number belonging to the
set D. Suppose that s is not a limit point of the set D. Then there exists
some strictly positive real number δ0 such that |x − s| ≥ δ0 for all x ∈ X.
The point s is then said to be an isolated point of D.

Let D be a subset of R. The definition of continuity then ensures that
any real-valued function f :D → R on D is continuous at any isolated point
of its domain D.

Corollary 3.11 Let D be a subset of R, let f :D → R and g:D → R be real-
valued functions on D, and let s be a limit point of the set D. Suppose that
lim
x→s

f(x) and lim
x→s

g(x) both exist. Then so do lim
x→s

(f(x) + g(x)), lim
x→s

(f(x) −
g(x)) and lim

x→s
(f(x)g(x)), and moreover

lim
x→s

(f(x) + g(x)) = lim
x→s

f(x) + lim
x→s

g(x),

lim
x→s

(f(x)− g(x)) = lim
x→s

f(x)− lim
x→s

g(x),

lim
x→s

(f(x)g(x)) = lim
x→s

f(x)× lim
x→s

g(x).

If moreover g(x) 6= 0 for all x ∈ X and limx→s g(x) 6= 0 then

lim
x→s

f(x)

g(x)
=

lim
x→s

f(x)

lim
x→s

g(x)
.
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Proof Let D̃ = X ∪ {s}, and let f̃ : D̃ → R and g̃: D̃ → R be defined such
that

f̃(x) =

{
f(x) if x 6= s;
l if x = s.

g̃(x) =

{
g(x) if x 6= s;
m if x = s.

,

where l = lim
x→s

f(x) and m = lim
x→s

g(x). Then the functions f̃ and g̃ are

continuous at s. The result therefore follows on applying Proposition 3.6.

3.3 The Intermediate Value Theorem

Proposition 3.12 Let f : [a, b] → Z continuous integer-valued function de-
fined on a closed interval [a, b]. Then the function f is constant.

Proof Let

S = {x ∈ [a, b] : f is constant on the interval [a, x]},

and let s = supS. Now s ∈ [a, b], and therefore the function f is continuous
at s. Therefore there exists some strictly positive real number δ such that
|f(x)− f(s)| < 1

2
for all x ∈ [a, b] satisfying |x− s| < δ. But the function f

is integer-valued. It follows that f(x) = f(s) for all x ∈ [a, b] satisfying
|x − s| < δ. Now s − δ is not an upper bound for the set S. Therefore
there exists some element x0 of S satisfying s − δ < x0 ≤ s. But then
f(s) = f(x0) = f(a), and therefore the function f is constant on the interval
[a, x] for all x ∈ [a, b] satisfying s ≤ x < s+δ. Thus x ∈ [a, b]∩ [s, s+δ) ⊂ S.
In particular s ∈ S. Now S cannot contain any elements x of [a, b] satisfying
x > s. Therefore [a, b] ∩ [s, s + δ) = {s}, and therefore s = b. This shows
that b ∈ S, and thus the function f is constant on the interval [a, b], as
required.

Theorem 3.13 (The Intermediate Value Theorem) Let a and b be real num-
bers satisfying a < b, and let f : [a, b] → R be a continuous function defined
on the interval [a, b]. Let c be a real number which lies between f(a) and f(b)
(so that either f(a) ≤ c ≤ f(b) or else f(a) ≥ c ≥ f(b).) Then there exists
some s ∈ [a, b] for which f(s) = c.

Proof The result is trivially true in the cases where c = f(a) or x = f(b). We
may therefore suppose that either f(a) < c < f(b) or else f(a) > c > f(b).
In either case, let gc:R \ {c} → Z be the continuous integer-valued function
on R \ {c} defined such that gc(x) = 0 whenever x < c and gc(x) = 1 if
x > c. Suppose that c were not in the range of the function f . Then the
composition function gc ◦ f : [a, b]→ R would be a continuous integer-valued
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function defined throughout the interval [a, b]. This function would not be
constant, since gc(f(a)) 6= gc(f(b)). But every continuous integer-valued
function on the interval [a, b] is constant (Proposition 3.12). It follows that
every real number c lying between f(a) and f(b) must belong to the range
of the function f , as required.

Corollary 3.14 Let f : [a, b]→ [c, d] be a strictly increasing continuous func-
tion mapping an interval [a, b] into an interval [c, d], where a, b, c and d are
real numbers satisfying a < b and c < d. Suppose that f(a) = c and f(b) = d.
Then the function f has a continuous inverse f−1: [c, d]→ [a, b].

Proof Let x1 and x2 be distinct real numbers belonging to the interval [a, b]
then either x1 < x2, in which case f(x1) < f(x2) or x1 > x2, in which case
f(x1) > f(x2). Thus f(x1) 6= f(x2) whenever x1 6= x2. It follows that the
function f is injective. The Intermediate Value Theorem (Theorem 3.13)
ensures that f is surjective. It follows that the function f has a well-defined
inverse f−1: [c, d]→ [a, b]. It only remains to show that this inverse function
is continuous.

Let y be a real number satisfying c < y < d, and let x be the unique real
number such that a < x < b and f(x) = y. Let some strictly positive real
number ε be given. We can then choose x1, x2 ∈ [a, b] such that x−ε < x1 <
x < x2 < x+ ε. Let y1 = f(x1) and y2 = f(x2). Then y1 < y < y2. Choose a
strictly positive real number δ for which δ < y−y1 and δ < y2−y. If v ∈ [c, d]
satisfies |v − y| < δ then y1 < v < y2 and therefore x1 < f−1(v) < x2. But
then |f−1(v)− f−1(y)| < ε. We conclude that the function f−1: [c, d]→ [a, b]
is continuous at all points in the interior of the interval [a, b]. A similar
argument shows that it is continuous at the endpoints of this interval. Thus
the function f has a continuous inverse, as required.

3.4 The Extreme Value Theorem

Theorem 3.15 (The Extreme Value Theorem) Let a and b be real numbers
satisfying a < b, and let f : [a, b] → R be a continuous real-valued function
defined on the closed interval [a, b]. Then there exist real numbers u and v
belonging to the interval [a, b] such that f(u) ≤ f(x) ≤ f(v) for all x ∈ [a, b].

Proof We prove the result for an arbitrary continuous real-valued function
f : [a, b]→ R by showing that the result holds for a related continuous func-
tion g: [a, b]→ R that is known to be bounded above and below on [a, b]. Let
h:R→ R be the continuous function defined such that

h(t) =
t

1 + |t|
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for all t ∈ R. If t1 and t2 are real numbers satisfying 0 ≤ t1 < t2 then

h(t2)− h(t1) =
t2

1 + t2
− t1

1 + t1
=

t2 − t1
(1 + t1)(1 + t2)

> 0,

and thus h(t1) < h(t2). Thus the function h is strictly increasing on the set
of non-negative real numbers. Moreover h(0) = 0 and h(−t) = −h(t) for
all real numbers t. It follows easily from this that the continuous function
h:R→ R is increasing. Moreover −1 ≤ h(t) ≤ 1 for all t ∈ R.

Let f : [a, b] → R be a continuous real-valued function on the closed
bounded interval [a, b], and let g: [a, b] → R be the continuous real-valued
function defined on [a, b] such that

g(x) = h(f(x)) =
f(x)

1 + |f(x)|

for all x ∈ [a, b]. Then −1 ≤ g(x) ≤ 1 for all x ∈ [a, b]. The set of values
of the function g is then non-empty and bounded above, and therefore has a
least upper bound. Let

M = sup{g(x) : a ≤ x ≤ b}.

Then, for each positive integer j, the real number M − j−1 is not an upper
bound for the set of values of the function g, and therefore there exists some
real number xj satisfying a ≤ xj ≤ b for which M − j−1 < g(xj) ≤ M . The
sequence x1, x2, x3, . . . is then a bounded sequence of real numbers. It follows
from the Bolzano-Weierstrass Theorem that this sequence has a subsequence
xk1 , xk2 , xk3 , . . . which converges to some real number v, where a ≤ v ≤ b.
Now

M − 1

kj
< g(xkj) ≤M

for all positive integers j, and therefore g(xkj) → M as j → +∞. It then
follows from Lemma 3.8 that

g(v) = g

(
lim

j→+∞
xkj

)
= lim

j→+∞
g(xkj) = M.

But g(x) ≤ M for all x ∈ [a, b]. It follows that h(f(x)) = g(x) ≤ g(v) =
h(f(v)) for all x ∈ [a, b]. Moreover h:R → R is an increasing function. It
follows therefore that f(x) ≤ f(v) for all x ∈ [a, b].

On applying this result with the continuous function f replaced by the
function −f , we conclude also that there exists some real number u satisfying
a ≤ u ≤ b such that f(u) ≤ f(x) for all x ∈ [a, b]. The result follows.
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3.5 Uniform Continuity

Definition A function f :D → R is said to be uniformly continuous over a
subset D of R if, given any strictly positive real number ε, there exists some
strictly positive real number δ such that |f(u)− f(v)| < ε for all u, v ∈ [a, b]
satisfying |u− v| < δ. (where δ does not depend on u or v).

A continuous function defined over a subset D of R is not necessarily
uniformly continuous on D. (One can verify for example that the function
sending a non-zero real number x to 1/x is not uniformly continuous on the
set of all non-zero real numbers.) However we show that continuity does
imply uniform continuity when D = [a, b] for some real numbers a and b
satisfying a < b.

Theorem 3.16 Let f : [a, b] → R be a continuous real-valued function on a
closed bounded interval [a, b]. Then the function f is uniformly continuuous
on [a, b].

Proof Let some strictly positive real number ε be given. Suppose that there
did not exist any strictly positive real number δ such that |f(u)− f(v)| < ε
whenever |u − v| < δ. Then, for each positive integer j, there would exist
values uj and vj in the interval [a, b] such that |uj − vj| < 1/j and |f(uj)−
f(vj)| ≥ ε. But the sequence u1, u2, u3, . . . would be bounded (since a ≤ uj ≤
b for all j) and thus would possess a convergent subsequence uk1 , uk2 , uk3 , . . .,
by the Bolzano-Weierstrass Theorem (Theorem 2.5). Let l = lim

j→+∞
ukj . Then

l = lim
j→+∞

vkj also, since lim
j→+∞

(vkj − ukj) = 0. Moreover a ≤ l ≤ b. It

follows from the continuity of f that lim
j→+∞

f(ukj) = lim
j→+∞

f(vkj) = f(l)

(see Lemma 3.8). Thus lim
j→+∞

(
f(ukj)− f(vkj)

)
= 0. But this is impossible,

since uj and vj have been chosen so that |f(uj)− f(vj)| ≥ ε for all positive
integers j. We conclude therefore that there must exist some strictly positive
real number δ with the required property.
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4 Differentiation

4.1 Interior Points and Open Sets in the Real Line

Definition Let D be a subset of the set R of real numbers, and let s be a
real number belonging to D. We say that s is an interior point of D if there
exists some strictly positive number δ such that x ∈ D for all real numbers x
satisfying s − δ < x < s + δ. The interior of D is then the subset of D
consisting of all real numbers belonging to D that are interior points of D.

Definition Let D be a subset of the set R of real numbers. We say that D
is an open set in R if every point of D is an interior point of D.

Let s be a real number. We say that a function f :D → R is defined
around s if the real number s is an interior point of the domain D of the
function f . It follows that the function f is defined around s if and only if
there exists some strictly positive real number δ such that f(x) is defined for
all real numbers x satisfying s− δ < x < s+ δ.

4.2 Differentiable Functions

Definition Let s be some real number, and let f be a real-valued function
defined around s. The function f is said to be differentiable at s, with
derivative f ′(s), if and only if the limit

f ′(s) = lim
h→0

f(s+ h)− f(s)

h

is well-defined. We denote by f ′, or by
df

dx
the function whose value at s is

the derivative f ′(s) of f at s.

Suppose that the real-valued function f is defined around some real num-
ber s and is differentiable at s. Then

f(s+ h) = f(s) + h
f(s+ h)− f(s)

h

for all real numbers h sufficiently close to zero. It follows that

lim
x→s

f(x) = lim
h→0

f(s+ h) = lim
h→0

f(s) +
(

lim
h→0

h
)(

lim
h→0

f(s+ h)− f(s)

h

)
= f(s) + 0.f ′(s) = f(s),

and therefore f is continuous at s (see Lemma 3.10). Thus differentiability
implies continuity.
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Example Let f :R → R be the function defined by f(x) = x2. Let s be a
real number. If h 6= 0 then

f(s+ h)− f(s)

h
=

(s+ h)2 − s2

h
= 2s+ h.

Therefore the function f is differentiable at s, and f ′(s) = lim
h→0

(2s+ h) = 2s.

Example Let g: [0,+∞) → R be the function defined by g(x) =
√
x, and

let s ∈ (0,+∞). If h is any real number satisfying h > −s and h 6= 0 then

g(s+ h)− g(s)

h
=

√
s+ h−

√
s

h
=

(
√
s+ h−

√
s)(
√
s+ h+

√
s)

h(
√
s+ h+

√
s)

=
(s+ h)− s

h(
√
s+ h+

√
s)

=
1√

s+ h+
√
s
.

Now lim
h→0

√
s+ h =

√
s (since the function x 7→

√
x is continuous at s). It

follows that the function g is differentiable at s, and

g′(s) = lim
h→0

g(s+ h)− g(s)

h
=

1

lim
h→0

(
√
s+ h+

√
s)

=
1

2
√
s
.

Proposition 4.1 Let s be some real number, and let f and g be real-valued
functions defined around s. Suppose that the functions f and g are differen-
tiable at s. Then f + g and f − g are differentiable at s, and

(f + g)′(s) = f ′(s) + g′(s), (f − g)′(s) = f ′(s)− g′(s).

Proof It follows from Proposition 3.11 that

lim
h→0

(f + g)(s+ h)− (f + g)(s)

h

= lim
h→0

f(s+ h)− f(s)

h
+ lim

h→0

g(s+ h)− g(s)

h
= f ′(s) + g′(s).

Thus the function f + g is differentiable at s, and (f + g)′(s) = f ′(s) + g′(s).
An analogous proof shows that the function f − g is also differentiable at s
and (f − g)′(s) = f ′(s)− g′(s).

Proposition 4.2 (Product Rule) Let s be some real number, and let f and
g be real-valued functions defined around s. Suppose that the functions f
and g are differentiable at s. Then f · g is also differentiable at s, and
(f · g)′(s) = f ′(s)g(s) + f(s)g′(s).
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Proof Note that

f(s+ h)g(s+ h)− f(s)g(s)

h

=
f(s+ h)− f(s)

h
g(s+ h) + f(s)

g(s+ h)− g(s)

h
.

Moreover lim
h→0

g(s+ h) = g(s) since g is differentiable, and hence continuous,

at s. It follows that

lim
h→0

f(s+ h)g(s+ h)− f(s)g(s)

h

= lim
h→0

f(s+ h)− f(s)

h
lim
h→0

g(s+ h) + f(s) lim
h→0

g(s+ h)− g(s)

h
= f ′(s)g(s) + f(s)g′(s).

Thus the function f · g is differentiable at s, and (f · g)′(s) = f ′(s)g(s) +
f(s)g′(s), as required.

Proposition 4.3 (Quotient Rule) Let s be some real number, and let f and
g be real-valued functions defined around s. Suppose that the functions f and
g are differentiable at s and that the function g is non-zero around s. Then
f/g is differentiable at s, and

(f/g)′(s) =
f ′(s)g(s)− f(s)g′(s)

g(s)2
.

Proof Note that

f(s+ h)

g(s+ h)
− f(s)

g(s)
=

f(s+ h)g(s)− f(s)g(s+ h)

g(s+ h)g(s)

=
(f(s+ h)− f(s)) g(s)− f(s) (g(s+ h)− g(s))

g(s)g(s+ h)
.

Therefore

(f/g)′(s) = lim
h→0

1

h

(
f(s+ h)

g(s+ h)
− f(s)

g(s)

)
=

1

g(s)2

(
lim
h→0

f(s+ h)− f(s)

h
g(s)− f(s) lim

h→0

g(s+ h)− g(s)

h

)
=

f ′(s)g(s)− f(s)g′(s)

g(s)2
,

since lim
h→0

g(s)g(s+ h) = g(s)2 > 0.

31



Proposition 4.4 (Chain Rule) Let a be some real number, let f be a real-
valued function defined around a, and let g be a real-valued function defined
around f(a). Suppose that the function f is differentiable at a, and the
function g is differentiable at f(a). Then the composition function g ◦ f is
differentiable at a, and (g ◦ f)′(a) = g′(f(a))f ′(a).

Proof Let b = f(a), and let

R(y) =


g(y)− g(b)

y − b
if y 6= b;

g′(b) if y = b.

for values of y around b. By considering separately the cases when f(a+h) 6=
f(a) and f(a+ h) = f(a), we see that

g(f(a+ h))− g(f(a)) = R(f(a+ h))(f(a+ h)− f(a)).

Now the function f is continuous at a, because it is differentiable at a. Also
the function R is continuous at b, where b = f(a), since

lim
y→b

R(y) = lim
y→b

g(y)− g(b)

y − b
= lim

k→0

g(b+ k)− g(b)

k
= g′(b) = R(b).

It follows from Proposition 3.4 that the composition function R ◦ f is con-
tinuous at a, and therefore

lim
h→0

R(f(a+ h)) = R(f(a)) = g′(f(a))

by Lemma 3.10. It follows that g ◦ f is differentiable at a, and

(g ◦ f)′(a) = lim
h→0

g(f(a+ h))− g(f(a))

h

= lim
h→0

R(f(a+ h)) lim
h→0

f(a+ h)− f(a)

h
= g′(f(a))f ′(a),

as required.

4.3 Rolle’s Theorem and the Mean Value Theorem

Theorem 4.5 (Rolle’s Theorem) Let f : [a, b]→ R be a real-valued function
defined on some interval [a, b]. Suppose that f is continuous on [a, b] and
is differentiable on (a, b). Suppose also that f(a) = f(b). Then there exists
some real number s satisfying a < s < b which has the property that f ′(s) = 0.
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Proof First we show that if the function f attains its minimum value at u,
and if a < u < b, then f ′(u) = 0. Now the difference quotient

f(u+ h)− f(u)

h

is non-negative for all sufficiently small positive values of h; therefore f ′(u) ≥
0. On the other hand, this difference quotient is non-positive for all suffi-
ciently small negative values of h; therefore f ′(u) ≤ 0. We deduce therefore
that f ′(u) = 0.

Similarly if the function f attains its maximum value at v, and if a < v <
b, then f ′(v) = 0. (Indeed the result for local maxima can be deduced from
the corresponding result for local minima simply by replacing the function f
by −f .)

Now the function f is continuous on the closed bounded interval [a, b].
It therefore follows from the Extreme Value Theorem (Theorem 3.15) that
there must exist real numbers u and v in the interval [a, b] with the property
that f(u) ≤ f(x) ≤ f(v) for all real numbers x satisfying a ≤ x ≤ b. If
a < u < b then f ′(u) = 0 and we can take s = u. Similarly if a < v < b
then f ′(v) = 0 and we can take s = v. The only remaining case to consider
is when both u and v are endpoints of the interval [a, b]. In that case the
function f is constant on [a, b], since f(a) = f(b), and we can choose s to be
any real number satisfying a < s < b.

4.4 The Mean Value Theorem

Rolle’s Theorem can be generalized to yield the following important theorem.

Theorem 4.6 (The Mean Value Theorem) Let f : [a, b]→ R be a real-valued
function defined on some interval [a, b]. Suppose that f is continuous on [a, b]
and is differentiable on (a, b). Then there exists some real number s satisfying
a < s < b which has the property that

f(b)− f(a) = f ′(s)(b− a).

Proof Let g: [a, b] → R be the real-valued function on the closed inter-
val [a, b] defined by

g(x) = f(x)− b− x
b− a

f(a)− x− a
b− a

f(b).

Then the function g is continuous on [a, b] and differentiable on (a, b). More-
over g(a) = 0 and g(b) = 0. It follows from Rolle’s Theorem (Theorem 4.5)
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that g′(s) = 0 for some real number s satisfying a < s < b. But

g′(s) = f ′(s)− f(b)− f(a)

b− a
.

Therefore f(b)− f(a) = f ′(s)(b− a), as required.

4.5 Cauchy’s Mean Value Theorem

We now prove a generalization of the standard Mean Value Theorem, known
as Cauchy’s Mean Value Theorem.

Theorem 4.7 (Cauchy’s Mean Value Theorem) Let f and g be real-valued
functions defined on some interval [a, b]. Suppose that f and g are continuous
on [a, b] and are differentiable on (a, b). Then there exists some real number s
satisfying a < s < b which has the property that

(f(b)− f(a)) g′(s) = (g(b)− g(a)) f ′(s).

In particular, if g(b) 6= g(a) and the function g′ is non-zero throughout (a, b),
then

f(b)− f(a)

g(b)− g(a)
=
f ′(s)

g′(s)
.

Proof Consider the function h: [a, b]→ R defined by

h(x) = f(x) (g(b)− g(a))− g(x) (f(b)− f(a)) .

Then h(a) = f(a)g(b) − g(a)f(b) = h(b), and the function h satisfies the
hypotheses of Rolle’s Theorem on the interval [a, b]. We deduce from Rolle’s
Theorem (Theorem 4.5) that h′(s) = 0 for some s satisfying a < s < b. The
required result then follows immediately.

4.6 One-Sided Limits and Limits at Infinity

Definition Let f :D → R be a real-valued function defined over some sub-
set D of R, and let s and l be real numbers. We say that l is the limit
lim
x→s+

f(x) of f(x) as x tends to s from above if, given any strictly positive

real number ε, there exists some strictly positive real number δ such that
x ∈ D and l−ε < f(x) < l+ε for all real numbers x satisfying s < x < s+δ.
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If f is a real-valued function, if f(x) is defined for all real numbers x
greater than but sufficiently close to some real number s, if l is a real number,
and if l is the limit of f(x) as x tends to s from above, then we may denote
this fact by writing

l = lim
x→s+

f(x).

Definition Let f :D → R be a real-valued function defined over some sub-
set D of R, and let s and l be real numbers. We say that l is the limit
lim
x→s−

f(x) of f(x) as x tends to s from below if, given any strictly positive

real number ε, there exists some strictly positive real number δ such that
x ∈ D and l−ε < f(x) < l+ε for all real numbers x satisfying s−δ < x < s.

Let f :D → R be a real-valued function defined on some subset D of R,
and let s and l be real numbers. Suppose that there exists some positive real
number δ0 with the property that x ∈ D for all real numbers x satisfying
s < x < s+δ0. Then lim

x→s+
f(x) = l if and only if the real number l is the limit

of f(x) as x tends to s in the subset D ∩ (s,+∞) of D. Thus the properties
of “one-sided limits” taken as a variable x tends to some given value s from
above, or from below, are consequences of properties of limits in general, and
thus there is no need to develop a separate theory of “one-sided limits”.

Lemma 4.8 Let f :D → R be a real-valued function defined on a subset D of
R, let s be a real number that is an interior point of D∪{s}, and let l be a real
number. Then lim

x→s
f(x) = l if and only if lim

x→s+
f(x) = l and lim

x→s−
f(x) = l.

Proof It follows directly from the definition of limits that if lim
x→s

f(x) = l

then lim
x→s+

f(x) = l and lim
x→s−

f(x) = l. To prove the converse, suppose that

lim
x→s+

f(x) = l and lim
x→s−

f(x) = l. Let some strictly positive real number ε

be given. Then there exist strictly positive real numbers δ1 and δ2 such that
l− ε < f(x) < l+ ε both for all real numbers x satisfying s < x < s+ δ1 and
also for all real numbers x satisfying s− δ2 < x < s. Let δ be the minimum
of δ1 and δ2. Then l − ε < f(x) < l + ε for all real numbers x satisfying
0 < |x− s| < δ. It follows that lim

x→s
f(x) = l, as required.

Definition Let f :D → R be a real-valued function defined on some subsetD
of R, and let l be some real number. We say that l is the limit lim

x→+∞
f(x)

of f(x) as x→ +∞ if, given any strictly positive real number ε, there exists
some real number K such that x ∈ D and l − ε < f(x) < l + ε whenever
x > K.
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On comparing definitions, it we see that if f :D → R is a real-valued
function defined on a subset D of R, where D contains all real numbers
greater than some given real number, if l is a real number, then lim

x→+∞
f(x) = l

if and

lim
t→0+

f

(
1

t

)
= l.

It follows that properties of limits taken “at infinity” can be deduced from
corresponding properties of “one-sided limits” and thus follow from the gen-
eral theory of limits. In particular, if f and g are real valued functions, if
f(x) and g(x) are defined for all sufficiently large values of x, and if the limits
lim

x→+∞
f(x) and lim

x→+∞
g(x) both exist, then so do the corresponding limits of

the functions f + g, f − g, f.g and |f |, and moreover

lim
x→+∞

(f(x) + g(x)) = lim
x→+∞

f(x) + lim
x→+∞

g(x),

lim
x→+∞

(f(x)− g(x)) = lim
x→+∞

f(x)− lim
x→+∞

g(x),

lim
x→+∞

(f(x)g(x)) = lim
x→+∞

f(x)× lim
x→+∞

g(x),

lim
x→+∞

|f(x)| =

∣∣∣∣ lim
x→+∞

f(x)

∣∣∣∣ .
Moreover if in addition lim

x→+∞
g(x) 6= 0 then

lim
x→+∞

f(x)

g(x)
=

lim
x→+∞

f(x)

lim
x→+∞

g(x)
.

4.7 L’Hôpital’s Rule

An important corollary of Cauchy’s Mean Value Theorem is l’Hôpital’s Rule
for evaluating the limit of a quotient of two functions at a point where both
functions vanish.

Proposition 4.9 (L’Hôpital’s Rule for Limits from above) Let f and g be
differentiable real-valued functions defined around some real number s for
which f(s) = g(s) = 0. Suppose that there exists some strictly positive
real number δ0 such that g(x) and g′(x) are non-zero for all real numbers x

satisfying s < x < s + δ0, and that lim
x→s+

f ′(x)

g′(x)
exists (and is finite). Then

lim
x→s+

f(x)

g(x)
also exists, and

lim
x→s+

f(x)

g(x)
= lim

x→s+

f ′(x)

g′(x)
.
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Proof Let l = lim
x→s+

f ′(x)

g′(x)
, and let some strictly positive real number ε be

given. By choosing a sufficiently small strictly positive real number δ we can
ensure that f(x)/g(x) and f ′(x)/g′(x) are well-defined and

l − ε < f ′(x)

g′(x)
< l + ε

for all real numbers x satisfying s < x < s + δ. Now f(s) = g(s) = 0.
An application of Cauchy’s Mean Value Theorem to the functions f and g
on the interval [s, x] therefore ensures that there exists some real number t
satisfying s < t < x for which

f(x)

g(x)
=
f(x)− f(s)

g(x)− g(s)
=
f ′(t)

g′(t)
.

But then s < t < s+ δ. It follows that

l − ε < f ′(t)

g′(t)
< l + ε,

and therefore

l − ε < f(x)

g(x)
< l + ε.

This shows that lim
x→s+

f(x)/g(x) = l, as required.

Corollary 4.10 (L’Hôpital’s Rule for Limits from below) Let f and g be
differentiable real-valued functions defined around some real number s for
which f(s) = g(s) = 0. Suppose that there exists some strictly positive
real number δ0 such that g(x) and g′(x) are non-zero for all real numbers x

satisfying s − δ0 < x < s, and that lim
x→s−

f ′(x)

g′(x)
exists (and is finite). Then

lim
x→s−

f(x)

g(x)
also exists, and

lim
x→s−

f(x)

g(x)
= lim

x→s−

f ′(x)

g′(x)
.

Proof It follows from Proposition 4.9 and the definitions of limits from above
and from below that

lim
x→s−

f(x)

g(x)
= lim

h→0+

f(s− h)

g(s− h)
= lim

h→0+

f ′(s− h)

g′(s− h)
= lim

x→s−

f ′(x)

g′(x)
,

as required.
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Proposition 4.11 (L’Hôpital’s Rule) Let f and g be differentiable real-
valued functions defined around some real number s for which f(s) = g(s) =
0. Suppose that there exists some strictly positive real number δ such that
g(x) and g′(x) are non-zero for all real numbers x satisfying 0 < |x− s| < δ,
and that the limit of f ′(x)/g′(x) exists (and is finite) as x → s. Then the
limit of f(x)/g(x) exists as x→ s, and

lim
x→s

f(x)

g(x)
= lim

x→s

f ′(x)

g′(x)
.

Proof Let l = lim
x→s

f ′(x)

g′(x)
. It follows from Proposition 4.9 and Corollary 4.10

that

lim
x→s+

f(x)

g(x)
= lim

x→s+

f ′(x)

g′(x)
= l

and

lim
x→s−

f(x)

g(x)
= lim

x→s−

f ′(x)

g′(x)
= l.

It then follows from Lemma 4.8 that

lim
x→s

f(x)

g(x)
= l,

as required.

Example Using l’Hôpital’s Rule twice, we see that

lim
x→2

x3 + x2 − 16x+ 20

x3 − 3x2 + 4
= lim

x→2

3x2 + 2x− 16

3x2 − 6x
= lim

x→2

6x+ 2

6x− 6
=

7

3
.

Proposition 4.12 (L’Hôpital’s Rule for Limits at Infinity) Let f and g
be differentiable real-valued functions defined for all real numbers that are
greater than some given real number. Suppose that lim

x→+∞
f(x) = 0 and

lim
g→+∞

g(x) = 0. Suppose also that there exists some real number K such

that g(x) and g′(x) are non-zero for all real numbers x satisfying x > K,
and that the limit of f ′(x)/g′(x) exists (and is finite) as x→ +∞. Then the
limit of f(x)/g(x) exists as x→ +∞, and

lim
x→+∞

f(x)

g(x)
= lim

x→+∞

f ′(x)

g′(x)
.

38



Proof Suppose that

lim
x→+∞

f ′(x)

g′(x)
= l.

Let p: [0, 1/K)→ R and q: [0, 1/K)→ R be defined such that p(0) = q(0) =
0, p(t) = f(1/t) and q(t) = g(1/t) for all real numbers t satisfying 0 < t <
1/K. The requirements that lim

x→+∞
f(x) = 0 and lim

g→+∞
g(x) = 0 ensure that

the functions p and q defined on the interval [0, 1/K) are continuous at 0.
Moreover

p′(t) = − 1

t2
f ′
(

1

t

)
and q′(t) = − 1

t2
g′
(

1

t

)
for all real numbers t satisfying 0 < t < 1/K, and thus

lim
t→0+

p′(t)

q′(t)
= lim

x→+∞

f ′(x)

g′(x)
= l.

It follows that there exists some positive real number δ such that l − ε <
p′(t)/q′(t) < l + ε for all real numbers t satisfying 0 < t < δ. Let s be a real
number satisfying 0 < s < δ. application of Cauchy’s Mean Value Theorem
shows that there exists some real number t satisfying 0 < t < s < δ for which

p(s)

q(s)
=
p(s)− p(0)

q(s)− q(0)
=
p′(t)

q′(t)
.

But then l − ε < p(s)/q(s) < l + ε. It follows that lim
s→0+

p(s)/q(s) = l, and

thus lim
x→+∞

f(x)/g(x) = l, as required.

4.8 Derivatives of Trigonometrical Functions

Proposition 4.13 Let sin:R → R be the sine function whose value sin θ,
for a given real number θ is the sine of an angle of θ radians. Then

lim
θ→0

sin θ

θ
= 1.

Proof Let E and A be the endpoints of a diameter of a circle of unit radius,
let O be the centre of the circle, and let B be a point on the circle for which
the line OB makes an angle of θ radians with the line OA, where 0 < θ < π

2
.

Let C be the point on the line segment OA for which the angle OCB is a
right angle, and let the line OB be produced to the point D determined so
that the angle OAD is a right angle.

The sector OAB of the unit circle is by definition the region bounded by
the arc AB of the circle and the radii OA and OB. Now the area of a sector
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of a circle subtending at the centre an angle of θ radians is equal to the area

of the circle multiplied by
θ

2π
. But the area of a circle of unit radius is π. It

follows that a sector of the unit circle subtending at the centre an angle of θ
radians has area 1

2
θ. Also the triangles OAB and OAD have heights equal to

lengths of the line segments BC and AD respectively, and the definitions of
the sine, cosine and tangent functions ensure that the lengths of BC and AD
are sin θ and tan θ respectively. Also the common base OA of the triangles
OAB and OAD has length one unit, because the circle has unit radius. Now,
in Euclidean geometry, the area of any triangle is half the base of the triangle
multiplied by the height of the triangle. Therefore

area of triangle OAB = 1
2

sin θ,

area of sector OAB = 1
2
θ,

area of triangle OAD = 1
2

tan θ =
sin θ

2 cos θ
.

Moreover the triangle OAB is strictly contained in the sector OAB, which in
turn is strictly contained in the triangle OAD. It follows that

sin θ < θ <
sin θ

cos θ
,

for all real numbers θ satisfying 0 < θ < π
2
, and therefore

cos θ <
sin θ

θ
< 1,

for all real numbers θ satisfying 0 < θ < π
2
. Now, given any positive real

number ε, there exists some real numbeer δ satisfying 0 < δ < π
2

such that
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1−ε < cos θ < 1 whenever 0 < θ < δ. (In geometrical terms, we are choosing
δ so that the length of the line segment BA in the figure associated with this
proof is less than ε whenever 0 < θ < δ.) But then

1− ε < sin θ

θ
< 1

whenever 0 < θ < δ. These inequalities also hold when −δ < θ < 0,

because the value of
sin θ

θ
is unchanged on replacing θ by −θ. It follows that

lim
θ→0

sin θ

θ
= 1, as required.

Corollary 4.14 Let cos:R → R be the cosine function whose value cos θ,
for a given real number θ is the cosine of an angle of θ radians. Then

lim
θ→0

1− cos θ

θ
= 0.

Proof Basic trigonometrical identities ensure that

1− cos θ = 2 sin2 1
2
θ and sin θ = 2 sin 1

2
θ cos 1

2
θ

for all real numbers θ. Therefore

1− cos θ

sin θ
=

sin 1
2
θ

cos 1
2
θ

= tan 1
2
θ

for all real numbers θ. It follows that

lim
θ→0

1− cos θ

sin θ
= 0,

and therefore

lim
θ→0

1− cos θ

θ
= lim

θ→0

1− cos θ

sin θ
× lim

θ→0

sin θ

θ
= 0× 1 = 0,

as required.

Corollary 4.15 The derivatives of the sine and cosine functions satisfy

d

dx
(sinx) = cos x, and

d

dx
(cosx) = − sinx.
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Proof Using standard principles of differential calculus we see that

d

dx
(sinx) = lim

h→0

sin(x+ h)− sinx

h

= lim
h→0

sinx cosh− cosx sinh− sinx

h

= cos x lim
h→0

sinh

h
− sinx lim

h→0

1− cosh

h
= cos x,

d

dx
(cosx) = lim

h→0

cos(x+ h)− cosx

h

= lim
h→0

cosx cosh− sinx sinh− sinx

h

= − sinx lim
h→0

sinh

h
− cosx lim

h→0

1− cosh

h
= − sinx,

as required.

4.9 Derivatives of Logarithmic and Exponential Func-
tions

Given any real numbers a and b satisfying a < b, let L(a, b) denote the area
of the region

{(x, y) ∈ R2 : a ≤ x ≤ b, y ≥ 0 and xy ≤ 1}

of the Euclidean plane bounded by the x-axis (i.e., the line y = 0), the line
x = a, the line y = b and the hyperbola xy = 1. (The quantity L(a, b)
thus denotes the area under the graph of the function sending x to 1/x (i.e.,
between the graph of that function and the x-axis) in the interval from x = a
and x = b.

Let r be a positive real number, and let T :R2 → R2 denote the transfor-
mation of the Euclidean plane defined such that T (x, y) = (rx, r−1x) for all
real numbers x and y. Given any rectangle in R2 with sides parallel to the
coordinate axes, the image of that rectangle under the transformation T has
the same area as the rectangle itself. It follows from this that the T :R2 → R2

preserves the area of any geometrical figure whose boundary can be approx-
imated sufficiently closely by a polygonal curve with sides parallel to the
coordinate axes. Now the transformation T maps the hyperbola xy = 1 onto
itself. It therefore maps the region

{(x, y) ∈ R2 : a ≤ x ≤ b, y ≥ 0 and xy ≤ 1}
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onto the region

{(x, y) ∈ R2 : ra ≤ x ≤ rb, y ≥ 0 and xy ≤ 1}.

It follows that L(ra, rb) = L(a, b) for all strictly positive real numbers a, b
and r satisfying a < b.

Let us define L(a, a) = 0 and L(b, a) = −L(a, b) for all positive real
numbers a and b satisfying a < b. Then L(a, b) = L(ra, rb) for all positive
real numbers a, b and r, irrespective of whether a < b, a = b or a > b.
Moreover L(a, c) = L(a, b) + L(b, c) for all positive real numbers a, b and c.

We define log x = L(1, x) for all positive real numbers x. The real-valued
function log:R+ → R defined on the set R+ of positive real numbers is the
natural logarithm function.

If u and v are real numbers satisfying u < v then log v− log u = L(u, v) >
0, and thus log u < log v. Thus the logarithm function log:R+ → R is a
monotonically increasing function.

Lemma 4.16 The natural logarithm function log:R+ → R satisfies

log(xy) = log x+ log y.

for all real numbers x and y.

Proof Given real numbers a and b, let L(a, b) denote the area of the region
Xa,b of the plane defined such that

Xa,b = {(x, y) ∈ R2 : a ≤ x ≤ b, y ≥ 0 and xy ≤ 1}.

Then L(a, c) = L(a, b) + L(b, c) for all positive real numbers a, b and c. It
follows that

log xy = L(1, xy) = L(1, x) + L(x, xy) = L(1, x) + L(1, y) = log x+ log y,

as required.
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Lemma 4.17 The natural logarithm function log:R+ → R satisfies

d

dx
(log x) =

1

x
.

for all real numbers x.

Proof Given real numbers a and b, let L(a, b) denote the area of the region
Xa,b of the plane defined such that

Xa,b = {(x, y) ∈ R2 : a ≤ x ≤ b, y ≥ 0 and xy ≤ 1}.

Let s be a positive real number. Then

log(s+ h)− log s

h
=

1

h
L(s, s+ h)

for all real numbers h satisfying h > −s. Suppose that h > 0. Then

Xs,h ⊃ {(x, y) ∈ R2 : s ≤ x ≤ s+ h and 0 ≤ y ≤ 1/(s+ h)}

and
Xs,s+h ⊂ {(x, y) ∈ R2 : s ≤ x ≤ s+ h and 0 ≤ y ≤ 1/s},

and therefore
1

s+ h
<

1

h
L(s, s+ h) <

1

s
.

Taking the limit as h tends to zero from above, we find that

lim
h→0+

log(s+ h)− log s

h
= lim

h→0+

1

h
L(s, s+ h) =

1

s
.

Similarly
1

s
<

1

k
L(s− k, s) < 1

s− k
for all real numbers k satisfying 0 < k < s, and therefore

lim
h→0−

log(s+ h)− log s

h
= lim

k→0+

log s− log(s− k)

k
= lim

k→0+

1

k
L(s− k, s) =

1

s
.

It follows that

lim
h→0

log(x+ h)− log x

h
=

1

s
.

We deduce that the natural logarithm function is differentiable, and

d

dx
(log x) =

1

x

for all positive real numbers x, as required.
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Let s be a real number satisfying s > 1, and let n be a positive integer.
Then log s > 0, log sn = n log s and log s−n = −n log s. The Intermediate
Value Theorem (Theorem 3.13) then ensures that all real numbers between
−n log s and n log s belong to the range of the natural logarithm function.
Now, given any real number y, we can choose n large enough to ensure
that |y| < n log s. It follows that there exists some positive real number x
satisfying log x = y. This shows that the range of the logarithm function
is the set R of real numbers. Also log u < log v for all real numbers u and
v satisfying u < v. It follows that the function log:R+ → R provides a
one-to-one correspondence between the set R+ of positive real numbers and
the set R of real numbers, and therefore there exists a well-defined function
exp:R → R whose value exp(t) at any real number t is equal to the unique
positive real number s satisfying log s = t. This function exp:R → R is the
exponential function. The range of the exponential function exp:R → R is
the set R+ of positive real numbers. It follows from the definition of the
exponential function that exp(log x) = x for all positive real numbers x.

Lemma 4.18 The exponential function exp:R→ R is differentiable, and

d

dx
(exp(x)) = exp(x)

for all real numbers x.

Proof Let t be a real number. Then there exists some positive real number s
satisfying log s = t. Now the logarithm function is differentiable at s, and its
derivative at s is equal to 1/s. It follows that

s = lim
k→0

k

log(s+ k)− log s
= lim

u→s

u− s
log u− log s

.

Let some strictly positive number ε be given. Then there exists some strictly
positive number η such that

s− ε < u− s
log u− log s

< s+ ε

for all real numbers u satisfying s − η < u < s + η that are not equal to
s. Now t = log s, and therefore log(s − η) < t < log(s + η). Let δ be the
minimum of log(s+η)− t and t− log(s−η). Then δ > 0, and, given any real
number x that differs from t but satisfies the inequalities t− δ < x < t + δ,
there exists some positive real number u satisfying s − η < u < s + η for
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which x = log u. Moreover u 6= s, because x = log u, t = log s and x 6= t.
x 6= s. But then u = exp(x) and s = exp(t), and therefore

s− ε < exp(x)− exp(t)

x− t
< s+ ε.

Thus, given any positive real number ε, there exists some positive real num-
ber δ such that

exp(t)− ε < exp(t+ h)− exp(t)

h
< exp(t) + ε.

for all real numbers h satisfying 0 < |h| < δ. It follows that

lim
h→0

exp(t+ h)− exp(t)

h
= exp(t),

as required.

4.10 Continuous Differentiability and Smoothness

Definition An open set in R is a subset D of R with the property that,
given any element s of D, there exists some strictly positive real number δ
such that every real number x satisfying |x− s| < δ belongs to the set D.

Definition Let f :D → R be a real valued function defined on an open set D
in R. The function f is said to be k-times continuously differentiable (or Ck)
on D if the function f itself and its first k derivatives f ′, f ′′, . . . , f (k) are
well-defined and continuous on D.

Definition Let f :D → R be a real valued function defined on an open set D
in R. The function f is said to be smooth (or C∞) on D if the function f itself
and its derivatives f ′, f ′′, f ′′′, . . . of all orders are well-defined and continuous
on D.

Sums, differences and products of smooth functions are smooth. Also a
quotient of a smooth function by another smooth function that is everywhere
non-zero is itself smooth.

In particular polynomial functions are smooth, and the sine, cosine, tan-
gent, logarithm and exponential functions are smooth where they are defined.

Lemma 4.19 Let f :D → R and g:E → R be smooth functions defined
over open subsets D and E of R, where f(D) ⊂ E. Then the composition
function g ◦ f :D → R is smooth.
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Proof Let f (0) = f , g(0) = g, f (1) = f ′, g(1) = g′ etc., and let C denote
the the collection of functions that either are of the form g(k) ◦ f for some
non-negative integer k or else are of the form

(g(k) ◦ f) · f (j1) · f (j2) · · · · · f (jm)

for some non-negative integer k and positive integers j1, j2, . . . , jm. Now it
follows from the Chain Rule (Proposition 4.4) and the Product Rule (Propo-
sition 4.2) that any function belonging to this collection C is differentiable,
and moreover the derivative of a function belonging to C either belongs itself
to C or else is expressible as a sum of functions belonging to the collection C.
Thus any function expressible as a sum of functions belonging to C is dif-
ferentiable, and its derivative is expressible as a sum of functions belonging
to the collection C. It follows that any function belonging to the collec-
tion C is smooth. In particular, the composition function g ◦ f is smooth, as
required.

4.11 Taylor’s Theorem for Functions of One Real Vari-
able

A subset I of R is an interval if and only if (s, u) ⊂ I for all s, u ∈ I, where

(s, u) = {x ∈ R : s ≤ x ≤ u}.

Thus a subset I of R is an interval if and only if, given real numbers s, x
and u satisfying s < x < u for which s ∈ I and u ∈ I, the real number x
also satisfies x ∈ I. An open interval is an interval that is also an open
set in R. Given real numbers c and d satisfying c < d, the intervals (c, d),
(c,+∞) and (−∞, d) are open intervals, as is the whole real line R. It is
a straightforward exercise to verify, using the Least Upper Bound Principle,
that all open intervals in R conform to one of the types just described.

Lemma 4.20 Let s and h be real numbers, let f be a k times differentiable
real-valued function defined on some open interval containing s and s + h,
let c0, c1, . . . , ck−1 be real numbers, and let

p(t) = f(s+ th)−
k−1∑
n=0

cnt
n.

for all real numbers t belonging to some open interval I for which 0 ∈ I and
1 ∈ I. Then p(n)(0) = 0 for all integers n satisfying 0 ≤ n < k if and only if

cn =
hnf (n)(s)

n!
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for all integers n satisfying 0 ≤ n < k.

Proof On setting t = 0, we find that p(0) = f(s)− c0, and thus p(0) = 0 if
and only if c0 = f(s).

Let the integer n satisfy 0 < n < k. On differentiating the function p
n times (using in particular the Chain Rule to differentiate f(s+ th) and its
derivatives as functions of t), we find that

p(n)(t) = hnf (n)(s+ th)−
k−1∑
j=n

j!

(j − n)!
cjt

j−n.

Then, on setting t = 0, we find that only the term with j = n contributes
to the value of the sum on the right hand side of the above identity, and
therefore

p(n)(0) = hnf (n)(s)− n!cn.

The result follows.

Theorem 4.21 (Taylor’s Theorem) Let s and h be real numbers, and let f
be a k times differentiable real-valued function defined on some open interval
containing s and s+ h. Then

f(s+ h) = f(s) +
k−1∑
n=1

hn

n!
f (n)(s) +

hk

k!
f (k)(s+ θh)

for some real number θ satisfying 0 < θ < 1.

Proof Let I be an open interval, containing the real numbers 0 and 1, chosen
to ensure that f(s + th) is defined for all t ∈ I, and let p: I → R be defined
so that

p(t) = f(s+ th)− f(s)−
k−1∑
n=1

tnhn

n!
f (n)(s)

for all t ∈ I. A straightforward calculation shows that p(n)(0) = 0 for n =
0, 1, . . . , k− 1 (see Lemma 4.20). Thus if q(t) = p(t)− p(1)tk for all s ∈ [0, 1]
then q(n)(0) = 0 for n = 0, 1, . . . , k − 1, and q(1) = 0. We can therefore
apply Rolle’s Theorem (Theorem 4.5) to the function q on the interval [0, 1]
to deduce the existence of some real number t1 satisfying 0 < t1 < 1 for
which q′(t1) = 0. We can then apply Rolle’s Theorem to the function q′ on
the interval [0, t1] to deduce the existence of some real number t2 satisfying
0 < t2 < t1 for which q′′(t2) = 0. By continuing in this fashion, applying
Rolle’s Theorem in turn to the functions q′′, q′′′, . . . , q(k−1), we deduce the
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existence of real numbers t1, t2, . . . , tk satisfying 0 < tk < tk−1 < · · · < t1 < 1
with the property that q(n)(tn) = 0 for n = 1, 2, . . . , k. Let θ = tk. Then
0 < θ < 1 and

0 =
1

k!
q(k)(θ) =

1

k!
p(k)(θ)− p(1) =

hk

k!
f (k)(s+ θh)− p(1),

hence

f(s+h) = f(s)+
k−1∑
n=1

hn

n!
f (n)(s)+p(1) = f(s)+

k−1∑
n=1

hn

n!
f (n)(s)+

hk

k!
f (k)(s+θh),

as required.

Corollary 4.22 Let f :D → R be a k-times continuously differentiable func-
tion defined over an open subset D of R and let s ∈ R. Then given any strictly
positive real number ε, there exists some strictly positive real number δ such
that ∣∣∣∣∣f(s+ h)− f(s)−

k∑
n=1

hn

n!
f (n)(s)

∣∣∣∣∣ < ε|h|k

whenever |h| < δ.

Proof The function f is k-times continuously differentiable, and therefore
its kth derivative f (k) is continuous. Let some strictly positive real number ε
be given. Then there exists some strictly positive real number δ that is small
enough to ensure that s + h ∈ D and |f (k)(s + h)− f (k)(s)| < k!ε whenever
|h| < δ. If h is an real number satisfying |h| < δ, and if θ is a real number
satisfying 0 < θ < 1, then s + θh ∈ D and |f (k)(s + θh) − f ((k)(s)| < k!ε.
Now it follows from Taylor’s Theorem (Theorem 4.21) that, given any real
number h satisfying |h| < δ there exists some real number θ satisfying 0 <
θ < 1 for which

f(s+ h) = f(s) +
k−1∑
n=1

hn

n!
f (n)(s) +

hk

k!
f (k)(s+ θh).

Then∣∣∣∣∣f(s+ h)− f(s)−
k∑

n=1

hn

n!
f (n)(s)

∣∣∣∣∣ =
|h|k

k!
|f (k)(s+ θh)− f ((k)(s)| < ε|h|k,

as required.
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Corollary 4.23 The exponential function exp:R→ R satisfies

exp(x) =
+∞∑
n=0

xn

n!

for all real numbers x.

Proof The derivative of the exponential function is the exponential function
itself (Lemma 4.18). It follows from Taylor’s Theorem (Theorem 4.21) that

expx =
m∑
n=0

xn

n!
+

xm+1

(m+ 1)!
exp(θx)

for some real number θ satisfying 0 < θ < 1. It follows that∣∣∣∣∣expx−
m∑
n=0

xn

n!

∣∣∣∣∣ ≤ bm+1(x) exp(|x|),

where

bn(x) =
|x|n

n!

for all real numbers x and non-negative integers n. Note that bn(x) ≥ 0 for
all real numbers x and non-negative integers n.

Let N be some positive integer satisfying N ≥ 2|x|. If n is a positive
integer satisfying n ≥ N then n+ 1 > 2|x|, and therefore

bn+1(x) =
|x|
n+ 1

× bn(x) < 1
2
bn(x).

It follows that 0 ≤ bn(x) <
1

2n−N
bN(x) whenever n ≥ N , and therefore

lim
n→+∞

bn(x) = 0. Thus ∣∣∣∣∣expx−
m∑
n=0

xn

n!

∣∣∣∣∣→ 0

as m→ +∞, and thus

expx = lim
m→+∞

m∑
n=0

xn

n!
=

+∞∑
n=0

xn

n!
,

as required.
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Corollary 4.24 The sine function sin:R→ R and cosine function cos:R→
R satisfy

sinx =
+∞∑
k=0

(−1)kx2k+1

(2k + 1)!
and cosx =

+∞∑
k=0

(−1)kx2k

(2k)!

for all real numbers x.

Proof The derivatives of the sine function are given by

sin(2k)(x) = (−1)k sin(x) and sin(2k+1)(x) = (−1)k cos(x)

for all positive integers k. It follows from Taylor’s Theorem that, given any
real number x, and given any non-negative integer m, there exists some θ
satisfying 0 < θ < 1 such that

sinx =
m∑
k=0

(−1)kx2k+1

(2k + 1)!
+

(−1)m+1x2m+3

(2m+ 3)!
cos(θx)

(The value of θ will depend on x and m.) It follows that∣∣∣∣∣sinx−
m∑
k=0

(−1)kx2k+1

(2k + 1)!

∣∣∣∣∣ ≤ b2m+3(x),

for all non-negative integers m, where bn(x) = |x|n/n! for all real numbers x
and non-negative integers n. But it was shown in the proof of Corollary 4.23
that lim

n→+∞
bn(x) = 0 for all real numbers x. It follows that

sinx = lim
m→+∞

m∑
n=0

(−1)kx2k+1

(2k + 1)!
=

+∞∑
n=0

(−1)kx2k+1

(2k + 1)!
.

Similarly the derivatives of the cosine function are given by

cos(2k)(x) = (−1)k cos(x) and cos(2k−1)(x) = (−1)k sin(x)

for all positive integers k. Therefore, given any real number x, and given any
non-negative integer m, there exists some θ satisfying 0 < θ < 1 such that

cosx =
m∑
k=0

(−1)kx2k

(2k)!
+

(−1)k+1x2m+2

(2k + 2)!
cos(θx)
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But then ∣∣∣∣∣cosx−
m∑
n=0

(−1)nx2n

(2n)!

∣∣∣∣∣ ≤ b2m+2(x),

where, as before, bn(x) = |x|n/n! for all real numbers x and non-negative
integers n. But lim

n→+∞
bn(x) = 0 for all real numbers x. It follows that

cosx = lim
m→+∞

m∑
n=0

(−1)nx2n

(2n)!
=

+∞∑
n=0

(−1)nx2n

(2n)!
,

as required.

4.12 Real-Analytic Functions

Definition A real-valued function f :D → R defined over an open subset D
of the set R of real numbers is said to be real-analytic if, given any real
number s belonging to the domain D of the function, there exists some
strictly positive real number δ such that

f(s+ h) = f(s) +
+∞∑
n=1

hn

n!
f (n)(s)

for all real numbers h satisfying |h| < δ.

It can be shown that sums, differences, products, quotients and com-
positions of real-analytic functions are themselves real-analytic over their
domains of definition. In particular, polynomial functions and quotients of
polynomial functions are real-analytic. The natural logarithm function is
real-analytic over the set of positive real numbers because its derivative is
real-analytic. It follows from Corollary 4.23 that the exponential function is
real-analytic. and it follows from Corollary 4.24 that the sine and cosine func-
tions are real-analytic. Inverses of real-analytic functions are real-analytic.

All real-analytic functions are smooth. However not all smooth functions
are real-analytic.

4.13 Smooth Functions that are not the Sum of their
Taylor Series

Let f be an infinitely differentiable real-valued function defined around some
real number a. The infinite series

f(a) +
+∞∑
n=1

hn

n!
f (n)(a)
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is referred to as the Taylor expansion of the function f about a. For many
functions, typically including those constructed from polynomial functions,
logarithm functions, exponential functions, trigonometrical functions and
their inverses, identities of the form

f(a+ h) = f(a) +
+∞∑
n=1

hn

n!
f (n)(a) = f(a) + lim

m→+∞

(
m∑
n=1

hn

n!
f (n)(a)

)

for all sufficiently small values of h. Such functions are said to be real-
analytic. However there exist functions whose Taylor expansion about some
real number a does not converge to the given function for any non-zero value
of h. Such a function is the subject of the following lemma.

Proposition 4.25 Let f :R → R be the function mapping the set R of real
numbers to itself defined such that

f(x) =

 exp

(
−1

x

)
if x > 0;

0 if x ≤ 0.

Then the function f :R → R is smooth on R. In particular f (k)(0) = 0 for
all positive integers k.

Proof We show by induction on k that the function f is k times differentiable
on R and f (k)(0) = 0 for all positive integers k. Now it follows from standard
rules for differentiating functions that

f (k)(x) =
pk(x)

x2k
exp

(
−1

x

)
for all strictly positive real numbers x, where p1(x) = 1 and

pk+1(x) = x2p′k(x) + (1− 2kx)pk(x)
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for all k. A straightforward proof by induction shows that pk(x) is a poly-
nomial in x of degree k − 1 for all positive integers k with leading term
(−1)k−1k!xk−1.

Now
d

dt

(
tne−t

)
= tn−1(n− t)e−t

for all positive real numbers t. It follows that function sending each positive
real number t to tne−t is increasing when 0 ≤ t < n and decreasing when
t > n, and therefore tne−t ≤ Mn for all positive real numbers t, where
Mn = nne−n. It follows that

0 ≤ 1

x2k+1
exp

(
−1

x

)
≤M2k+2x

for all positive real numbers x, and therefore

lim
h→0+

1

h2k+1
exp

(
−1

h

)
= 0.

It then follows that

lim
h→0+

f (k)(h)

h
= lim

h→0+

(
pk(h)

h2k+1
exp

(
−1

h

))
= lim

h→0+
pk(h)× lim

h→0+

(
1

h2k+1
exp

(
−1

h

))
= pk(0)× 0 = 0

for all positive integers k.
Now

lim
h→0+

f(h)− f(0)

h
= lim

h→0+

f(h)

h
= 0 = lim

h→0−

f(h)− f(0)

h
.

It follows that the function f is differentiable at zero, and f ′(0) = 0.
Suppose that the function f(x) is k-times differentiable at zero for some

positive integer k, and that f (k)(0) = 0. Then

lim
h→0+

f (k)(h)− f (k)(0)

h
= lim

h→0+

f (k)(h)

h
= 0 = lim

h→0−

f (k)(h)− f (k)(0)

h
.

It then follows that the function f (k) is differentiable at zero, and moreover
the derivative f (k+1)(0) of this function at zero is equal to zero. The func-
tion f is thus (k + 1)-times differentiable at zero.
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It now follows by induction on k that f (k)(x) exists for all positive inte-
gers k and real numbers x, and moreover

f (k)(x) =


pk(x)

x2k
exp

(
−1

x

)
if x > 0;

0 if x ≤ 0.

The function f :R→ R is thus a smooth function, as required.

Remark Note that the function f :R → R defined in the statement of
Lemma 4.25 has a well-defined Taylor expansion about x = 0. Moreover
all the terms of this Taylor expansion are zero, and therefore the Taylor ex-
pansion of f converges to the zero function. This function therefore provides
an example of a function where the Taylor expansion is well-defined but does
not converge to the given function.

Corollary 4.26 Let g:R → R be the function mapping the set R of real
numbers to itself defined such that

g(x) =

 1− exp

(
− x

1− x

)
if x < 0;

1 if x ≥ 1.

Then the function g:R → R is smooth on R. Moreover the function g is a
strictly increasing function on {x ∈ R : x < 1}, and g(0) = 0.

Proof Let f :R→ R be the real-valued function defined on the set R of real
numbers so that

f(x) =

 exp

(
−1

x

)
if x > 0;

0 if x ≤ 0.
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Now

− x

1− x
= 1− 1

1− x
for all real numbers x. It follows from the definition of the functions f and
g that g(x) = 1 − ef(1 − x) for all real numbers x, where e = exp(1). Now
Proposition 4.25 ensures that the function f is smooth on R. It follows that
the function g is also smooth on R. Also g(0) = 0. Now f(1−x) is a strictly
decreasing function of x on {x ∈ R : x < 1}. It follows that the function g is
strictly increasing on that set, as required.

Corollary 4.27 Let h:R→ R be defined such that h(x) = g(f(x)/f(1)) for
all real numbers x, where

f(x) =

 exp

(
−1

x

)
if x > 0,

0 if x ≤ 0,

g(x) =

 1− exp

(
− x

1− x

)
if x < 0;

1 if x ≥ 1.

Then the function h:R → R is smooth, h(x) = 0 whenever x ≤ 0, h(1) = 1
whenever x ≥ 1, and h(x) is a strictly increasing function of x when restricted
to the interval {x ∈ R : 0 < x < 1}.

Proof The function h is a composition of smooth functions, and is therefore
smooth (see Lemma 4.19). If x ≤ 0 then h(x) = g(f(0)) = g(0) = 0. If
x ≥ 1 then f(x)/f(1) ≥ 1 and therefore h(x) = 1. The function sending
a real number x satisfying 0 < x < 1 to f(x)/f(1) is strictly increasing on
the interval (0, 1) and maps that interval into itself. Also the function g is
strictly increasing on the interval (0, 1). Thus the function h restricted to
the interval (0, 1) is a composition of two strictly increasing functions, and
is thus itself strictly increasing, as required.
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4.14 Historical Note

Representation of functions as sums of infinite series have been known to
mathematicians for centuries. The standard representation of the sine and
cosine and arctangent functions was known to, and presumably discovered
by, Madhava of Sangramagrama (c. 1340–c. 1425), whose work gave impetus
to the flourishing of the study of astronomy and mathematics in Kerala,
in southern India. The theory of infinite series was extensively developed in
Western Europe in the 17th century, with Isaac Newton (1642–1726/7) being
particularly active in the field. Isaac Newton’s manuscript on the Method of
fluxions and infinite series was completed in 1671, and was posthumously
published in 1736.

In 1797, Joseph-Louis Lagrange published his Théorie des fonctions ana-
lytiques. One of the primary aims of this book was to develop an approach to
the principles of differential and integral calculus taking as its starting point
the principle that functions of a real variable studied by mathematicians
could be represented around a particular value through an infinite series ex-
pansion, so that, in particular, an analytic function f(x) defined for values of
x close to some given value s could be represented through an infinite series
expansion of the form

f(s+ h) =
+∞∑
n=0

anh
n

for all sufficiently small values of the increment h. Lagrange defined the
derivative of such a function f to be the function f ′(x) whose infinite series
expansion takes the form

f ′(s+ h) =
+∞∑
n=1

nanh
n−1.

Lagrange intended that his theory of analytic functions would supply an
approach to the foundations of calculus that required neither “infinitesimal
quantities” nor the use of limits.

In 1830, William Rowan Hamilton published a paper in the Transactions
of the Royal Irish Academy entitled On the Error of a received Principle
of Analysis, respecting Functions which vanish with their Variables. In this
paper, Hamilton pointed that the function whose value at x, for non-zero real
numbers x, is e−x

−2
cannot be expressed around zero as the sum of a power

series. The following year Hamilton published a note in the Transactions of
the Royal Irish Academy to put on record the fact that, prior to Hamilton’s
earlier paper, Cauchy had published a paper citing this same function as an
example of a function whose derivatives at zero of all orders are all equal to
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zero though the function itself takes non-zero values at non-zero values of its
argument.

These examples demonstrated that the theory of calculus could not be
founded on the assumption that all functions relevant to mathematical anal-
ysis could be represented as sums of power series in the neighbourhood of any
value at which they are defined. Accordingly mathematicians in the nine-
teenth century returned to the approach of justifying the basic principles of
differential and integral calculus on the theory of limits and quadratures. A
theory of limits had already been employed by Isaac Newton, using the termi-
nology of prime and ultimate ratios. However the concept of limit employed
by Newton was only applicable to variable geometrical quantities that ap-
proached their limiting values monotonically. The Newton version of the limit

concept was not applicable to functions such as x sin

(
1

x

)
which oscillates

round zero as the value of x approaches zero from above, but nevertheless
can be made to approximate to zero to within any given margin of error,
provided that the value of x is sufficiently close to zero. The theory of limits
was accordingly generalized and further developed in the nineteenth century
by mathematicians such as Bolzano (1781–1848) and Cauchy (1789–1857) to
cover such situations. The generalized concept of limit developed by Bolzano
and Cauchy proved to be more appropriate to serve as the basis for defining
the basic concepts and proving the basic theorems that justify the principles
of calculus. The definitive treatment of mathematical analysis was provided
by Karl Weierstrass (1815–1897), whose lectures at Berlin established the
standard approach to the foundations of real and complex analysis through
the use of “epsilon-delta” definitions and proofs, together with the systematic
use of standard theorems such as the Bolzano-Weierstrass Theorem.
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5 The Riemann Integral

The approach to the theory of integration discussed below was developed
by Jean-Gaston Darboux (1842–1917). The integral defined using lower and
upper sums in the manner described below is sometimes referred to as the
Darboux integral of a function on a given interval. However the class of func-
tions that are integrable according to the definitions introduced by Darboux
is the class of Riemann-integrable functions. Thus the approach using Dar-
boux sums provides a convenient approach to define and establish the basic
properties of the Riemann integral.

A partition P of an interval [a, b] is a set {x0, x1, x2, . . . , xn} of real num-
bers satisfying a = x0 < x1 < x2 < · · · < xn−1 < xn = b.

Given any bounded real-valued function f on [a, b], the lower sum (or
lower Darboux sum) L(P, f) and the upper sum (or upper Darboux sum)
U(P, f) of f for the partition P of [a, b] are defined by

L(P, f) =
n∑
i=1

mi(xi − xi−1), U(P, f) =
n∑
i=1

Mi(xi − xi−1),

where mi = inf{f(x) : xi−1 ≤ x ≤ xi} and Mi = sup{f(x) : xi−1 ≤ x ≤ xi}.
Clearly L(P, f) ≤ U(P, f). Moreover

n∑
i=1

(xi − xi−1) = b− a, and therefore

m(b− a) ≤ L(P, f) ≤ U(P, f) ≤M(b− a),

for any real numbers m and M satisfying m ≤ f(x) ≤M for all x ∈ [a, b].

Definition Let f be a bounded real-valued function on the interval [a, b],

where a < b. The upper Riemann integral U
∫ b
a
f(x) dx (or upper Darboux

integral) and the lower Riemann integral L
∫ b
a
f(x) dx (or lower Darboux

integral) of the function f on [a, b] are defined by

U
∫ b

a

f(x) dx ≡ inf {U(P, f) : P is a partition of [a, b]} ,

L
∫ b

a

f(x) dx ≡ sup {L(P, f) : P is a partition of [a, b]}

(i.e., U
∫ b
a
f(x) dx is the infimum of the values of U(P, f) and L

∫ b
a
f(x) dx is

the supremum of the values of L(P, f) as P ranges over all possible partitions
of the interval [a, b]). If

U
∫ b

a

f(x) dx = L
∫ b

a

f(x) dx
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The upper sum U(P, f)

The lower sum L(P, f)
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then the function f is said to be Riemann-integrable (or Darboux-integrable)

on [a, b], and the Riemann integral
∫ b
a
f(x) dx (or Darboux integral) of f on

[a, b] is defined to be the common value of U
∫ b
a
f(x) dx and L

∫ b
a
f(x) dx.

When a > b we define∫ b

a

f(x) dx = −
∫ a

b

f(x) dx

for all Riemann-integrable functions f on [b, a]. We set
∫ b
a
f(x) = 0 when

b = a.
If f and g are bounded Riemann-integrable functions on the interval

[a, b], and if f(x) ≤ g(x) for all x ∈ [a, b], then
∫ b
a
f(x) dx ≤

∫ b
a
g(x) dx, since

L(P, f) ≤ L(P, g) and U(P, f) ≤ U(P, g) for all partitions P of [a, b].

Definition Let P and R be partitions of [a, b], given by P = {x0, x1, . . . , xn}
and R = {u0, u1, . . . , um}. We say that the partition R is a refinement of P
if P ⊂ R, so that, for each xi in P , there is some uj in R with xi = uj.

Lemma 5.1 Let R be a refinement of some partition P of [a, b]. Then

L(R, f) ≥ L(P, f) and U(R, f) ≤ U(P, f)

for any bounded function f : [a, b]→ R.

Proof Let P = {x0, x1, . . . , xn} and R = {u0, u1, . . . , um}, where a = x0 <
x1 < · · · < xn = b and a = u0 < u1 < · · · < um = b. Now for each
integer i between 0 and n there exists some integer j(i) between 0 and m
such that xi = uj(i) for each i, since R is a refinement of P . Moreover 0 =
j(0) < j(1) < · · · < j(n) = n. For each i, let Ri be the partition of [xi−1, xi]

given by Ri = {uj : j(i − 1) ≤ j ≤ j(i)}. Then L(R, f) =
n∑
i=1

L(Ri, f) and

U(R, f) =
n∑
i=1

U(Ri, f). Moreover

mi(xi − xi−1) ≤ L(Ri, f) ≤ U(Ri, f) ≤Mi(xi − xi−1),

since mi ≤ f(x) ≤ Mi for all x ∈ [xi−1, xi]. On summing these inequal-
ities over i, we deduce that L(P, f) ≤ L(R, f) ≤ U(R, f) ≤ U(P, f), as
required.

Given any two partitions P and Q of [a, b] there exists a partition R of
[a, b] which is a refinement of both P and Q. For example, we can take
R = P ∪ Q. Such a partition is said to be a common refinement of the
partitions P and Q.
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Lemma 5.2 Let f be a bounded real-valued function on the interval [a, b].
Then

L
∫ b

a

f(x) dx ≤ U
∫ b

a

f(x) dx.

Proof Let P and Q be partitions of [a, b], and let R be a common refinement
of P and Q. It follows from Lemma 5.1 that L(P, f) ≤ L(R, f) ≤ U(R, f) ≤
U(Q, f). Thus, on taking the supremum of the left hand side of the inequality
L(P, f) ≤ U(Q, f) as P ranges over all possible partitions of the interval [a, b],

we see that L
∫ b
a
f(x) dx ≤ U(Q, f) for all partitions Q of [a, b]. But then,

taking the infimum of the right hand side of this inequality as Q ranges over
all possible partitions of [a, b], we see that L

∫ b
a
f(x) dx ≤ U

∫ b
a
f(x) dx, as

required.

Example Let f(x) = cx+d, where c ≥ 0. We shall show that f is Riemann-

integrable on [0, 1] and evaluate
∫ 1

0
f(x) dx from first principles.

For each positive integer n, let Pn denote the partition of [0, 1] into n
subintervals of equal length. Thus Pn = {x0, x1, . . . , xn}, where xi = i/n.
Now the function f takes values between (i− 1)c/n+ d and ic/n+ d on the
interval [xi−1, xi], and therefore

mi =
(i− 1)c

n
+ d, Mi =

ic

n
+ d

where mi = inf{f(x) : xi−1 ≤ x ≤ xi} and Mi = sup{f(x) : xi−1 ≤ x ≤ xi}.
Thus

L(Pn, f) =
n∑
i=1

mi(xi − xi−1) =
1

n

n∑
i=1

(
ci

n
+ d− c

n

)
=

c(n+ 1)

2n
+ d− c

n
=
c

2
+ d− c

2n
,

U(Pn, f) =
n∑
i=1

Mi(xi − xi−1) =
1

n

n∑
i=1

(
ci

n
+ d

)
=

c(n+ 1)

2n
+ d =

c

2
+ d+

c

2n
.

But L(Pn, f) ≤ L
∫ b
a
f(x) dx ≤ U

∫ b
a
f(x) dx ≤ U(Pn, f) for all n. It follows

that L
∫ b
a
f(x) dx = 1

2
c+ d = U

∫ b
a
f(x) dx. Thus f is Riemann-integrable on

the interval [0, 1], and
∫ 1

0
f(x) dx = 1

2
c+ d.
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Example Let f : [0, 1]→ R be the function defined by

f(x) =

{
1 if x is rational;
0 if x is irrational.

Let P be a partition of the interval [0, 1] given by P = {x0, x1, x2, . . . , xn},
where 0 = x0 < x1 < x2 < · · · < xn = 1. Then

inf{f(x) : xi−1 ≤ x ≤ xi} = 0, sup{f(x) : xi−1 ≤ x ≤ xi} = 1,

for i = 1, 2, . . . , n, and thus L(P, f) = 0 and U(P, f) = 1 for all partitions P

of the interval [0, 1]. It follows that L
∫ 1

0
f(x) dx = 0 and U

∫ 1

0
f(x) dx = 1,

and therefore the function f is not Riemann-integrable on the interval [0, 1].

It can be shown that sums and products of Riemann-integrable functions
are themselves Riemann-integrable.

Proposition 5.3 Let f be a bounded real-valued function on the interval
[a, c]. Suppose that f is Riemann-integrable on the intervals [a, b] and [b, c],
where a < b < c. Then f is Riemann-integrable on [a, c], and∫ c

a

f(x) dx =

∫ b

a

f(x) dx+

∫ c

b

f(x) dx.

Proof Let Q and R be any partitions of the intervals [a, b] and [b, c] respec-
tively. These partitions combine to give a partition Q ∪ R of the interval
[a, c]: thus if Q = {a, x1, . . . , xn−1, b} and R = {b, u1, . . . , um−1, c}, where

a < x1 < x2 < · · · < xn−1 < b < u1 < u2 < · · · < um−1 < c,

then Q∪R = {a, x1, . . . , xn−1, b, u1, . . . , um−1, c}. Clearly the lower and upper
sums of f satisfy L(Q, f) +L(R, f) = L(Q∪R, f) and U(Q, f) +U(R, f) =
U(Q ∪R, f). It follows that

L(Q, f) + L(R, f) ≤ L
∫ c

a

f(x) dx.

Taking the supremum of the left hand side of this inequality over all parti-
tions Q of [a, b] and all partitions R of [b, c], we deduce that∫ b

a

f(x) dx+

∫ c

b

f(x) dx ≤ L
∫ c

a

f(x) dx.
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Similarly U(Q, f) + U(R, f) ≥ U
∫ c
a
f(x) dx, and hence∫ b

a

f(x) dx+

∫ c

b

f(x) dx ≥ U
∫ c

a

f(x) dx.

But L
∫ c
a
f(x) dx ≤ U

∫ c
a
f(x) dx by Lemma 5.2. It follows that

L
∫ c

a

f(x) dx =

∫ b

a

f(x) dx+

∫ c

b

f(x) dx = U
∫ c

a

f(x) dx,

as required.

5.1 Integrability of Monotonic functions

Let a and b be real numbers satisfying a < b. A real-valued function
f : [a, b] → R defined on the closed bounded interval [a, b] is said to be non-
decreasing if f(u) ≤ f(v) for all real numbers u and v satisfying a ≤ u ≤ v ≤
b. Similarly f : [a, b] → R is said to be non-increasing if f(u) ≥ f(v) for all
real numbers u and v satisfying a ≤ u ≤ v ≤ b. The function f : [a, b]→ R is
said to be monotonic on [a, b] if either it is non-decreasing on [a, b] or else it
is non-increasing on [a, b].

Proposition 5.4 Let a and b be real numbers satisfying a < b. Then every
monotonic function on the interval [a, b] is Riemann-integrable on [a, b].

Proof Let f : [a, b]→ R be a non-decreasing function on the closed bounded
interval [a, b]. Then f(a) ≤ f(x) ≤ f(b) for all x ∈ [a, b], and therefore the
function f is bounded on [a, b]. Let some positive real number ε be given.
Let δ be some strictly positive real number for which (f(b)−f(a))δ < ε, and
let P be a partition of [a, b] of the form P = {x0, x1, x2, . . . , xn}, where

a = x0 < x1 < x2 < · · · < xn−1 < xn = b

and xi−xi−1 < δ for i = 1, 2, . . . , n. Then the maximum and minimum values
of f(x) on the interval [xi−1, xi] are attained at xi and xi−1 respectively, and
therefore the upper sum U(P, f) and L(P, f) of f for the partition P satisfy

U(P, f) =
n∑
i=1

f(xi)(xi − xi−1) and L(P, f) =
n∑
i=1

f(xi−1)(xi − xi−1).

Moreover f(xi)− f(xi−1) ≥ 0 for i = 1, 2, . . . , n. It follows that

U(P, f)− L(P, f) =
n∑
i=1

(f(xi)− f(xi−1)(xi − xi−1)

< δ

n∑
i=1

(f(xi)− f(xi−1) = δ(f(b)− f(a)) < ε.
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We have thus shown that

U
∫ b

a

f(x) dx− L
∫ b

a

f(x) dx < ε

for all strictly positive numbers ε. But U
∫ b

a

f(x) dx ≥ L
∫ b

a

f(x) dx. It

follows that

U
∫ b

a

f(x) dx = L
∫ b

a

f(x) dx,

and thus the function f is Riemann-integrable on [a, b].
Now let f : [a, b]→ R be a non-increasing function on [a, b]. Then −f is a

non-decreasing function on [a, b] and it follows from what we have just shown
that −f is Riemann-integrable on [a, b]. It follows that the function f itself
must be Riemann-integrable on [a, b], as required.

Corollary 5.5 Let a and b be real numbers satisfing a < b, and let f : [a, b]→
R be a real-valued function on the interval [a, b]. Suppose that there exist real
numbers x0, x1, . . . , xn, where

a = x0 < x1 < x2 < · · · < xn−1 < xn = b,

such that the function f restricted to the interval [xi−1, xi] is monotonic on
[xi−1, xi] for i = 1, 2, . . . , n. Then f is Riemann-integrable on [a, b].

Proof The result follows immediately on applying the results of Proposi-
tion 5.3 and Proposition 5.4.

Remark The result and proof of Proposition 5.4 are to be found in their es-
sentials, though expressed in different language, in Isaac Newton, Philosophiae
naturalis principia mathematica (1686), Book 1, Section 1, Lemmas 2 and 3.

5.2 Integrability of Continuous functions

Theorem 5.6 Let a and b be real numbers satisfying a < b. Then any
continuous real-valued function on the interval [a, b] is Riemann-integrable.

Proof Let f be a continuous real-valued function on [a, b]. It follows from
the Extreme Value Theorem (Theorem 3.15) that f is bounded above and
below on the interval [a, b].

Let some strictly positive real number ε be given. It follows from Propo-
sition 3.16 that the function f is uniformly continuous on the interval [a, b],
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and therefore there exists some strictly positive real number δ such that
|f(x) − f(y)| < ε whenever x, y ∈ [a, b] satisfy |x − y| < δ. Choose a
partition P of the interval [a, b] such that each subinterval in the parti-
tion has length less than δ. Write P = {x0, x1, . . . , xn}, where a = x0 <
x1 < · · · < xn = b. Now if xi−1 ≤ x ≤ xi then |x − xi| < δ, and hence
f(xi)− ε < f(x) < f(xi) + ε. It follows that

f(xi)− ε ≤ mi ≤Mi ≤ f(xi) + ε (i = 1, 2, . . . , n),

where mi = inf{f(x) : xi−1 ≤ x ≤ xi} and Mi = sup{f(x) : xi−1 ≤ x ≤ xi}.
Therefore

n∑
i=1

f(xi)(xi − xi−1)− ε(b− a) ≤ L(P, f) ≤ U(P, f)

≤
n∑
i=1

f(xi)(xi − xi−1) + ε(b− a),

where L(P, f) and U(P, f) denote the lower and upper sums of the function f
for the partition P , and hence

0 ≤ U
∫ b

a

f(x) dx− L
∫ b

a

f(x) dx ≤ U(P, f)− L(P, f) ≤ 2ε(b− a).

But this inequality must be satisfied for any strictly positive real number ε.
Therefore

U
∫ b

a

f(x) dx = L
∫ b

a

f(x) dx,

and thus the function f is Riemann-integrable on [a, b].

5.3 The Fundamental Theorem of Calculus

Let a and b be real numbers satisfying a < b. One can show that all continu-
ous functions on the interval [a, b] are Riemann-integrable (see Theorem 5.6).
However the task of calculating the Riemann integral of a continuous func-
tion directly from the definition is difficult if not impossible for all but the
simplest functions. Thus to calculate such integrals one makes use of the
Fundamental Theorem of Calculus.

Theorem 5.7 (The Fundamental Theorem of Calculus) Let f be a contin-
uous real-valued function on the interval [a, b], where a < b. Then

d

dx

(∫ x

a

f(t) dt

)
= f(x)

for all x satisfying a < x < b.
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Proof Let F (s) =
∫ s
a
f(t) dt for all s ∈ (a, b). Now the function f is contin-

uous at x, where a < x < b. Thus, given any strictly positive real number ε,
there exists some strictly positive real number δ such that |f(t)− f(x)| < 1

2
ε

for all t ∈ [a, b] satisfying |t− x| < δ. Now

F (x+ h)− F (x)

h
− f(x) =

1

h

∫ x+h

x

f(t) dt− f(x) =
1

h

∫ x+h

x

(f(t)− f(x)) dt.

But if 0 < |h| < δ and x+h ∈ [a, b] then
∣∣∣∫ x+hx

(f(t)− f(x)) dt
∣∣∣ ≤ 1

2
ε|h|, and

thus ∣∣∣∣F (x+ h)− F (x)

h
− f(x)

∣∣∣∣ ≤ 1
2
ε < ε.

It follows that

d

dx

(∫ x

a

f(t) dt

)
= lim

h→0

F (x+ h)− F (x)

h
= f(x),

as required.

Let f : [a, b] → R be a continuous function on a closed interval [a, b]. We
say that f is continuously differentiable on [a, b] if the derivative f ′(x) of f
exists for all x satisfying a < x < b, the one-sided derivatives

f ′(a) = lim
h→0+

f(a+ h)− f(a)

h
, f ′(b) = lim

h→0−

f(b+ h)− f(b)

h

exist at the endpoints of [a, b], and the function f ′ is continuous on [a, b].
If f : [a, b] → R is continuous, and if F (x) =

∫ x
a
f(t) dt for all x ∈ [a, b]

then the one-sided derivatives of F at the endpoints of [a, b] exist, and

lim
h→0+

F (a+ h)− F (a)

h
= f(a), lim

h→0−

F (b+ h)− F (b)

h
= f(b).

One can verify these results by adapting the proof of the Fundamental The-
orem of Calculus.

Corollary 5.8 Let f be a continuously differentiable real-valued function on
the interval [a, b]. Then ∫ b

a

df(x)

dx
dx = f(b)− f(a)
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Proof Define g: [a, b]→ R by

g(x) = f(x)− f(a)−
∫ x

a

df(t)

dt
dt.

Then g(a) = 0, and

dg(x)

dx
=
df(x)

dx
− d

dx

(∫ x

a

df(t)

dt
dt

)
= 0

for all x satisfing a < x < b, by the Fundamental Theorem of Calculus. Now
it follows from the Mean Value Theorem (Theorem 4.6) that there exists
some s satisfying a < s < b for which g(b)− g(a) = (b− a)g′(s). We deduce
therefore that g(b) = 0, which yields the required result.

Corollary 5.9 (Integration by Parts) Let f and g be continuously differen-
tiable real-valued functions on the interval [a, b]. Then∫ b

a

f(t)
dg(x)

dx
dx = f(b)g(b)− f(a)g(a)−

∫ b

a

df(x)

dx
g(x) dx.

Proof This result follows from Corollary 5.8 on integrating the identity

f(x)
dg(x)

dx
=

d

dx
(f(x)g(x))− df(x)

dx
g(x).

Corollary 5.10 (Integration by Substitution) Let u: [a, b]→ R be a contin-
uously differentiable monotonically increasing function on the interval [a, b],
and let c = u(a) and d = u(b). Then∫ d

c

f(x) dx =

∫ b

a

f(u(t))
du(t)

dt
dt.

for all continuous real-valued functions f on [c, d].

Proof Let F and G be the functions on [a, b] defined by

F (x) =

∫ u(x)

c

f(y)dy, G(x) =

∫ x

a

f(u(t))
du(t)

dt
dt.

Then F (a) = 0 = G(a). Moreover F (x) = H(u(x)), where

H(s) =

∫ s

c

f(y) dy,

and H ′(s) = f(s) for all s ∈ [a, b]. Using the Chain Rule and the Fundamen-
tal Theorem of Calculus, we deduce that

F ′(x) = H ′(u(x))u′(x) = f(u(x))u′(x) = G′(x)

for all x ∈ (a, b). On applying the Mean Value Theorem (Theorem 4.6) to the
function F−G on the interval [a, b], we see that F (b)−G(b) = F (a)−G(a) =
0. Thus F (b) = G(b) = H(d), which yields the required identity.
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5.4 Interchanging Limits and Integrals, Uniform Con-
vergence

Let f1, f2, f3, . . . be a sequence of Riemann-integrable functions defined over
the interval [a, b], where a and b are real numbers satisfying a ≤ b. Suppose
that the sequence f1(x), f2(x), f3(x) converges for all x ∈ [a, b]. We wish to
determine whether or not

lim
j→+∞

∫ b

a

fj(x) dx =

∫ b

a

(
lim

j→+∞
fj(x)

)
dx.

The following example demonstrates that this identity can fail to hold, even
when the functions involved are well-behaved polynomial functions.

Example Let f1, f2, f3, . . . be the sequence of continuous functions on the
interval [0, 1] defined by fj(x) = j(xj − x2j). Now

lim
j→+∞

∫ 1

0

fj(x) dx = lim
j→+∞

(
j

j + 1
− j

2j + 1

)
=

1

2
.

On the other hand, we shall show that lim
j→+∞

fj(x) = 0 for all x ∈ [0, 1]. Thus

one cannot interchange limits and integrals in this case.
Suppose that 0 ≤ x < 1. We claim that jxj → 0 as j → +∞. To

verify this, choose u satisfying x < u < 1. Then 0 ≤ (j + 1)uj+1 ≤ nuj for
all positive integers j satisfying j > u/(1 − u). Therefore there exists some
constant B with the property that 0 ≤ nuj ≤ B for all positive integers j.
But then 0 ≤ jxj ≤ B(x/u)j for all positive integers j, and (x/u)j → 0 as
j → +∞. Therefore jxj → 0 as j → +∞, as claimed. It follows that

lim
j→+∞

fj(x) =

(
lim

j→+∞
jxj
)(

lim
j→+∞

(1− xj)
)

= 0

for all x satisfying 0 ≤ x < 1. Also fj(1) = 0 for all positive integers j. We
conclude that lim

j→+∞
fj(x) = 0 for all x ∈ [0, 1], which is what we set out to

show.

We now introduce the concept of uniform convergence. Later shall show
that, given a sequence f1, f2, f3, . . . of Riemann-integrable functions on some
interval [a, b], the identity

lim
j→+∞

∫ b

a

fj(x) dx =

∫ b

a

(
lim

j→+∞
fj(x)

)
dx.

is valid, provided that the sequence f1, f2, f3, . . . of functions converges uni-
formly on the interval [a, b].

69



Definition Let f1, f2, f3, . . . be a sequence of real-valued functions defined
on some subset D of R. The sequence (fj) is said to converge uniformly to a
function f on D as j → +∞ if and only if the following criterion is satisfied:

given any strictly positive real number ε, there exists some positive integer N
such that |fj(x) − f(x)| < ε for all x ∈ D and for all positive integers j
satisfying j ≥ N (where the value of N is independent of x).

Let f1, f2, f3, . . . be a sequence of bounded real-valued functions on some
subset D of R which converges uniformly on D to the zero function. For each
positive integer j, let Mj = sup{fj(x) : x ∈ D}. We claim that Mj → 0 as
j → +∞. To prove this, let some strictly positive real number ε be given.
Then there exists some positive integer N such that |fj(x)| < 1

2
ε for all x ∈ D

and j ≥ N . Thus if j ≥ N then Mj ≤ 1
2
ε < ε. This shows that Mj → 0 as

j → +∞, as claimed.

Example Let (fj : n ∈ N) be the sequence of continuous functions on
the interval [0, 1] defined by fj(x) = j(xj − x2j). We have already shown
(in an earlier example) that lim

j→+∞
fj(x) = 0 for all x ∈ [0, 1]. However a

straightforward exercise in Calculus shows that the maximum value attained

by the function fj is j/4 (which is attained at x = 1/2
1
j ), and j/4 → +∞

as j → +∞. It follows from this that the sequence f1, f2, f3, . . . does not
converge uniformly to the zero function on the interval [0, 1].

Proposition 5.11 Let f1, f2, f3, . . . be a sequence of continuous real-valued
functions defined on some subset D of R. Suppose that this sequence con-
verges uniformly on D to some real-valued function f . Then f is continuous
on D.

Proof Let s be an element of D, and let some strictly positive real number ε
be given. If j is chosen sufficiently large then |f(x) − fj(x)| < 1

3
ε for all

x ∈ D, since fj → f uniformly on D as j → +∞. It then follows from the
continuity of fj that there exists some strictly positive real number δ such
that |fj(x)− fj(s)| < 1

3
ε for all x ∈ D satisfying |x− s| < δ. But then

|f(x)−f(s)| ≤ |f(x)−fj(x)|+|fj(x)−fj(s)|+|fj(s)−f(s)| < 1
3
ε+ 1

3
ε+ 1

3
ε = ε

whenever |x−s| < δ. Thus the function f is continuous at s, as required.

Theorem 5.12 Let f1, f2, f3, . . . be a sequence of continuous real-valued
functions which converges uniformly on the interval [a, b] to some continuous
real-valued function f . Then

lim
j→+∞

∫ b

a

fj(x) dx =

∫ b

a

f(x) dx.
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Proof Let some strictly positive real number ε. Choose ε0 small enough to
ensure that 0 < ε0(b − a) < ε. Then there exists some positive integer N
such that |fj(x)− f(x)| < ε0 for all x ∈ [a, b] and j ≥ N , since the sequence
f1, f2, f3, . . . of functions converges uniformly to f on [a, b]. Now

−
∫ b

a

|fj(x)− f(x)| dx ≤
∫ b

a

fj(x) dx−
∫ b

a

f(x) dx ≤
∫ b

a

|fj(x)− f(x)| dx.

It follows that∣∣∣∣∫ b

a

fj(x) dx−
∫ b

a

f(x) dx

∣∣∣∣ ≤ ∫ b

a

|fj(x)− f(x)| dx ≤ ε0(b− a) < ε,

whenever j ≥ N . The result follows.

5.5 Integrals over Unbounded Intervals

We define integrals over unbounded intervals by appropriate limiting pro-
cesses. Given any function f that is bounded and Riemann-integrable over
each closed bounded subinterval of [a,+∞), we define∫ +∞

a

f(x) dx = lim
b→+∞

∫ b

a

f(x) dx,

provided that this limit is well-defined. Similarly, given any function f that
is bounded and Riemann-integrable over each closed bounded subinterval of
(−∞, b], we define ∫ b

−∞
f(x) dx = lim

a→−∞

∫ b

a

f(x) dx,

provided that this limit is well-defined. If f is bounded and Riemann inte-
grable over each closed bounded interval in R then we define∫ +∞

−∞
f(x) dx = lim

a→−∞,b→+∞

∫ b

a

f(x) dx,

provided that this limit exists.

Remark Using techniques of complex analysis, it can be shown that

lim
b→+∞

∫ b

0

sinx

x
dx =

π

2
.
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However it can also be shown that∫ b

0

| sinx|
x

dx→ +∞ as b→ +∞.

Therefore, in the standard theory of the Riemann integral, the integral of the

function (sinx)/x on the interval [0,+∞) is defined, and

∫ +∞

0

sinx

x
dx =

π

2
.

There is an alternative theory of integration, due to Lebesgue, which is
generally more powerful. All bounded Riemann-integrable functions on a
closed bounded interval are Lebesgue-integrable on that interval. But a real-
valued function f on a “measure space” is Lebesgue-integrable if and only if
|f | is Lebesgue-integrable on that measure space. Let f : [0,+∞)→ R be the
real-valued function defined such that f(0) = 1 and f(x) = (sinx)/x for all
positive real numbers x. Then the function |f | is neither Riemann-integrable
nor Lebesgue-integrable on [0,+∞). It follows that the function f itself is
not Lebesgue-integrable on [0,+∞). But, as we have remarked, the theory

of the Riemann integral assigns a value of π
2

to
+∞∫
0

f(x) dx.
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6 Euclidean Spaces, Continuity, and

Open Sets

6.1 Basic Properties of Vectors and Norms

We denote by Rn the set consisting of all n-tuples (x1, x2, . . . , xn) of real
numbers. The set Rn represents n-dimensional Euclidean space (with respect
to the standard Cartesian coordinate system). Let x and y be elements of
Rn, where

x = (x1, x2, . . . , xn), y = (y1, y2, . . . , yn),

and let λ be a real number. We define

x + y = (x1 + y1, x2 + y2, . . . , xn + yn),

x− y = (x1 − y1, x2 − y2, . . . , xn − yn),

λx = (λx1, λx2, . . . , λxn),

x · y = x1y1 + x2y2 + · · ·+ xnyn,

|x| =
√
x21 + x22 + · · ·+ x2n.

The quantity x · y is the scalar product (or inner product) of x and y, and
the quantity |x| is the Euclidean norm of x. Note that |x|2 = x · x. The
Euclidean distance between two points x and y of Rn is defined to be the
Euclidean norm |y − x| of the vector y − x.

Proposition 6.1 (Schwarz’s Inequality) Let x and y be elements of Rn.
Then |x · y| ≤ |x||y|.

Proof We note that |λx + µy|2 ≥ 0 for all real numbers λ and µ. But

|λx + µy|2 = (λx + µy).(λx + µy) = λ2|x|2 + 2λµx · y + µ2|y|2.

Therefore λ2|x|2 + 2λµx · y + µ2|y|2 ≥ 0 for all real numbers λ and µ. In
particular, suppose that λ = |y|2 and µ = −x · y. We conclude that

|y|4|x|2 − 2|y|2(x · y)2 + (x · y)2|y|2 ≥ 0,

so that (|x|2|y|2 − (x · y)2) |y|2 ≥ 0. Thus if y 6= 0 then |y| > 0, and hence

|x|2|y|2 − (x · y)2 ≥ 0.

But this inequality is trivially satisfied when y = 0. Thus |x · y| ≤ |x||y|, as
required.
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Corollary 6.2 (Triangle Inequality) Let x and y be elements of Rn. Then
|x + y| ≤ |x|+ |y|.

Proof Using Schwarz’s Inequality, we see that

|x + y|2 = (x + y).(x + y) = |x|2 + |y|2 + 2x · y
≤ |x|2 + |y|2 + 2|x||y| = (|x|+ |y|)2.

The result follows directly.

It follows immediately from the Triangle Inequality (Corollary 6.2) that

|z− x| ≤ |z− y|+ |y − x|

for all points x, y and |z| of Rn. This important inequality expresses the
geometric fact the the length of any triangle in a Euclidean space is less than
or equal to the sum of the lengths of the other two sides.

6.2 Convergence of Sequences in Euclidean Spaces

Definition A sequence x1,x2,x3, . . . of points in Rn is said to converge to a
point p if and only if the following criterion is satisfied:—

given any real number ε satisfying ε > 0 there exists some positive
integer N such that |p− xj| < ε whenever j ≥ N .

We refer to p as the limit lim
j→+∞

xj of the sequence x1,x2,x3, . . . .

Lemma 6.3 Let p be a point of Rn, where p = (p1, p2, . . . , pn). Then a
sequence x1,x2,x3, . . . of points in Rn converges to p if and only if the ith
components of the elements of this sequence converge to pi for i = 1, 2, . . . , n.

Proof Let xji and pi denote the ith components of xj and p, where p =
lim

j→+∞
xj. Then |xji − pi| ≤ |xj − p| for all j. It follows directly from the

definition of convergence that if xj → p as j → +∞ then xji → pi as
j → +∞.

Conversely suppose that, for each i, xji → pi as j → +∞. Let ε > 0 be
given. Then there exist positive integers N1, N2, . . . , Nn such that |xji−pi| <
ε/
√
n whenever j ≥ Ni. Let N be the maximum of N1, N2, . . . , Nn. If j ≥ N

then

|xj − p|2 =
n∑
i=1

(xji − pi)2 < n(ε/
√
n)2 = ε2,

so that xj → p as j → +∞.
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Definition A sequence x1,x2,x3, . . . of points in Rn is said to be a Cauchy
sequence if and only if the following criterion is satisfied:—

given any real number ε satisfying ε > 0 there exists some positive
integer N such that |xj − xk| < ε whenever j ≥ N and k ≥ N .

Lemma 6.4 A sequence of points in Rn is convergent if and only if it is a
Cauchy sequence.

Proof Let x1,x2,x3, . . . be a sequence of points of Rn converging to some
point p. Let ε > 0 be given. Then there exists some positive integer N such
that |xj − p| < 1

2
ε whenever j ≥ N . If j ≥ N and k ≥ N then

|xj − xk| ≤ |xj − p|+ |p− xk| < 1
2
ε+ 1

2
ε = ε,

by the Triangle Inequality. Thus every convergent sequence in Rn is a Cauchy
sequence.

Now let x1,x2,x3, . . . be a Cauchy sequence in Rn. Then the ith com-
ponents of the elements of this sequence constitute a Cauchy sequence of
real numbers. This Cauchy sequence must converge to some real number
pi, by Cauchy’s Criterion for Convergence (Theorem 2.7). It follows from
Lemma 6.3 that the Cauchy sequence x1,x2,x3, . . . converges to the point p,
where p = (p1, p2, . . . , pn).

6.3 Continuity of Functions of Several Real Variables

Definition Let X and Y be a subsets of Rm and Rn respectively. A function
f :X → Y from X to Y is said to be continuous at a point p of X if and
only if the following criterion is satisfied:—

given any strictly positive real number ε, there exists some strictly
positive real number δ such that |f(x) − f(p)| < ε whenever
x ∈ X satisfies |x− p| < δ.

The function f :X → Y is said to be continuous on X if and only if it is
continuous at every point p of X.

Lemma 6.5 Let X, Y and Z be subsets of Rm, Rn and Rk respectively, and
let f :X → Y and g:Y → Z be functions satisfying f(X) ⊂ Y . Suppose that
f is continuous at some point p of X and that g is continuous at f(p). Then
the composition function g ◦ f :X → Z is continuous at p.
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Proof Let ε > 0 be given. Then there exists some η > 0 such that |g(y)−
g(f(p))| < ε for all y ∈ Y satisfying |y − f(p)| < η. But then there exists
some δ > 0 such that |f(x)− f(p)| < η for all x ∈ X satisfying |x− p| < δ.
It follows that |g(f(x)) − g(f(p))| < ε for all x ∈ X satisfying |x − p| < δ,
and thus g ◦ f is continuous at p, as required.

Lemma 6.6 Let X and Y be a subsets of Rm and Rn respectively, and let
f :X → Y be a continuous function from X to Y . Let x1,x2,x3, . . . be a
sequence of points of X which converges to some point p of X. Then the
sequence f(x1), f(x2), f(x3), . . . converges to f(p).

Proof Let ε > 0 be given. Then there exists some δ > 0 such that |f(x)−
f(p)| < ε for all x ∈ X satisfying |x − p| < δ, since the function f is
continuous at p. Also there exists some positive integerN such that |xj−p| <
δ whenever j ≥ N , since the sequence x1,x2,x3, . . . converges to p. Thus if
j ≥ N then |f(xj) − f(p)| < ε. Thus the sequence f(x1), f(x2), f(x3), . . .
converges to f(p), as required.

Let X and Y be a subsets of Rm and Rn respectively, and let f :X → Y
be a function from X to Y . Then

f(x) = (f1(x), f2(x), . . . , fn(x))

for all x ∈ X, where f1, f2, . . . , fn are functions from X to R, referred to as
the components of the function f .

Proposition 6.7 Let X and Y be a subsets of Rm and Rn respectively, and
let p ∈ X. A function f :X → Y is continuous at the point p if and only if
its components are all continuous at p.

Proof Note that the ith component fi of f is given by fi = πi ◦ f , where
πi:Rn → R is the continuous function which maps (y1, y2, . . . , yn) ∈ Rn

onto its ith coordinate yi. Now any composition of continuous functions is
continuous, by Lemma 6.5. Thus if f is continuous at p, then so are the
components of f .

Conversely suppose that the components of f are continuous at p ∈ X.
Let ε > 0 be given. Then there exist positive real numbers δ1, δ2, . . . , δn such
that |fi(x) − fi(p)| < ε/

√
n for x ∈ X satisfying |x − p| < δi. Let δ be the

minimum of δ1, δ2, . . . , δn. If x ∈ X satisfies |x− p| < δ then

|f(x)− f(p)|2 =
n∑
i=1

|fi(x)− fi(p)|2 < ε2,

and hence |f(x) − f(p)| < ε. Thus the function f is continuous at p, as
required.
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Lemma 6.8 The functions s:R2 → R and m:R2 → R defined by s(x, y) =
x+ y and m(x, y) = xy are continuous.

Proof Let (u, v) ∈ R2. We first show that s:R2 → R is continuous at (u, v).
Let ε > 0 be given. Let δ = 1

2
ε. If (x, y) is any point of R2 whose distance

from (u, v) is less than δ then |x− u| < δ and |y − v| < δ, and hence

|s(x, y)− s(u, v)| = |x+ y − u− v| ≤ |x− u|+ |y − v| < 2δ = ε.

This shows that s:R2 → R is continuous at (u, v).
Next we show that m:R2 → R is continuous at (u, v). Now

m(x, y)−m(u, v) = xy − uv = (x− u)(y − v) + u(y − v) + (x− u)v.

for all points (x, y) of R2. Thus if the distance from (x, y) to (u, v) is less
than δ then |x − u| < δ and |y − v| < δ, and hence |m(x, y) − m(u, v)| <
δ2 + (|u|+ |v|)δ. Let ε > 0 is given. If δ > 0 is chosen to be the minimum of
1 and ε/(1 + |u|+ |v|) then δ2 + (|u|+ |v|)δ < (1 + |u|+ |v|)δ < ε, and thus
|m(x, y)−m(u, v)| < ε for all points (x, y) of R2 whose distance from (u, v)
is less than δ. This shows that p:R2 → R is continuous at (u, v).

Proposition 6.9 Let X be a subset of Rn, and let f :X → R and g:X → R
be continuous functions from X to R. Then the functions f + g, f − g and
f · g are continuous. If in addition g(x) 6= 0 for all x ∈ X then the quotient
function f/g is continuous.

Proof Note that f + g = s ◦ h and f · g = m ◦ h, where h:X → R2,
s:R2 → R and m:R2 → R are given by h(x) = (f(x), g(x)), s(u, v) = u + v
and m(u, v) = uv for all x ∈ X and u, v ∈ R. It follows from Proposition 6.7,
Lemma 6.8 and Lemma 6.5 that f + g and f · g are continuous, being com-
positions of continuous functions. Now f − g = f + (−g), and both f and
−g are continuous. Therefore f − g is continuous.

Now suppose that g(x) 6= 0 for all x ∈ X. Note that 1/g = r ◦ g, where
r:R \ {0} → R is the reciprocal function, defined by r(t) = 1/t. Now the
reciprocal function r is continuous. Thus the function 1/g is a composition
of continuous functions and is thus continuous. But then, using the fact that
a product of continuous real-valued functions is continuous, we deduce that
f/g is continuous.

Example Consider the function f :R2 \ {(0, 0)} → R2 defined by

f(x, y) =

(
x

x2 + y2
,
−y

x2 + y2

)
.

The continuity of the components of the function f follows from straightfor-
ward applications of Proposition 6.9. It then follows from Proposition 6.7
that the function f is continuous on R2 \ {(0, 0)}.
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6.4 Limits of Functions of Several Real Variables

Definition Let X be a subset of m-dimensional Euclidean space Rm, and
let p ∈ Rm. The point p is said to be a limit point of the set X if, given any
δ > 0, there exists some point x of X such that 0 < |x− p| < δ.

It follows easily from the definition of convergence of sequences of points
in Euclidean space that if X is a subset of m-dimensional Euclidean space Rm

and if p is a point of Rm then the point p is a limit point of the set X if
and only if there exists an infinite sequence x1,x2,x3, . . . of points of X, all
distinct from the point p, such that lim

j→+∞
xj = p.

Definition Let X be a subset of m-dimensional Euclidean space Rm, let
f :X → Rn be a function mapping the set X into n-dimensional Euclidean
space Rn, let p be a limit point of the set X, and let q be a point Rn. The
point q is said to be the limit of f(x), as x tends to p in X, if and only if
the following criterion is satisfied:—

given any strictly positive real number ε, there exists some strictly
positive real number δ such that |f(x)− q| < ε whenever x ∈ X
satisfies 0 < |x− p| < δ.

Let X be a subset of m-dimensional Euclidean space Rm, let f :X → Rn

be a function mapping the set X into n-dimensional Euclidean space Rn,
let p be a limit point of the set X, and let q be a point Rn. If q is the
limit of f(x) as x tends to p in X then we can denote this fact by writing
lim
x→p

f(x) = q.

Proposition 6.10 Let X be a subset of m-dimensional Euclidean space Rm,
let f :X → Rn be a function mapping the set X into n-dimensional Euclidean
space Rn, let p be a limit point of the set X, and let q be a point Rn. Let
X̃ = X ∪ {p}, and let f̃ : X̃ → Rn be defined such that

f̃(x) =

{
f(x) if x 6= p;
q if x = p.

Then lim
x→p

f(x) = q if and only if the function f̃ is continuous at p.

Proof The result follows directly on comparing the relevant definitions.

Corollary 6.11 Let X be a subset of m-dimensional Euclidean space Rm,
let f :X → Rn be a function mapping the set X into n-dimensional Euclidean
space Rn, and let p be a point of the set X that is also a limit point of X. Then
the function f is continuous at the point p if and only if lim

x→p
f(x) = f(p).
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Let X be a subset of m-dimensional Euclidean space Rm, and let p be a
point of the set X. Suppose that the point p is not a limit point of the set X.
Then there exists some strictly positive real number δ0 such that |x−p| ≥ δ0
for all x ∈ X. The point p is then said to be an isolated point of X.

Let X be a subset of m-dimensional Euclidean space Rm. The definition
of continuity then ensures that any function f :X → Rn mapping the set X
into n-dimensional Euclidean space Rn is continuous at any isolated point of
its domain X.

Corollary 6.12 Let X be a subset of m-dimensional Euclidean space Rm,
let f :X → R and g:X → R be real-valued functions on X, and let p be a
limit point of the set X. Suppose that lim

x→p
f(x) and lim

x→p
g(x) both exist. Then

so do lim
x→p

(f(x) + g(x)), lim
x→p

(f(x)− g(x)) and lim
x→p

(f(x)g(x)), and moreover

lim
x→p

(f(x) + g(x)) = lim
x→p

f(x) + lim
x→p

g(x),

lim
x→p

(f(x)− g(x)) = lim
x→p

f(x)− lim
x→p

g(x),

lim
x→p

(f(x)g(x)) = lim
x→p

f(x)× lim
x→p

g(x),

If moreover g(x) 6= 0 for all x ∈ X and limx→p g(x) 6= 0 then

lim
x→p

f(x)

g(x)
=

lim
x→p

f(x)

lim
x→p

g(x)
.

Proof Let X̃ = X ∪ {p}, and let f̃ : X̃ → R and g̃: X̃ → R be defined such
that

f̃(x) =

{
f(x) if x 6= p;
l if x = p.

g̃(x) =

{
g(x) if x 6= p;
m if x = p.

,

where l = lim
x→p

f(x) and m = lim
x→p

g(x). Then the functions f̃ and g̃ are

continuous at p. The result therefore follows on applying Proposition 6.9.

6.5 Open Sets in Euclidean Spaces

Let X be a subset of Rn. Given a point p of X and a non-negative real
number r, the open ball BX(p, r) in X of radius r about p is defined to be
the subset of X given by

BX(p, r) = {x ∈ X : |x− p| < r}.
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(Thus BX(p, r) is the set consisting of all points of X that lie within a sphere
of radius r centred on the point p.)

Definition Let X be a subset of Rn. A subset V of X is said to be open
in X if and only if, given any point p of V , there exists some δ > 0 such that
BX(p, δ) ⊂ V .

By convention, we regard the empty set ∅ as being an open subset of X.
(The criterion given above is satisfied vacuously in the case when V is the
empty set.)

In particular, a subset V of Rn is said to be an open set (in Rn) if and only
if, given any point p of V , there exists some δ > 0 such that B(p, δ) ⊂ V ,
where B(p, r) = {x ∈ Rn : |x− p| < r}.

Example Let H = {(x, y, z) ∈ R3 : z > c}, where c is some real number.
ThenH is an open set in R3. Indeed let p be a point ofH. Then p = (u, v, w),
where w > c. Let δ = w − c. If the distance from a point (x, y, z) to the
point (u, v, w) is less than δ then |z − w| < δ, and hence z > c, so that
(x, y, z) ∈ H. Thus B(p, δ) ⊂ H, and therefore H is an open set.

The previous example can be generalized. Given any integer i between 1
and n, and given any real number ci, the sets

{(x1, x2, . . . , xn) ∈ Rn : xi > ci}, {(x1, x2, . . . , xn) ∈ Rn : xi < ci}

are open sets in Rn.

Example Let U be an open set in Rn. Then for any subset X of Rn, the
intersection U ∩X is open in X. (This follows directly from the definitions.)
Thus for example, let S2 be the unit sphere in R3, given by

S2 = {(x, y, z) ∈ R3 : x2 + y2 + z2 = 1}

and let N be the subset of S2 given by

N = {(x, y, z) ∈ Rn : x2 + y2 + z2 = 1 and z > 0}.

Then N is open in S2, since N = H ∩ S2, where H is the open set in R3

given by
H = {(x, y, z) ∈ R3 : z > 0}.

Note that N is not itself an open set in R3. Indeed the point (0, 0, 1) belongs
to N , but, for any δ > 0, the open ball (in R3 of radius δ about (0, 0, 1)
contains points (x, y, z) for which x2 + y2 + z2 6= 1. Thus the open ball of
radius δ about the point (0, 0, 1) is not a subset of N .
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Lemma 6.13 Let X be a subset of Rn, and let p be a point of X. Then, for
any positive real number r, the open ball BX(p, r) in X of radius r about p
is open in X.

Proof Let x be an element of BX(p, r). We must show that there exists
some δ > 0 such that BX(x, δ) ⊂ BX(p, r). Let δ = r− |x−p|. Then δ > 0,
since |x− p| < r. Moreover if y ∈ BX(x, δ) then

|y − p| ≤ |y − x|+ |x− p| < δ + |x− p| = r,

by the Triangle Inequality, and hence y ∈ BX(p, r). Thus BX(x, δ) ⊂
BX(p, r). This shows that BX(p, r) is an open set, as required.

Lemma 6.14 Let X be a subset of Rn, and let p be a point of X. Then, for
any non-negative real number r, the set {x ∈ X : |x−p| > r} is an open set
in X.

Proof Let x be a point of X satisfying |x− p| > r, and let y be any point
of X satisfying |y − x| < δ, where δ = |x− p| − r. Then

|x− p| ≤ |x− y|+ |y − p|,

by the Triangle Inequality, and therefore

|y − p| ≥ |x− p| − |y − x| > |x− p| − δ = r.

Thus BX(x, δ) is contained in the given set. The result follows.

Proposition 6.15 Let X be a subset of Rn. The collection of open sets in X
has the following properties:—

(i) the empty set ∅ and the whole set X are both open in X;

(ii) the union of any collection of open sets in X is itself open in X;

(iii) the intersection of any finite collection of open sets in X is itself open
in X.

Proof The empty set ∅ is an open set by convention. Moreover the definition
of an open set is satisfied trivially by the whole set X. This proves (i).

Let A be any collection of open sets in X, and let U denote the union of
all the open sets belonging to A. We must show that U is itself open in X.
Let x ∈ U . Then x ∈ V for some set V belonging to the collection A. It
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follows that there exists some δ > 0 such that BX(x, δ) ⊂ V . But V ⊂ U ,
and thus BX(x, δ) ⊂ U . This shows that U is open in X. This proves (ii).

Finally let V1, V2, V3, . . . , Vk be a finite collection of subsets of X that
are open in X, and let V denote the intersection V1 ∩ V2 ∩ · · · ∩ Vk of these
sets. Let x ∈ V . Now x ∈ Vj for j = 1, 2, . . . , k, and therefore there
exist strictly positive real numbers δ1, δ2, . . . , δk such that BX(x, δj) ⊂ Vj for
j = 1, 2, . . . , k. Let δ be the minimum of δ1, δ2, . . . , δk. Then δ > 0. (This is
where we need the fact that we are dealing with a finite collection of sets.)
Now BX(x, δ) ⊂ BX(x, δj) ⊂ Vj for j = 1, 2, . . . , k, and thus BX(x, δ) ⊂ V .
Thus the intersection V of the sets V1, V2, . . . , Vk is itself open in X. This
proves (iii).

Example The set {(x, y, z) ∈ R3 : x2 + y2 + z2 < 4 and z > 1} is an open
set in R3, since it is the intersection of the open ball of radius 2 about the
origin with the open set {(x, y, z) ∈ R3 : z > 1}.

Example The set {(x, y, z) ∈ R3 : x2 + y2 + z2 < 4 or z > 1} is an open set
in R3, since it is the union of the open ball of radius 2 about the origin with
the open set {(x, y, z) ∈ R3 : z > 1}.

Example The set

{(x, y, z) ∈ R3 : (x− n)2 + y2 + z2 < 1
4

for some n ∈ Z}

is an open set in R3, since it is the union of the open balls of radius 1
2

about
the points (n, 0, 0) for all integers n.

Example For each positive integer k, let

Vk = {(x, y, z) ∈ R3 : k2(x2 + y2 + z2) < 1}.

Now each set Vk is an open ball of radius 1/k about the origin, and is therefore
an open set in R3. However the intersection of the sets Vk for all positive
integers k is the set {(0, 0, 0)}, and thus the intersection of the sets Vk for all
positive integers k is not itself an open set in R3. This example demonstrates
that infinite intersections of open sets need not be open.

Lemma 6.16 A sequence x1,x2,x3, . . . of points in Rn converges to a point p
if and only if, given any open set U which contains p, there exists some
positive integer N such that xj ∈ U for all j satisfying j ≥ N .
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Proof Suppose that the sequence x1,x2,x3, . . . has the property that, given
any open set U which contains p, there exists some positive integer N such
that xj ∈ U whenever j ≥ N . Let ε > 0 be given. The open ball B(p, ε) of
radius ε about p is an open set by Lemma 6.13. Therefore there exists some
positive integer N such that xj ∈ B(p, ε) whenever j ≥ N . Thus |xj−p| < ε
whenever j ≥ N . This shows that the sequence converges to p.

Conversely, suppose that the sequence x1,x2,x3, . . . converges to p. Let
U be an open set which contains p. Then there exists some ε > 0 such that
the open ball B(p, ε) of radius ε about p is a subset of U . Thus there exists
some ε > 0 such that U contains all points x of X that satisfy |x − p| < ε.
But there exists some positive integer N with the property that |xj −p| < ε
whenever j ≥ N , since the sequence converges to p. Therefore xj ∈ U
whenever j ≥ N , as required.

6.6 Closed Sets in Euclidean Spaces

Let X be a subset of Rn. A subset F of X is said to be closed in X if and
only if its complement X \ F in X is open in X. (Recall that X \ F = {x ∈
X : x 6∈ F}.)

Example The sets {(x, y, z) ∈ R3 : z ≥ c}, {(x, y, z) ∈ R3 : z ≤ c}, and
{(x, y, z) ∈ R3 : z = c} are closed sets in R3 for each real number c, since the
complements of these sets are open in R3.

Example Let X be a subset of Rn, and let x0 be a point of X. Then the
sets {x ∈ X : |x − x0| ≤ r} and {x ∈ X : |x − x0| ≥ r} are closed for
each non-negative real number r. In particular, the set {x0} consisting of
the single point x0 is a closed set in X. (These results follow immediately
using Lemma 6.13 and Lemma 6.14 and the definition of closed sets.)

Let A be some collection of subsets of a set X. Then

X \
⋃
S∈A

S =
⋂
S∈A

(X \ S), X \
⋂
S∈A

S =
⋃
S∈A

(X \ S)

(i.e., the complement of the union of some collection of subsets of X is the
intersection of the complements of those sets, and the complement of the
intersection of some collection of subsets of X is the union of the comple-
ments of those sets). The following result therefore follows directly from
Proposition 6.15.

Proposition 6.17 Let X be a subset of Rn. The collection of closed sets
in X has the following properties:—
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(i) the empty set ∅ and the whole set X are both closed in X;

(ii) the intersection of any collection of closed sets in X is itself closed in
X;

(iii) the union of any finite collection of closed sets in X is itself closed in
X.

Lemma 6.18 Let X be a subset of Rn, and let F be a subset of X which is
closed in X. Let x1,x2,x3, . . . be a sequence of points of F which converges
to a point p of X. Then p ∈ F .

Proof The complement X \F of F in X is open, since F is closed. Suppose
that p were a point belonging to X\F . It would then follow from Lemma 6.16
that xj ∈ X \ F for all values of j greater than some positive integer N ,
contradicting the fact that xj ∈ F for all j. This contradiction shows that p
must belong to F , as required.

6.7 Continuous Functions and Open Sets

Let X and Y be subsets of Rm and Rn, and let f :X → Y be a function
from X to Y . We recall that the function f is continuous at a point p of X
if, given any ε > 0, there exists some δ > 0 such that |f(u) − f(p)| < ε
for all points u of X satisfying |u − p| < δ. Thus the function f :X → Y
is continuous at p if and only if, given any ε > 0, there exists some δ > 0
such that the function f maps BX(p, δ) into BY (f(p), ε) (where BX(p, δ)
and BY (f(p), ε) denote the open balls in X and Y of radius δ and ε about
p and f(p) respectively).

Given any function f :X → Y , we denote by f−1(V ) the preimage of a
subset V of Y under the map f , defined by f−1(V ) = {x ∈ X : f(x) ∈ V }.

Proposition 6.19 Let X and Y be subsets of Rm and Rn, and let f :X → Y
be a function from X to Y . The function f is continuous if and only if f−1(V )
is open in X for every open subset V of Y .

Proof Suppose that f :X → Y is continuous. Let V be an open set in Y .
We must show that f−1(V ) is open in X. Let p ∈ f−1(V ). Then f(p) ∈
V . But V is open, hence there exists some ε > 0 with the property that
BY (f(p), ε) ⊂ V . But f is continuous at p. Therefore there exists some
δ > 0 such that f maps BX(p, δ) into BY (f(p), ε) (see the remarks above).
Thus f(x) ∈ V for all x ∈ BX(p, δ), showing that BX(p, δ) ⊂ f−1(V ). This
shows that f−1(V ) is open in X for every open set V in Y .

84



Conversely suppose that f :X → Y is a function with the property that
f−1(V ) is open in X for every open set V in Y . Let p ∈ X. We must
show that f is continuous at p. Let ε > 0 be given. Then BX(f(p), ε) is
an open set in Y , by Lemma 6.13, hence f−1 (BY (f(p), ε)) is an open set
in X which contains p. It follows that there exists some δ > 0 such that
BX(p, δ) ⊂ f−1 (BY (f(p), ε)). Thus, given any ε > 0, there exists some
δ > 0 such that f maps BX(p, δ) into BY (f(p), ε). We conclude that f is
continuous at p, as required.

Let X be a subset of Rn, let f :X → R be continuous, and let c be some
real number. Then the sets {x ∈ X : f(x) > c} and {x ∈ X : f(x) < c}
are open in X, and, given real numbers a and b satisfying a < b, the set
{x ∈ X : a < f(x) < b} is open in X.

6.8 The Multidimensional Bolzano-Weierstrass Theo-
rem

A sequence x1,x2,x3, . . . of points in Rn is said to be bounded if there exists
some constant K such that |xj| ≤ K for all j.

Example Let

(xj, yj, zj) =

(
sin(π

√
j), (−1)j, cos

(
2π log j

log 2

))
for j = 1, 2, 3, . . .. This sequence of points in R3 is bounded, because the
components of its members all take values between −1 and 1. Moreover
xj = 0 whenever j is the square of a positive integer, yj = 1 whenever j is
even and zj = 1 whenever j is a power of two.

The infinite sequence x1, x2, x3, . . . has a convergent subsequence

x1, x4, x9, x16, x25, . . .

which includes those xj for which j is the square of a positive integer. The
corresponding subsequence y1, y4, y9, . . . of y1, y2, y3, . . . is not convergent, be-
cause its values alternate between 1 and −1. However this subsequence is
bounded, and we can extract from this sequence a convergent subsequence

y4, y16, y36, y64, y100, . . .

which includes those xj for which j is the square of an even positive integer.
The subsequence

x4, x16, x36, y64, y100, . . .
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is also convergent, because it is a subsequence of a convergent subsequence.
However the corresponding subsequence

z4, z16, z36, z64, z100, . . .

does not converge. (Indeed zj = 1 when j is an even power of 2, but
zj = cos(2π log(9)/ log(2)) when j = 9 × 22p for some positive integer p.)
However this subsequence is bounded, and we can extract from it a conver-
gent subsequence

z4, z16, z64, z256, z1024, . . .

which includes those xj for which j is equal to two raised to the power of
an even positive integer. Then the first, second and third components of the
following subsequence

(x4, y4, z4), (x16, y16, z16), (x64, y64, z64), (x256, y256, z256), . . .

of the original sequence of points in R3 converge, and it therefore follows
from Lemma 6.3 that this sequence is a convergent subsequence of the given
sequence of points in R3.

Example Let

xj =


1 if j = 4k for some integer k
0 if j = 4k + 1 for some integer k
−1 if j = 4k + 2 for some integer k
0 if j = 4k + 3 for some integer k

and

yj =


0 if j = 4k for some integer k,
1 if j = 4k + 1 for some integer k,
0 if j = 4k + 2 for some integer k,
−1 if j = 4k + 3 for some integer k,

,

and let uj = (xj, yj) for j = 1, 2, 3, 4, . . .. Then the first components xj for
which the index j is odd constitute a convergent sequence x1, x3, x5, x7, . . .
of real numbers, and the second components yj for which the index j is even
also constitute a convergent sequence y2, y4, y6, y8, . . . of real numbers.

However one would not obtain a convergent subsequence of u1,u2,u3, . . .
simply by selecting those indices j for which xj is in the convergent subse-
quence x1, x3, x5, . . . and yj is in the convergent subsequence y2, y4, y6, . . .,
because there no values of the index j for which xj and yj both belong to the
respective subsequences. However the one-dimensional Bolzano-Weierstrass
Theorem (Theorem 2.5) guarantees that there is a convergent subsequence
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of y1, y3, y5, y7, . . ., and indeed y1, y5, y9, y13, . . . is such a convergent subse-
quence. This yields a convergent subsequence u1,u5,u9,u13, . . . of the given
bounded sequence of points in R2.

Theorem 6.20 Every bounded sequence of points in Rn has a convergent
subsequence.

Proof We prove the result by induction on the dimension n of the Euclidean
space Rn that contains the infinite sequence in question. It follows from the
one-dimensional Bolzano-Weierstrass Theorem (Theorem 2.5) that the the-
orem is true when n = 1. Suppose that n > 1, and that every bounded se-
quence in Rn−1 has a convergent subsequence. Let x1,x2,x3, . . . be a bounded
infinite sequence of elements of Rn, and let xj,i denote the ith component of
xj for i = 1, 2, . . . , n and for all positive integers j. The induction hypoth-
esis requires that all bounded sequences in Rn−1 contain convergent subse-
quences. Therefore there exist real numbers p1, p2, . . . , pn−1 and an increasing
sequence m1,m2,m3, . . . of positive integers such that lim

k→+∞
xmk,i = pi for i =

1, 2, . . . , n−1. The nth components xm1,n, xm2,n, xm3,n, . . . of the members of
the subsequence xm1 ,xm2 ,xm3 , . . . then constitute a bounded sequence of real
numbers. It follows from the one-dimensional Bolzano-Weierstrass Theorem
(Theorem 2.5) that there exists an increasing sequence k1, k2, k3, . . . of posi-
tive integers for which the sequence xmk1

,n, xmk2
,n, xmk3

,n, . . . converges. Let
sj = mkj for all positive integers j, and let pn = lim

j→+∞
xmkj

,n = lim
j→+∞

xsj ,n.

Then the sequence xs1,i, xs2,i, xs3,i, . . . converges for values of i between 1 and
n−1, because it is a subquence of the convergent sequence xm1,i, xm2,i, xm3,i, . . ..
Moreover xs1,n, xs2,n, xs3,n, . . . also converges. Thus the ith components of the
infinite sequence xm1 ,xm2 ,xm3 , . . . converge for i = 1, 2, . . . , n. It then fol-
lows from Lemma 6.3 that lim

j→+∞
xsk = p, where p = (p1, p2, . . . , pn). The

result follows.

6.9 The Extreme Value Theorem for Functions of Sev-
eral Real Variables

Theorem 6.21 (The Extreme Value Theorem for Continuous Functions on
Closed Bounded Sets) Let X be a closed bounded set in m-dimensional Eu-
clidean space, and let f :X → R be a continuous real-valued function defined
on X. Then there exist points u and v of X such that f(u) ≤ f(x) ≤ f(v)
for all x ∈ X.

Proof We prove the result for an arbitrary continuous real-valued function
f :X → R by showing that the result holds for a related continuous function
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g:X → R that is known to be bounded above and below on X. Let h:R→ R
be the continuous function defined such that

h(t) =
t

1 + |t|

for all t ∈ R. Then the continuous function h:R→ R is increasing. Moreover
−1 ≤ h(t) ≤ 1 for all t ∈ R (see the proof of Theorem 3.15).

Let f :X → R be a continuous real-valued function on the closed bounded
set X, and let g:X → R be the continuous real-valued function defined on
X such that

g(x) = h(f(x)) =
f(x)

1 + |f(x)|
for all x ∈ X. Then −1 ≤ g(x) ≤ 1 for all x ∈ X. The set of values of the
function g is then non-empty and bounded above, and therefore has a least
upper bound. Let

M = sup{g(x) : x ∈ X}.

Then, for each positive integer j, the real number M − j−1 is not an upper
bound for the set of values of the function g, and therefore there exists
some point xj in the set X for which M − j−1 < g(xj) ≤ M . The sequence
x1,x2,x3, . . . is then a bounded sequence of points in Rm, because the set X is
bounded. It follows from the multidimensional Bolzano-Weierstrass Theorem
(Theorem 6.20) that this sequence has a subsequence xk1 ,xk2 ,xk3 , . . . which
converges to some point v of Rn. Moreover this point v belongs to the set X
because X is closed (see Lemma 6.18). Now

M − 1

kj
< g(xkj) ≤M

for all positive integers j, and therefore g(xkj) → M as j → +∞. It then
follows from Lemma 6.6 that

g(v) = g

(
lim

j→+∞
xkj

)
= lim

j→+∞
g(xkj) = M.

But g(x) ≤ M for all x ∈ X. It follows that h(f(x)) = g(x) ≤ g(v) =
h(f(v)) for all x ∈ X. Moreover h:R → R is an increasing function. It
follows therefore that f(x) ≤ f(v) for all x ∈ X.

On applying this result with the continuous function f replaced by the
function −f , we conclude also that there exists some point u of X such that
f(u) ≤ f(x) for all x ∈ X. The result follows.
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6.10 Uniform Continuity for Functions of Several Real
Variables

Definition Let X be a subset of Rm. A function f :X → Rn from X to
Rn is said to be uniformly continuous if, given any ε > 0, there exists some
δ > 0 (which does not depend on either x′ or x) such that |f(x′)− f(x)| < ε
for all points x′ and x of X satisfying |x′ − x| < δ.

Theorem 6.22 Let X be a subset of Rm that is both closed and bounded.
Then any continuous function f :X → Rn is uniformly continuous.

Proof Let ε > 0 be given. Suppose that there did not exist any δ > 0 such
that |f(x′)− f(x)| < ε for all points x′,x ∈ X satisfying |x′− x| < δ. Then,
for each positive integer j, there would exist points uj and vj in X such
that |uj −vj| < 1/j and |f(uj)− f(vj)| ≥ ε. But the sequence u1,u2,u3, . . .
would be bounded, since X is bounded, and thus would possess a subsequence
uj1 ,uj2 ,uj3 , . . . converging to some point p (Theorem 6.20). Moreover p ∈ X,
since X is closed. The sequence vj1 ,vj2 ,vj3 , . . . would also converge to p,
since lim

k→+∞
|vjk − ujk | = 0. But then the sequences f(uj1), f(uj2), f(uj3), . . .

and f(vj1), f(vj2), f(vj3), . . . would converge to f(p), since f is continuous
(Lemma 6.6), and thus lim

k→+∞
|f(ujk)− f(vjk)| = 0. But this is impossible,

since uj and vj have been chosen so that |f(uj) − f(vj)| ≥ ε for all j. We
conclude therefore that there must exist some δ > 0 such that |f(x′)−f(x)| <
ε for all points x′,x ∈ X satisfying |x′ − x| < δ, as required.
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7 Differentiation of Functions of Several Real

Variables

7.1 Linear Transformations

The space Rn consisting of all n-tuples (x1, x2, . . . , xn) of real numbers is a
vector space over the field R of real numbers, where addition and multipli-
cation by scalars are defined by

(x1, x2, . . . , xn) + (y1, y2, . . . , yn) = (x1 + y1, x2 + y2, . . . , xn + yn),

t(x1, x2, . . . , xn) = (tx1, tx2, . . . , txn)

for all (x1, x2, . . . , xn), (y1, y2, . . . , yn) ∈ Rn and t ∈ R.

Definition A map T :Rn → Rm is said to be a linear transformation if

T (x + y) = Tx + Ty, T (tx) = tTx

for all x,y ∈ Rn and t ∈ R.

Every linear transformation T :Rn → Rm is represented by an m × n
matrix (Ti,j). Indeed let e1, e2, . . . , en be the standard basis vectors of Rn

defined by

e1 = (1, 0, . . . , 0), e2 = (0, 1, . . . , 0), . . . , en = (0, 0, . . . , 1).

Thus if x ∈ Rn is represented by the n-tuple (x1, x2, . . . , xn) then

x =
n∑
j=1

xjej.

Similarly let f1, f2, . . . , fm be the standard basis vectors of Rm defined by

f1 = (1, 0, . . . , 0), f2 = (0, 1, . . . , 0), . . . , fm = (0, 0, . . . , 1).

Thus if v ∈ Rm is represented by the n-tuple (v1, v2, . . . , vm) then

v =
m∑
i=1

vifi.

Let T :Rn → Rm be a linear transformation. Define Ti,j for all integers i
between 1 and m and for all integers j between 1 and n such that

Tej =
m∑
i=1

Ti,jfi.
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Using the linearity of T , we see that if x = (x1, x2, . . . , xn) then

Tx = T

(
n∑
j=1

xjej

)
=

n∑
j=1

(xj Tej) =
m∑
i=1

(
n∑
j=1

Ti,jxj

)
fi.

Thus the ith component of Tx is

Ti1x1 + Ti2x2 + · · ·+ Tinxn.

Writing out this identity in matrix notation, we see that if Tx = v, where

x =


x1
x2
...
xn

 , v =


v1
v2
...
vm

 ,

then 
v1
v2
...
vm

 =


T11 T12 . . . T1n
T21 T22 . . . T2n
...

...
...

Tm1 Tm2 . . . Tmn




x1
x2
...
xn

 .

Recall that the length (or norm) of an element x ∈ Rn is defined such
that

|x|2 = x21 + x22 + · · ·+ x2n.

Definition Let T :Rn → Rm be a linear transformation from Rn to Rm, and
let (Ti,j) be the m × n matrix representing this linear transformation with
respect to the standard bases of Rm and Rm. The Hilbert-Schmidt norm
‖T‖HS of the linear transformation is then defined so that

‖T‖HS =

√√√√ m∑
i=1

n∑
j=1

T 2
i,j.

Note that the Hilbert-Schmidt norm is just the Euclidean norm on the real
vector space of dimension mn whose elements are m×n matrices representing
linear transformations from Rn to Rm with respect to the standard bases of
these vector spaces. Therefore it has the standard properties of the Euclidean
norm. In particular it follows from the Triangle Inequality (Lemma 6.2) that

‖T + U‖HS ≤ ‖T‖HS + ‖U‖HS and ‖sT‖HS = |s| ‖T‖HS

for all linear transformations T and U from Rn to Rm and for all real num-
bers s.
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Lemma 7.1 Let T :Rn → Rm be a linear transformation from Rn to Rm.
Then T is uniformly continuous on Rn. Moreover

|Tx− Ty| ≤ ‖T‖HS|x− y|

for all x,y ∈ Rn, where ‖T‖HS is the Hilbert-Schmidt norm of the linear
transformation T .

Proof Let v = Tx − Ty, where v ∈ Rm is represented by the m-tuple
(v1, v2, . . . , vm). Then

vi = Ti1(x1 − y1) + Ti2(x2 − y2) + · · ·+ Tin(xn − yn)

for all integers i between 1 and m. It follows from Schwarz’ Inequality
(Lemma 6.1) that

v2i ≤

(
n∑
j=1

T 2
i,j

)(
n∑
j=1

(xj − yj)2
)

=

(
n∑
j=1

T 2
i,j

)
|x− y|2.

Hence

|v|2 =
m∑
i=1

v2i ≤

(
m∑
i=1

n∑
j=1

T 2
i,j

)
|x− y|2 = ‖T‖HS|x− y|2.

Thus |Tx − Ty| ≤ ‖T‖HS|x − y|. It follows from this that T is uniformly
continuous. Indeed let some positive real number ε be given. We can then
choose δ so that ‖T‖HS δ < ε. If x and y are elements of Rn which satisfy
the condition |x− y| < δ then |Tx− Ty| < ε. This shows that T :Rn → Rm

is uniformly continuous on Rn, as required.

Lemma 7.2 Let T :Rn → Rm be a linear transformation from Rn to Rm

and let S: Rm → Rp be a linear transformation from Rm to Rp. Then the
Hilbert-Schmidt norm of the composition of the linear operators T and S
satisfies the inequality ‖ST‖HS ≤ ‖S‖HS ‖T‖HS.

Proof The composition ST of the linear operators is represented by the
product of the corresponding matrices. Thus the component (ST )k,j in the
kth row and the jth column of the p × n matrix representing the linear
transformation ST satisfies

(ST )k,j =
m∑
i=1

Sk,iTi,j.
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It follows from Schwarz’ Inequality (Lemma 6.1) that

(ST )2k,j ≤

(
m∑
i=1

S2
k,i

)(
m∑
i=1

T 2
i,j

)
.

Summing over k, we find that

p∑
k=1

(ST )2k,j ≤

(
p∑

k=1

m∑
i=1

S2
k,i

)(
m∑
i=1

T 2
i,j

)
= ‖S‖2HS

(
m∑
i=1

T 2
i,j

)
.

Then summing over j, we find that

‖ST‖2HS =

p∑
k=1

n∑
j=1

(ST )2k,j ≤ ‖S‖2HS

(
m∑
i=1

n∑
j=1

T 2
i,j

)
≤ ‖S‖HS‖2‖T‖HS‖2.

On taking square roots, we find that ‖ST‖HS ≤ ‖S‖HS ‖T‖HS, as required.

7.2 Review of Differentiability for Functions of One
Real Variable

Let f : I → R be a real-valued function defined on some open interval I in R.
Let a be an element of I. Recall that the function f is differentiable at a if
and only if

lim
h→0

f(a+ h)− f(a)

h

exists, and the value of this limit (if it exists) is known as the derivative of
f at a (denoted by f ′(a)).

We wish to define the notion of differentiability for functions of more than
one variable. However we cannot immediately generalize the above definition
as it stands (because this would require us to divide one element in Rn by
another, which we cannot do since the operation of division is not defined on
Rn). We shall therefore reformulate the above definition of differentiability
for functions of one real variable, exhibiting a criterion which is equivalent
to the definition of differentiability given above and which can be easily
generalized to functions of more than one real variable. This criterion is
provided by the following lemma.

Lemma 7.3 Let f : I → R be a real-valued function defined on some open
interval I in R. Let a be an element of I. The function f is differentiable at
a with derivative f ′(a) (where f ′(a) is some real number) if and only if

lim
h→0

1

|h|
(f(a+ h)− f(a)− f ′(a)h) = 0.
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Proof It follows directly from the definition of the limit of a function that

lim
h→0

f(a+ h)− f(a)

h
= f ′(a)

if and only if

lim
h→0

∣∣∣∣f(a+ h)− f(a)

h
− f ′(a)

∣∣∣∣ = 0.

But ∣∣∣∣f(a+ h)− f(a)

h
− f ′(a)

∣∣∣∣ =

∣∣∣∣ 1

|h|
(f(a+ h)− f(a)− f ′(a)h)

∣∣∣∣ .
It follows immediately from this that the function f is differentiable at a with
derivative f ′(a) if and only if

lim
h→0

1

|h|
(f(a+ h)− f(a)− f ′(a)h) = 0.

Now let us observe that, for any real number c, the map h 7→ ch defines a
linear transformation from R to R. Conversely, every linear transformation
from R to R is of the form h 7→ ch for some c ∈ R. Because of this, we may
regard the derivative f ′(a) of f at a as representing a linear transformation
h 7→ f ′(a)h, characterized by the property that the map

x 7→ f(a) + f ′(a)(x− a)

provides a ‘good’ approximation to f around a in the sense that

lim
h→0

e(a, h)

|h|
= 0,

where
e(a, h) = f(a+ h)− f(a)− f ′(a)h

(i.e., e(a,h) measures the difference between f(a + h) and the value f(a) +
f ′(a)h of the approximation at a+h, and thus provides a measure of the error
of this approximation). We shall generalize the notion of differentiability to
functions f from Rn to Rm by defining the derivative (Df)p of f at p to be
a linear transformation from Rn to Rm characterized by the property that
the map

x 7→ f(p) + (Df)p (x− p)

provides a ‘good’ approximation to f around p.
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7.3 Derivatives of Functions of Several Variables

Definition Let V be an open subset of Rn and let ϕ:V → Rm be a map
from V into Rm. Let p be a point of V . The function ϕ is said to be
differentiable at p, with derivative T :Rn → Rm if and only if there exists a
linear transformation T :Rn → Rm from Rn to Rm with the property that

lim
h→0

1

|h|
(ϕ(p + h)− ϕ(p)− Th) = 0.

If ϕ is differentiable at p then the derivative T :Rn → Rm of ϕ at p may be
denoted by (Dϕ)p, or by (Dϕ)(p), or by f ′(p).

The derivative (Dϕ)p of ϕ at p is sometimes referred to as the total
derivative of ϕ at p. If ϕ is differentiable at every point of V then we say
that ϕ is differentiable on V .

Lemma 7.4 Let T :Rn → Rm be a linear transformation from Rn into Rm.
Then T is differentiable at each point p of Rn, and (DT )p = T .

Proof This follows immediately from the identity T (p + h) − Tp − Th =
0.

Lemma 7.5 Let V be an open subset of Rn, let ϕ:V → Rm be a map from
V into Rm, let T :Rn → Rm be a linear transformation, and let p be a point
of V . Then ϕ is differentiable at p, with derivative T , if and only if, given
any strictly positive real number ε, there exists some strictly positive real
number δ such that p + h ∈ V and

|ϕ(p + h)− ϕ(p)− Th| ≤ ε|h|

for all h ∈ Rn satisfying |h| < δ.

Proof Suppose that the function ϕ:Rn → Rm satisfies the criterion de-
scribed in the statement of the lemma. Let some strictly positive real num-
ber ε be given. Take some real number ε′ satisfying 0 < ε′ < ε. Then there
exists some strictly positive real number δ such that p + h ∈ V and

|ϕ(p + h)− ϕ(p)− T h| ≤ ε′|h|

for all h ∈ Rn satisfying |h| < δ. Then

1

|h|
(ϕ(p + h)− ϕ(p)− Th) ≤ ε′ < ε
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whenever 0 < |h| < δ, and therefore

lim
h→0

1

|h|
(ϕ(p + h)− ϕ(p)− Th) = 0.

It then follows that the function ϕ is differentiable at p, with derivative T .
Conversely, the function ϕ is differentiable at p, with derivative T , then

lim
h→0

1

|h|
(ϕ(p + h)− ϕ(p)− Th) = 0

then it follows from the definition of limits that, given any strictly positive
real number ε, there exists some strictly positive real number δ such that the
condition set out in the statement of the lemma is satisfied, as required.

It follows from Lemma 7.5 that if a function ϕ:V → Rm defined over an
open set V in Rn is differentiable at a point p of V , then, given any positive
real number ε there exists a positive real number δ such that

|ϕ(p + h)− ϕ(p)− (Dϕ)p h| ≤ ε|h|

for all h ∈ Rn satisfying |h| < δ, where (Dϕ)p: Rn → Rm denotes the
derivative of ϕ at the point p. In that case

ϕ(p + h) = ϕ(p) + (Dϕ)p h + e(p,h),

where

lim
h→0

e(p,h)

|h|
= 0.

Thus if ϕ is differentiable at p then the map λ:V → R defined by

λ(x) = ϕ(p) + (Dϕ)p (x− p)

provides a good approximation to the function around p. The difference
between ϕ(x) and λ(x) is equal to e(p,x− p), and this quantity tends to 0
faster than |x− p| as x tends to p.

Example Let ϕ:R2 → R2 be defined so that

ϕ

((
x
y

))
=

(
x2 − y2

2xy

)
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for all real numbers x and y. Let p, q, h and k be real numbers. Then

ϕ

((
p+ h
q + k

))
=

(
(p+ h)2 − (q + k)2

2(p+ h)(q + k)

)
=

(
p2 − q2 + 2(ph− qk) + h2 − k2

2pq + 2(qh+ pk) + 2hk

)
=

(
p2 − q2

2pq

)
+

(
2(ph− qk)
2(qh+ pk)

)
+

(
h2 − k2

2hk

)
= ϕ

((
p
q

))
+

(
2p −2q
2q 2p

)(
h
k

)
+

(
h2 − k2

2hk

)
.

Now |(h, k)| =
√
h2 + k2, and

1

h2 + k2

∣∣∣∣( h2 − k2
2hk

)∣∣∣∣2 =
(h2 − k2)2 + 4h2k2

h2 + k2

for (h, k) 6= (0, 0). Note that if h and k are both multiplied by some positive
real number t then the right hand side of the above equality is multiplied by
t2. It follows that if K is the maximum value of the right hand side of this
equality on the circle {(h, k) : h2 + k2 = 1} then

1

h2 + k2

∣∣∣∣( h2 − k2
2hk

)∣∣∣∣2 ≤ K(h2 + k2).

Therefore
1√

h2 + k2

∣∣∣∣( h2 − k2
2hk

)∣∣∣∣→ 0 as (h, k)→ (0, 0).

It follows that the function ϕ:R2 → R2 is differentiable, and the deriva-
tive (Dϕ)(p,q) of this function at the point (p, q) is the linear transformation
represented as a matrix with respect to the standard bases as follows:

(Dϕ)(p,q) =

(
2p −2q
2q 2p

)
.

Example Let Mn(R) denote the real vector space consisting of all n × n
matrices with real coefficients. Mn(R) may be regarded as a Euclidean space,
where the Euclidean distance between two n × n matrices A and B is the
Hilbert-Schmidt norm of ‖A−B‖HS of A−B, defined such that

‖A−B‖HS =

√√√√ n∑
i=1

n∑
j=1

(Ai,j −Bi,j)2.
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Let GL(n,R) denote the set of invertible n×n matrices with real coefficients.
Then

GL(n,R) = {A ∈Mn(R) : detA 6= 0}.
Now the determinant detA of a square n × n matrix A is a continuous
function of the coefficients of the matrix. It follows from this that GL(n,R)
is an open subset of Mn(R). We denote the identity n×n matrix by I. Then
‖I‖HS =

√
n, because the square of the Hilbert-Schmidt norm ‖I‖HS is the

sum of the squares of the components of the identity matrix, and is therefore
equal to n.

Let ϕ: GL(n,R)→ GL(n,R) be the function defined so that ϕ(A) = A−1

for all invertible n×n matrices A. We show that this function ϕ: GL(n,R)→
GL(n,R) is differentiable.

Let A be an invertible n×n matrix. Then for all n×n matrices H. Now
the matrix I+A−1H is invertible if and only if det(I+A−1H) 6= 0. Moreover
this determinant is a continuous function of the coefficients of the matrix H.
It follows that there exists some positive number δ0 such that I + A−1H
is invertible whenever ‖H‖HS < δ0. Moreover the function mapping the
matrix H to ‖(I + A−1H)−1‖HS is continuous and takes the value

√
n when

H is the zero matrix. We can therefore choose a positive number δ0 small
enough to ensure that I +A−1H is invertible and ‖(I +A−1H)−1‖HS < 2

√
n

whenever ‖H‖HS < δ0.
Let the n× n matrix H satisfy ‖H‖HS < δ0. Then

(I − A−1H)(I + A−1H) = I − A−1HA−1H,

and therefore

I = (I − A−1H)(I + A−1H) + A−1HA−1H.

Multiplying this identity on the right by the matrix (I + A−1H)−1, we find
that

(I + A−1H)−1 = I − A−1H + A−1HA−1H(I + A−1H)−1.

It follows that

(A+H)−1 = (A(I + A−1H))−1 = (I + A−1H)−1A−1

= A−1 − A−1HA−1 + A−1HA−1H(I + A−1H)−1A−1.

The Hilbert-Schmidt norm of a product of n× n matrices is bounded above
by the product of the Hilbert-Schmidt norms of those matrices. Therefore if
‖H‖HS < δ0 then

‖A−1HA−1H(I + A−1H)−1A−1‖HS ≤ ‖A−1‖3HS‖(I + A−1H)−1‖HS‖H‖2HS,

98



where ‖(I + A−1H)−1‖HS < 2
√
n, and therefore∥∥(A+H)−1 − A−1 + A−1HA−1

∥∥
HS
≤ 2
√
n‖A−1‖3HS‖H‖2HS.

It follows that

lim
H→0

1

‖H‖HS

∥∥(A+H)−1 − A−1 + A−1HA−1
∥∥
HS

= 0.

Therefore the function ϕ: GL(n,R)→ GL(n,R) is differentiable, where ϕ(A) =
A−1 for all invertible n× n matrices A with real coefficients, and moreover

(Dϕ)A(H) = −A−1HA−1.

Lemma 7.6 Let ϕ:V → Rm be a function which maps an open subset V
of Rn into Rm which is differentiable at some point p of V . Then ϕ is
continuous at p.

Proof If we define

e(p,h) = ϕ(p + h)− ϕ(p)− (Dϕ)p h

then

lim
h→0

e(p,h)

|h|
= 0

(because ϕ is differentiable at p), and hence

lim
h→0

e(p,h) =
(

lim
h→0
|h|
)(

lim
h→0

e(p,h)

|h|

)
= 0.

But
lim
h→0

e(p,h) = lim
h→0

ϕ(p + h)− ϕ(p),

since
lim
h→0

(Dϕ)p h = (Dϕ)p

(
lim
h→0

h
)

= 0

(on account of the fact that every linear transformation from Rn to Rm is
continuous). We conclude therefore that

lim
h→0

ϕ(p + h) = ϕ(p),

showing that ϕ is continuous at p.
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Lemma 7.7 Let ϕ:V → Rm be a function which maps an open subset V of
Rn into Rm which is differentiable at some point p of V . Let (Dϕ)p:Rn →
Rm be the derivative of ϕ at p. Let u be an element of Rn. Then

(Dϕ)pu = lim
t→0

1

t
(ϕ(p + tu)− ϕ(p)) .

Thus the derivative (Dϕ)p of ϕ at p is uniquely determined by the map ϕ.

Proof It follows from the differentiability of ϕ at p that

lim
h→0

1

|h|
(ϕ(p + h)− ϕ(p)− (Dϕ)p h) = 0.

In particular, if we set h = tu, and h = −tu, where t is a real variable, we
can conclude that

lim
t→0+

1

t
(ϕ(p + tu)− ϕ(p)− t(Dϕ)pu) = 0,

lim
t→0−

1

t
(ϕ(p + tu)− ϕ(p)− t(Dϕ)pu) = 0,

It follows that

lim
t→0

1

t
(ϕ(p + tu)− ϕ(p)− t(Dϕ)pu) = 0,

as required.

We now show that given two differentiable functions mapping V into R,
where V is an open set in Rn, the sum, difference and product of these
functions are also differentiable.

Theorem 7.8 Let V be an open set in Rn, and let f :V → R and g:V → R
be functions mapping V into R. Let p be a point of V . Suppose that f
and g are differentiable at p. Then the functions f + g, f − g and f.g are
differentiable at p, and

(D(f + g)p = (Df)p + (Dg)p,

D(f − g)p = (Df)p − (Dg)p,

D(f.g)p = g(p)(Df)p + f(p)(Dg)p.
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Proof We can write

f(p + h) = f(p) + (Df)p h + e1(p,h),

g(p + h) = g(p) + (Dg)p h + e2(p,h),

for all sufficiently small h, where

lim
h→0

e1(p,h)

|h|
= 0, lim

h→0

e2(p,h)

|h|
= 0,

on account of the fact that f and g are differentiable at p. Then

lim
h→0

1

|h|
|f(p + h) + g(p + h)− (f(p) + g(p))− ((Df)p + (Dg)p) h|

= lim
h→0

e1(p,h) + e2(p,h)

|h|
= 0,

lim
h→0

1

|h|
|f(p + h)− g(p + h)− (f(p)− g(p))− ((Df)p − (Dg)p) h|

= lim
h→0

e1(p,h)− e2(p,h)

|h|
= 0.

Thus f + g and f − g are differentiable at p. Also

f(p + h)g(p + h) = f(p)g(p) + g(p)(Df)p h + f(p)(Dg)p h + e(p,h),

where

e(p,h) = (f(p) + (Df)p h)e2(p,h) + (g(p) + (Dg)p h)e1(p,h)

+ ((Df)p h)((Dg)p h) + e1(p,h)e2(p,h).

It follows from Lemma 7.1 that there exist constants M1 and M2 such that

|(Df)p h| ≤M1|h|, |(Dg)p h| ≤M2|h|.

Therefore
|((Df)p h)((Dg)p h)| ≤M1M2|h|2,

so that

lim
h→0

1

|h|
((Df)p h)((Dg)p h) = 0.

Also

lim
h→0

1

|h|
((f(p) + (Df)p h)e2(p,h))
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= lim
h→0

(f(p) + (Df)p h) lim
h→0

e2(p,h)

|h|
= 0,

lim
h→0

1

|h|
((g(p) + (Dg)p h)e1(p,h))

= lim
h→0

(g(p) + (Dg)p h) lim
h→0

e1(p,h)

|h|
= 0,

lim
h→0

1

|h|
(e1(p,h)e2(p,h)) = lim

h→0
e1(p,h) lim

h→0

e2(p,h)

|h|
= 0.

Therefore

lim
h→0

e(p,h)

|h|
= 0,

showing that the function f.g is differentiable at p and that

D(f.g)p = g(p)(Df)p + f(p)(Dg)p.

Theorem 7.9 (Chain Rule) Let V be an open set in Rn, and let ϕ:V → Rm

be a function mapping V into Rm. Let W be an open set in Rm which contains
ϕ(V ), and let ψ:W → Rl be a function mapping W into Rl. Let p be a point
of V . Suppose that ϕ is differentiable at p and that ψ is differentiable at ϕ(p).
Then the composition ψ ◦ϕ:Rn → Rl (i.e., ϕ followed by ψ) is differentiable
at p. Moreover

D(ψ ◦ ϕ)p = (Dψ)ϕ(p) ◦ (Dϕ)p.

Thus the derivative of the composition ψ◦ϕ of the functions at the given point
is the composition of the derivatives of those functions at the appropriate
points.

Proof Let q = ϕ(p). First we note that there exist positive real numbers L,
andM such that |(Dϕ)ph| ≤ L|h| for all h ∈ Rm and |(Dψ)qk| ≤M |k| for all
k ∈ Rn. Indeed it follows from Lemma 7.1 that we can take L = ‖(Dϕ)p‖HS

and M = ‖(Dψ)q‖HS, where ‖(Dϕ)p‖HS and M = ‖(Dψ)q‖HS denote the
Hilbert-Schmidt norms of the linear transformations (Dϕ)p and (Dψ)q.

Let some strictly positive number ε be given. The function ψ is differ-
entiable at q, with derivative (Dψ)q, and therefore there exists a strictly
positive real number η such that q + k ∈ W and

|ψ(q + k)− ψ(q)− (Dψ)q k| ≤ 1

2(L+ 1)
ε|k|

for all k ∈ Rm satisfying |k| < η (see Lemma 7.5). Let ε0 be a strictly
positive number chosen such that ε0 < 1 and 2Mε0 < ε. It then follows from
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the continuity and differentiability of ϕ at p that there exists some strictly
positive real number δ satisfying (L+ 1)δ < η with the property that

p + h ∈ D and |ϕ(p + h)− ϕ(p)− (Dϕ)ph| ≤ ε0|h|

for all h ∈ Rn satisfying |h| < δ.
Let h ∈ Rn satisfy |h| < δ, and let

k = ϕ(p + h)− ϕ(p) = ϕ(p + h)− q.

Then

ψ(ϕ(p + h))− ψ(ϕ(p))− (Dψ)ϕ(p)(Dϕ)p h

= (ψ(q + k)− ψ(q)− (Dψ)q k)

+ (Dψ)q (ϕ(p + h)− ϕ(p)− (Dϕ)p h) .

Also, on applying the Triangle Inequality satisfied by the Euclidean norm
(see Corollary 6.2), we find that

|k| = |ϕ(p + h)− ϕ(p)|
≤ |(Dϕ)ph|+ |ϕ(p + h)− ϕ(p)− (Dϕ)ph|
≤ L|h|+ ε0|h|
≤ (L+ 1)|h| < (L+ 1)δ < η.

It follows that

|ψ(ϕ(p + h))− ψ(ϕ(p))− (Dψ)ϕ(p)(Dϕ)p h|
≤ |ψ(q + k)− ψ(q)− (Dψ)q k|

+ |(Dψ)q (ϕ(p + h)− ϕ(p)− (Dϕ)p h)|
≤ |ψ(q + k)− ψ(q)− (Dψ)q k|

+M |ϕ(p + h)− ϕ(p)− (Dϕ)p h|

≤ 1

2(L+ 1)
ε|k|+Mε0|h|

≤ 1
2
ε|h|+ 1

2
ε|h| = ε|h|

whenever |h| < δ. It follows that the composition function ψ ◦ ϕ:Rn →
Rl is differentiable, and its derivative at the point p is (Dψ)ϕ(p)(Dϕ)p, as
required.

Example Consider the function ϕ:R2 → R defined by

ϕ(x, y) =

{
x2y3 sin

1

x
if x 6= 0;

0 if x = 0.
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Now one can verify from the definition of differentiability that the function
h:R→ R defined by

h(t) =

{
t2 sin

1

t
if t 6= 0,

0 if t = 0

is differentiable everywhere on R, though its derivative h′:R→ R is not con-
tinuous at 0. Also the functions (x, y) 7→ x and (x, y) 7→ y are differentiable
everywhere on R (by Lemma 7.4). Now ϕ(x, y) = y3h(x). Using Theorem 7.8
and Theorem 7.9, we conclude that ϕ is differentiable everywhere on R2.

Let (e1, e2, . . . , en) denote the standard basis of Rn, where

e1 = (1, 0, . . . , 0), e2 = (0, 1, . . . , 0), . . . , en = (0, 0, . . . , 1).

Let us denote by f i:V → R the ith component of the map ϕ:V → Rm,
where V is an open subset of Rn. Thus

ϕ(x) = (f1(x), f2(x), . . . , fm(x))

for all x ∈ V . The jth partial derivative of fi at p ∈ V is then given by

∂fi
∂xj

∣∣∣∣
x=p

= lim
t→0

fi(p + tej)− fi(p)

t
.

We see therefore that if ϕ is differentiable at p then

(Dϕ)pej =

(
∂f1
∂xj

,
∂f2
∂xj

, . . . ,
∂fm
∂xj

)
.

Thus the linear transformation (Dϕ)p:Rn → Rm is represented by the m×n
matrix 

∂f1
∂x1

∂f1
∂x2

. . .
∂f1
∂xn

∂f2
∂x1

∂f2
∂x2

. . .
∂f2
∂xn

...
...

...
∂fm
∂x1

∂fm
∂x2

. . .
∂fm
∂xn


This matrix is known as the Jacobian matrix of ϕ at p.
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Example Consider the function f :R2 → R defined by

f(x, y) =

{ xy

(x2 + y2)2
if (x, y) 6= (0, 0);

0 if (x, y) = (0, 0).

Note that this function is not continuous at (0, 0). (Indeed f(t, t) = 1/(4t2)
if t 6= 0 so that f(t, t) → +∞ as t → 0, yet f(x, 0) = f(0, y) = 0 for all
x, y ∈ R, thus showing that

lim
(x,y)→(0,0)

f(x, y)

cannot possibly exist.) Because f is not continuous at (0, 0) we conclude
from Lemma 7.6 that f cannot be differentiable at (0, 0). However it is easy
to show that the partial derivatives

∂f(x, y)

∂x
and

∂f(x, y)

∂y

exist everywhere on R2, even at (0, 0). Indeed

∂f(x, y)

∂x

∣∣∣∣
(x,y)=(0,0)

= 0,
∂f(x, y)

∂y

∣∣∣∣
(x,y)=(0,0)

= 0

on account of the fact that f(x, 0) = f(0, y) = 0 for all x, y ∈ R.

Example Consider the function g:R2 → R defined by

g(x, y) =


xy2

x2 + y4
if (x, y) 6= (0, 0);

0 if (x, y) = (0, 0).

Given real numbers b and c, let ub,c:R → R be defined so that ub,c(t) =
g(bt, ct) for all t ∈ R. If b = 0 or c = 0 then ub,c(t) = 0 for all t ∈ R, and the
function ub,c is thus a smooth function of t. If b 6= 0 and c 6= 0 then

ub,c(t) =
bc2t3

b2t2 + c4t4
=

bc2t

b2 + c2t2
,

and therefore ub,c(t) is a smooth function of t. Moreover

dub,c(t)

dt

∣∣∣∣
t=0

=


c2

b
if b 6= 0;

0 if b = 0.
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The restriction of the function g to any line passing through the origin de-
termines a smooth function of distance along the line. The restriction of the
function g to any other line in the plane also determines a smooth function
of distance. It follows that, when restricted to any straight line in R2, the
value of the function g is a smooth function of distance along that line.

However g(x, y) = 1
2

for all (x, y) ∈ R2 satisfying x > 0 and y = ±
√
x, and

similarly g(x, y) = −1
2

for all (x, y) ∈ R2 satisfying x < 0 and y = ±
√
−x.

It follows that every open disk about the origin (0, 0) contains some points
at which the function g takes the value 1

2
, and other points at which the

function takes the value −1
2
, and indeed the function g will take on all real

values between −1
2

and 1
2

on any open disk about the origin, no matter how
small the disk. It follows that the function g:R2 → R is not continuous at
zero, even though the partial derivatives of the function g with respect to x
and y exist at each point of R2.

Remark These last two examples exhibits an important point. They show
that even if all the partial derivatives of a function exist at some point, this
does not necessarily imply that the function is differentiable at that point.
However Theorem 7.11 below shows that if the first order partial derivatives
of the components of a function exist and are continuous throughout some
neighbourhood of a given point then the function is differentiable at that
point.

Proposition 7.10 Let M and δ0 be positive real numbers, and let

V = {(x1, x2, . . . , xn) ∈ Rn : −δ0 < xj < δ0 for j = 1, 2, . . . , n}.

let f :V → R be a real-valued function defined over V . Suppose that the par-
tial derivatives of the function f with respect to x1, x2, . . . , xn exist throughout
V , and satisfy ∣∣∣∣∂f(x1, x2, . . . , xn)

∂xj

∣∣∣∣ ≤M

whenever −δ0 < xj ≤ δ0 for j = 1, 2, . . . , n. Then

|f(v)− f(u)| ≤
√
nM |v − u|

for all u,v ∈ V .

Proof Let points wk for k = 0, 1, 2, . . . , n be defined so that

wk = (wk,1, wk,2, . . . , wk,n),
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where

wk,j =

{
uj if j > k;
vj if j ≤ k.

Then w0 = u and wn = v. Moreover wk and wk−1 differ only in the
kth coordinate for k = 1, 2, . . . , n, and indeed wk−1,k = uk, wk,k = vk and
wk,j = wk−1,j for j 6= k. Let qk: [0, 1]→ R be defined such that

qk(t) = f((1− t)wk−1 + twk)

for all t ∈ [0, 1]. Then qk(0) = f(wk−1) and qk(1) = f(wk), and therefore

f(v)− f(u) =
n∑
k=1

(f(wk)− f(wk−1)) =
n∑
k=1

(qk(1)− qk(0)).

Now

q′k(t) =
dqk(t)

dt
= (vk − uk)(∂kf)((1− t)wk−1 + twk)

for all t ∈ [0, 1], where ∂kf denotes the partial derivative of the function f
with respect to xk. Moreover |(∂kf)(x)| ≤ M for all x ∈ V . It follows that
|q′k(t)| ≤ M |vk − uk| for all t ∈ [0, 1]. Applying the Mean Value Function
(Theorem 4.6) to the function q on the interval [0, 1], we see that

|qk(1)− qk(0)| ≤M |vk − uk|

for k = 1, 2, . . . , n. It follows that

|f(v)− f(u)| ≤
n∑
k=1

|qk(1)− qk(0)| ≤M
n∑
k=1

|vk − uk|.

Now
n∑
k=1

|vk − uk| ≤
√
n|v − u|.

Indeed let s ∈ Rn be defined such that s = (s1, s2, . . . , sn) where sj = +1 if
vj ≥ uj and sj = −1 if vj < uj. Then

n∑
k=1

|vk − uk| = s . (v − u) ≤ |s||v − u| =
√
n|v − u|.

The result follows.
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Theorem 7.11 Let V be an open subset of Rm and let f :V → R be a
function mapping V into R. Suppose that the first order partial derivatives of
the components of f exist and are continuous on V . Then f is differentiable
at each point of V , and

(Df)ph =
n∑
j=1

hj
∂f

∂xj

∣∣∣∣
x=p

for all p ∈ V and h ∈ Rn, where h = (h1, h2, . . . , hn).

Proof Let p ∈ V , and let g:V → R be defined such that

g(x) = f(x)−
n∑
j=1

aj(xj − pj)

for all x ∈ V , where x = (x1, x2, . . . , xn) and

aj = (∂jf)(p) =
∂f

∂xj

∣∣∣∣
p

for j = 1, 2, . . . , n. The partial derivatives ∂jg of the function g are then
determined by those of f so that

(∂jg)(x) = (∂jf)(x)− aj
for j = 1, 2, . . . , n. It follows that (∂jg)(p) = 0 for j = 1, 2, . . . , n. It
follows from the continuity of the partial derivatives of f that, given any
positive real number ε, there exists some positive real number δ such that
(x1, x2, . . . , xn) ∈ V and, for each integer k between 1 and n,

|(∂kg)(x1, x2, . . . , xn)| ≤ ε√
n

whenever pj − δ < xj < pj + δ for j = 1, 2, . . . , n. It then follows from
Proposition 7.10 that

|g(p + h)− g(p)| ≤ ε|h|

for all h ∈ Rn satisfying |h| < δ. But then∣∣∣∣∣f(p + h)− f(p)−
n∑
j=1

hj(∂jf)(p)

∣∣∣∣∣ ≤ ε|h|

for all h ∈ Rn satisfying |h| < δ, where h = (h1, h2, . . . , hn). It follows from
Lemma 7.5 that the function f is differentiable at p. Moreover the Cartesian
components of the derivative of f at p are equal to the partial derivatives of
f at that point, as required.
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We can generalize this result immediately to functions u:V → Rm which
map some open subset V of Rn into Rm. Let ui denote the ith component of
u for i = 1, 2, . . . ,m. One sees easily from the definition of differentiability
that u is differentiable at a point of V if and only if each ui is differentiable
at that point. We can therefore deduce immediately the following corollary.

Corollary 7.12 Let V be an open subset of Rn and let u:V → Rm be a
function mapping V into Rm. Suppose that the Jacobian matrix

∂u1
∂x1

∂u1
∂x2

. . .
∂u1
∂xn

∂u2
∂x1

∂u2
∂x2

. . .
∂u2
∂xn

...
...

...
∂um
∂x1

∂um
∂x2

. . .
∂um
∂xn


exists at every point of V and that the entries of the Jacobian matrix are
continuous functions on V . Then ϕ is differentiable at every point of V , and
the derivative of ϕ at each point is represented by the Jacobian matrix.

We now summarize the main conclusions regarding differentiability of
functions of several real variables. They are as follows.

(i) A function ϕ:V → Rm defined on an open subset V of Rn is said to
be differentiable at a point p of V if and only if there exists a linear
transformation (Dϕ)p:Rn → Rm with the property that

lim
h→0

1

|h|
(ϕ(p + h)− ϕ(p)− (Dϕ)p h) = 0.

The linear transformation (Dϕ)p (if it exists) is unique and is known
as the derivative (or total derivative) of ϕ at p.

(ii) If the function ϕ:V → Rm is differentiable at a point p of V then the
derivative (Dϕ)p of ϕ at p is represented by the Jacobian matrix of
the function ϕ at p whose entries are the first order partial derivatives
of the components of ϕ.

(iii) There exist functions ϕ:V → Rm whose first order partial derivatives
are well-defined at a particular point of V but which are not differen-
tiable at that point. Indeed there exist such functions whose first order
partial derivatives exist throughout their domain, though the functions
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themselves are not even continuous. Thus in order to show that a func-
tion is differentiable at a particular point, it is not sufficient to show
that the first order partial derivatives of the function exist at that point.

(iv) However if the first order partial derivatives of the components of a
function ϕ:V → Rm exist and are continuous throughout some neigh-
bourhood of a given point then the function is differentiable at that
point. (However the converse does not hold: there exist functions
which are differentiable whose first order partial derivatives are not
continuous.)

(v) Linear transformations are everywhere differentiable.

(vi) A function ϕ:V → Rm is differentiable if and only if its components
are differentiable functions on V (where V is an open set in Rn).

(vii) Given two differentiable functions from V to R, where V is an open
set in Rn, the sum, difference and product of these functions are also
differentiable.

(viii) (The Chain Rule). The composition of two differentiable functions is
differentiable, and the derivative of the composition of the functions at
any point is the composition of the derivatives of the functions.

7.4 Second Order Partial Derivatives

Let V be an open subset of Rn and let f :V → R be a real-valued function on
V . We consider the second order partial derivatives of the function f defined
by

∂2f

∂xi∂xj
=

∂

∂xi

(
∂f

∂xj

)
.

We shall show that if the partial derivatives

∂f

∂xi
,

∂f

∂xj
,

∂2f

∂xi∂xj
and

∂2f

∂xj∂xi

all exist and are continuous then

∂2f

∂xi∂xj
=

∂2f

∂xj∂xi
.

First though we give a counterexample which demonstrates that there exist
functions f for which

∂2f

∂xi∂xj
6= ∂2f

∂xj∂xi
.

110



Example Let f :R2 → R be the function defined by

f(x, y) =


xy(x2 − y2)
x2 + y2

if (x, y) 6= (0, 0);

0 if (x, y) = (0, 0).

For convenience of notation, let us write

fx(x, y) =
∂f(x, y)

∂x
,

fy(x, y) =
∂f(x, y)

∂y
,

fxy(x, y) =
∂2f(x, y)

∂x∂y
,

fyx(x, y) =
∂2f(x, y)

∂y∂x
.

If (x, y) 6= (0, 0) then

fx =
yx2 − y3 + 2x2y

x2 + y2
− 2x2y(x2 − y2)

(x2 + y2)2

=
3x2y(x2 + y2)− y3(x2 + y2)− 2x4y + 2x2y3

(x2 + y2)2

=
x4y + 4x2y3 − y5

(x2 + y2)2
.

Similarly

fy = −y
4x+ 4y2x3 − x5

(y2 + x2)2
.

Thus if (x, y) 6= (0, 0) then

fxy = fyx =
x6 + 9x4y2 − 9x2y4 − y6

(x2 + y2)3
.

Note that

lim
(x,y)→(0,0)

fx(x, y) = 0, lim
(x,y)→(0,0)

fy(x, y) = 0.

Indeed if (x, y) 6= (0, 0) then

|fx| ≤
6r5

r4
= 6r,
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where r =
√
x2 + y2, and similarly |fy| ≤ 6r. However

lim
(x,y)→(0,0)

fxy(x, y)

does not exist. Indeed

lim
x→0

fxy(x, 0) = lim
x→0

fyx(x, 0) = lim
x→0

x6

x6
= 1,

lim
y→0

fxy(0, y) = lim
y→0

fyx(0, y) = lim
y→0

−y6

y6
= −1.

Next we show that fx, fy, fxy and fyx all exist at (0, 0), and thus exist
everywhere on R2. Now f(x, 0) = 0 for all x, hence fx(0, 0) = 0. Also
f(0, y) = 0 for all y, hence fy(0, 0) = 0. Thus

fy(x, 0) = x, fx(0, y) = −y

for all x, y ∈ R. We conclude that

fxy(0, 0) =
d(fy(x, 0))

dx
= 1,

fyx(0, 0) =
d(fx(0, y))

dy
= −1,

Thus
∂2f

∂x∂y
6= ∂2f

∂y∂x

at (0, 0).
Observe that in this example the functions fxy and fyx are continuous

throughout R2 \ {(0, 0} and are equal to one another there. Although the
functions fxy and fyx are well-defined at (0, 0), they are not continuous at
(0, 0) and fxy(0, 0) 6= fyx(0, 0).

We now prove that the continuity of the first and second order partial
derivatives of a function f of two variables x and y is sufficient to ensure that

∂2f

∂x∂y
.

Theorem 7.13 Let V be an open set in R2 and let f :V → R be a real-valued
function on V . Suppose that the partial derivatives

∂f

∂x
,

∂f

∂y
,

∂2f

∂x∂y
, and

∂2f

∂y∂x

exist and are continuous on V . Then

∂2f

∂x∂y
=

∂2f

∂y∂x
.
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Proof For convenience, we shall denote the values of

∂f

∂x
,

∂f

∂y
,

∂2f

∂x∂y
, and

∂2f

∂y∂x

at a point (x, y) of V by fx(x, y), fy(x, y), fxy(x, y) and fyx(x, y) respectively.
Let (a, b) be a point of V . The set V is an open set in Rn and therefore

there exists some positive real number R such that (a+ h, b+ k) ∈ V for all
(h, k) ∈ R2 satisfying

√
h2 + k2 < R.

Let us define a differentiable function u by

u(t) = f(t, b+ k)− f(t, b)

We apply the Mean Value Theorem to the function u on the closed interval
[a, a+ h] to conclude that there exists θ1, where 0 < θ1 < 1, such that

u(a+ h)− u(a) = hu′(a+ θ1h).

But

u(a+ h)− u(a) = f(a+ h, b+ k)− f(a+ h, b)− f(a, b+ k) + f(a, b)

and
u′(a+ θ1h) = fx(a+ θ1h, b+ k)− fx(a+ θ1h, b).

Moreover, on applying the Mean Value Theorem to the function that sends
y ∈ [b, b+ k] to fx(a+ θ1h, y), we see that there exists θ2, where 0 < θ2 < 1,
such that

fx(a+ θ1h, b+ k)− fx(a+ θ1h, b) = kfyx(a+ θ1h, b+ θ2k)

Thus

f(a+ h, b+ k)− f(a+ h, b)− f(a, b+ k) + f(a, b)

= hkfyx(a+ θ1h, b+ θ2k) = hk
∂2f

∂y∂x

∣∣∣∣
(x,y)=(a+θ1h,b+θ2k)

.

Now let ε > 0 be given. Then there exists some positive real number δ1,
where δ1 ≤ R, such that

|fyx(x, y)− fyx(a, b)| < 1
2
ε

whenever (x−a)2 +(y−b)2 < δ21, by the continuity of the function fyx. Thus

|f(a+ h, b+ k)− f(a+ h, b)− f(a, b+ k) + f(a, b)

hk
− fyx(a, b)| < 1

2
ε
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for all (h, k) ∈ R2 for which hk 6= 0 and
√
h2 + k2 < δ1.

A corresponding result holds with the roles of x and y interchanged, and
therefore there exists some positive real number δ2, where δ2 ≤ R, such that

|f(a+ h, b+ k)− f(a+ h, b)− f(a, b+ k) + f(a, b)

hk
− fxy(a, b)| < 1

2
ε

for all (h, k) ∈ R2 for which hk 6= 0 and
√
h2 + k2 < δ2.

Take δ to be the minimum of δ1 and δ2. If hk 6= 0 and
√
h2 + k2 < δ2

then

|f(a+ h, b+ k)− f(a+ h, b)− f(a, b+ k) + f(a, b)

hk
− fyx(a, b)| < 1

2
ε,

|f(a+ h, b+ k)− f(a+ h, b)− f(a, b+ k) + f(a, b)

hk
− fxy(a, b)| < 1

2
ε.

Using the triangle inequality we conclude that

|fyx(a, b)− fxy(a, b)| < ε.

But this inequality has to hold for all ε > 0. Therefore we must have

fyx(a, b) = fxy(a, b).

We conclude therefore that

∂2f

∂x∂y
=

∂2f

∂y∂x

at each point (a, b) of V , as required.

Remark It is actually possible to prove a somewhat stronger theorem which
states that, if f :V → R is a real-valued function defined on a open subset V
of R2 and if the partial derivatives

∂f

∂x
,

∂f

∂y
, and

∂2f

∂x∂y

exist and are continuous at some point (a, b) of V then

∂2f

∂y∂x

exists at (a, b) and
∂2f

∂y∂x

∣∣∣∣
(a,b)

=
∂2f

∂x∂y

∣∣∣∣
(a,b)

.
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Corollary 7.14 Let V be an open set in Rn and let f :V → R be a real-
valued function on V . Suppose that the partial derivatives

∂f

∂xi
and

∂2f

∂xi∂xj

exist and are continuous on V for all integers i and j between 1 and n. Then

∂2f

∂xi∂xj
=

∂2f

∂xj∂xi

for all integers i and j between 1 and n.

7.5 Maxima and Minima

Let f :V → R be a real-valued function defined over some open subset V of
Rn whose first and second order partial derivatives exist and are continuous
throughout V . Suppose that f has a local minimum at some point p of V ,
where p = (p1, p2, . . . , an). Now for each integer i between 1 and n the map

t 7→ f(p1, . . . , ai−1, t, ai+1, . . . , an)

has a local minimum at t = ai, hence the derivative of this map vanishes
there. Thus if f has a local minimum at p then

∂f

∂xi

∣∣∣∣
x=p

= 0.

The following lemma applies Taylor’s Theorem (for functions of a sin-
gle real variable) the local behaviour of real-valued functions of several real
variables that are twice continuously differentiable throughout an open neigh-
bourhood of some given point.

Lemma 7.15 Let f be a continuous real-valued function defined throughout
an open ball in Rn of radius R about some point p. Suppose that the partial
derivatives of f of orders one and two exist and are continuous throughout
this open ball. Then

f(p + h) = f(p) +
n∑
k=1

hk
∂f

∂xk

∣∣∣∣
p

+ 1
2

n∑
j,k=1

hjhk
∂2f

∂xj ∂xk

∣∣∣∣
p+θh

for all h ∈ Rn satisfying |h| < δ.
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Proof Let h satisfy |h| < R, and let

q(t) = f(p + th)

for all t ∈ [0, 1]. It follows from the Chain Rule for functions of several
variables Theorem 7.9

q′(t) =
n∑
j=1

hk(∂kf)(p + th)

and

q′′(t) =
n∑

j,k=1

hjhk(∂j∂kf)(p + th),

where

(∂jf)(x1, x2, . . . , xn) =
∂f(x1, x2, . . . , xn)

∂xj

and

(∂j∂kf)(x1, x2, . . . , xn) =
∂2f(x1, x2, . . . , xn)

∂xj ∂xk
.

It follows from Taylor’s Theorem for functions of a single real variable (The-
orem 4.21) that if the function f has continuous partial derivatives of orders
one and two then

q(1) = q(0) + q′(0) + 1
2
q′′(θ)

for some real number θ satisfying 0 < θ < 1. It follows that

f(p + h) = f(p) +
n∑
k=1

hk(∂kf)(p) + 1
2

n∑
j,k=1

hjhk(∂j∂kf)(p)

= f(p) +
n∑
k=1

hk
∂f

∂xk

∣∣∣∣
p

+ 1
2

n∑
j,k=1

hjhk
∂2f

∂xj ∂k

∣∣∣∣
p+θh

,

as required.

Let f be a real-valued function of several variables whose first second order
partial derivatives exist and are continuous throughout some open neigbour-
hood of a given point p, and let R > 0 be chosen such that the function f is
defined throughout the open ball of radius R about the point p. It follows
from Lemma 7.15 that if

∂f

∂xj

∣∣∣∣
p

= 0
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for j = 1, 2, . . . , n, and if |h| < R then

f(p + h) = f(p) +
1

2

n∑
i=1

n∑
j=1

hihj
∂2f

∂xi∂xj

∣∣∣∣
x=p+θh

for some θ satisfying 0 < θ < 1. Let us denote by (Hi,j(p)) the Hessian
matrix at the point p, defined by

Hi,j(p) =
∂2f

∂xi∂xj

∣∣∣∣
x=p

.

If the partial derivatives of f of second order exist and are continuous then
Hi,j(p) = Hji(p) for all i and j, by Corollary 7.14. Thus the Hessian matrix
is symmetric.

We now recall some facts concerning symmetric matrices.
Let (ci,j) be a symmetric n× n matrix.

The matrix (ci,j) is said to be positive semi-definite if
n∑
i=1

n∑
j=1

ci,jhihj ≥ 0

for all (h1, h2, . . . , hn) ∈ Rn.

The matrix (ci,j) is said to be positive definite if
n∑
i=1

n∑
j=1

ci,jhihj > 0 for

all non-zero (h1, h2, . . . , hn) ∈ Rn.

The matrix (ci,j) is said to be negative semi-definite if
n∑
i=1

n∑
j=1

ci,jhihj ≤ 0

for all (h1, h2, . . . , hn) ∈ Rn.

The matrix (ci,j) is said to be negative definite if
n∑
i=1

n∑
j=1

ci,jhihj < 0 for

all non-zero (h1, h2, . . . , hn) ∈ Rn.
The matrix (ci,j) is said to be indefinite if it is neither positive semi-

definite nor negative semi-definite.

Lemma 7.16 Let (ci,j) be a positive definite symmetric n×n matrix. Then
there exists some ε > 0 with the following property: if all of the components
of a symmetric n × n matrix (bi,j) satisfy the inequality |bi,j − ci,j| < ε then
the matrix (bi,j) is positive definite.

Proof Let Sn−1 be the unit n− 1-sphere in Rn defined by

Sn−1 = {(h1, h2, . . . , hn) ∈ Rn : h21 + h22 + · · ·+ h2n = 1}.
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Observe that a symmetric n× n matrix (bi,j) is positive definite if and only
if

n∑
i=1

n∑
j=1

bi,jhihj > 0

for all (h1, h2, . . . , hn) ∈ Sn−1. Now the matrix (ci,j) is positive definite, by
assumption. Therefore

n∑
i=1

n∑
j=1

ci,jhihj > 0

for all (h1, h2, . . . , hn) ∈ Sn−1. But Sn−1 is a closed bounded set in Rn, it
therefore follows from Theorem 6.21 that there exists some (k1, k2, . . . , kn) ∈
Sn−1 with the property that

n∑
i=1

n∑
j=1

ci,jhihj ≥
n∑
i=1

n∑
j=1

ci,jkikj

for all (h1, h2, . . . , hn) ∈ Sn−1. Thus there exists a strictly positive constant
A > 0 with the property that

n∑
i=1

n∑
j=1

ci,jhihj ≥ A

for all (h1, h2, . . . , hn) ∈ Sn−1. Set ε = A/n2. If (bi,j) is a symmetric n × n
matrix all of whose components satisfy |bi,j − ci,j| < ε then∣∣∣∣∣

n∑
i=1

n∑
j=1

(bi,j − ci,j)hihj

∣∣∣∣∣ < εn2 = A,

for all (h1, h2, . . . , hn) ∈ Sn−1, hence

n∑
i=1

n∑
j=1

bi,jhihj >

n∑
i=1

n∑
j=1

ci,jhihj − A ≥ 0

for all (h1, h2, . . . , hn) ∈ Sn−1. Thus the matrix (bi,j) is positive-definite, as
required.

Using the fact that a symmetric n × n matrix (ci,j) is negative definite
if and only if the matrix (−ci,j) is positive-definite, we see that if (ci,j) is
a negative-definite matrix then there exists some ε > 0 with the following
property: if all of the components of a symmetric n× n matrix (bi,j) satisfy
the inequality |bi,j − ci,j| < ε then the matrix (bi,j) is negative definite.
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Let f :V → R be a real-valued function whose partial derivatives of first
and second order exist and are continuous throughout some open set V in
Rn. Let p be a point of V . We have already observed that if the function f
has a local maximum or a local minimum at p then

∂f

∂xi

∣∣∣∣
x=p

= 0 (i = 1, 2, . . . , n).

We now apply Taylor’s theorem to study the behaviour of the function f
around a point p at which the first order partial derivatives vanish. We
consider the Hessian matrix (Hi,j(p) defined by

Hi,j(p) =
∂2f

∂xi∂xj

∣∣∣∣
x=p

.

Lemma 7.17 Let f :V → R be a real-valued function whose partial deriva-
tives of first and second order exist and are continuous throughout some open
set V in Rn, and let p be a point of V at which

∂f

∂xi

∣∣∣∣
x=p

= 0 (i = 1, 2, . . . , n).

If f has a local minimum at a point p of V then the Hessian matrix (Hi,j(p))
at p is positive semi-definite.

Proof The first order partial derivatives of f vanish at p. It therefore follows
from Taylor’s Theorem that, for any h ∈ Rn which is sufficiently close to 0,
there exists some θ satisfying 0 < θ < 1 (where θ depends on h) such that

f(p + h) = f(p) +
1

2

n∑
i=1

n∑
j=1

hihjHi,j(p + θh),

where

Hi,j(p + θh) =
∂2f

∂xi∂xj

∣∣∣∣
x=p+θh

(see Lemma 7.15). Suppose that the Hessian matrix Hi,j(p) is not positive
semi-definite. Then there exists some k ∈ Rn, where |k| = 1 with the
property that

n∑
i=1

n∑
j=1

kikjHi,j(p) < 0.
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It follows from the continuity of the second order partial derivatives of f that
there exists some δ > 0 such that

n∑
i=1

n∑
j=1

kikjHi,j(x) < 0

for all x ∈ V satisfying |x− p| < δ. Choose any λ such that 0 < λ < δ and
set h = λk. Then

n∑
i=1

n∑
j=1

hihjHi,j(p + θh) < 0

for all θ ∈ (0, 1). We conclude from Taylor’s theorem that f(p + λk) < f(p)
for all λ satisfying 0 < λ < δ (see Lemma 7.15). We have thus shown that
if the Hessian matrix at p is not positive semi-definite then p is not a local
minimum. Thus the Hessian matrix of f is positive semi-definite at every
local minimum of f , as required.

Let f :V → R be a real-valued function whose partial derivatives of first
and second order exist and are continuous throughout some open set V in Rn,
and let p be a point at which the first order partial derivatives of f vanish.
The above lemma shows that if the function f has a local minimum at h
then the Hessian matrix of f is positive semi-definite at p. However the fact
that the Hessian matrix of f is positive semi-definite at p is not sufficient to
ensure that f is has a local minimum at p, as the following example shows.

Example Consider the function f :R2 → R defined by f(x, y) = x2 − y3.
Then the first order partial derivatives of f vanish at (0, 0). The Hessian
matrix of f at (0, 0) is the matrix(

2 0
0 0

)
and this matrix is positive semi-definite. However (0, 0) is not a local mini-
mum of f since f(0, y) < f(0, 0) for all y > 0.

The following theorem shows that if the Hessian of the function f is
positive definite at a point at which the first order partial derivatives of f
vanish then f has a local minimum at that point.

Theorem 7.18 Let f :V → R be a real-valued function whose partial deriva-
tives of first and second order exist and are continuous throughout some open
set V in Rn, and let p be a point of V at which

∂f

∂xi

∣∣∣∣
x=p

= 0 (i = 1, 2, . . . , n).
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Suppose that the Hessian matrix Hi,j(p) at p is positive definite. Then f has
a local minimum at p.

Proof The first order partial derivatives of f vanish at p. It therefore follows
from Taylor’s Theorem that, for any h ∈ Rn which is sufficiently close to 0,
there exists some θ satisfying 0 < θ < 1 (where θ depends on h) such that

f(p + h) = f(p) +
1

2

n∑
i=1

n∑
j=1

hihjHi,j(p + θh),

where

Hi,j(p + θh) =
∂2f

∂xi∂xj

∣∣∣∣
x=p+θh

(see Lemma 7.15). Suppose that the Hessian matrix (Hi,j(p)) is positive
definite. It follows from Lemma 7.16 that there exists some ε > 0 such that
if |Hi,j(x) − Hi,j(p)| < ε for all i and j then (Hi,j(x)) is positive definite.
But it follows from the continuity of the second order partial derivatives of
f that there exists some δ > 0 such that |Hi,j(x) − Hi,j(p)| < ε whenever
|x − p| < δ. Thus if |h| < δ then (Hi,j(p + θh)) is positive definite for all
θ ∈ (0, 1) so that f(p + h) > f(p). Thus p is a local minimum of f .

A symmetric n × n matrix C is positive definite if and only if all its
eigenvalues are strictly positive. In particular if n = 2 and if λ1 and λ2 are
the eigenvalues a symmetric 2× 2 matrix C, then

λ1 + λ2 = traceC, λ1λ2 = detC.

Thus a symmetric 2× 2 matrix C is positive definite if and only if its trace
and determinant are both positive.

Example Consider the function f :R2 → R defined by

f(x, y) = 4x2 + 3y2 − 2xy − x3 − x2y − y3.

Now

∂f(x, y)

∂x

∣∣∣∣
(x,y)=(0,0)

= (0, 0),
∂f(x, y)

∂y

∣∣∣∣
(x,y)=(0,0)

= (0, 0).

The Hessian matrix of f at (0, 0) is(
8 −2
−2 6

)
.

The trace and determinant of this matrix are 14 and 44 respectively. Hence
this matrix is positive definite. We conclude from Theorem 7.18 that the
function f has a local minimum at (0, 0).
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8 Curvilinear Coordinates and the Inverse Func-

tion Theorem

8.1 Higher Order Derivatives and Smoothness

Definition Let V be an open set in Rn. A function ϕ:V → Rm is continu-
ously differentiable if the function sending each point x of V to the derivative
(Dϕ) of ϕ at the point x is a continuous function from V to L(Rn,Rm).

Lemma 8.1 Let V be an open set in Rn. A function ϕ:V → Rm is con-
tinuously differentiable if and only if the first order partial derivatives of the
components of ϕ exist and are continuous throughout V .

Proof The result follows directly from Theorem 7.11.

A function of several real variables is said to be “C1” if and only if it is
continuously differentiable.

The process of differentiation can be repeated. Let ϕ:V → Rm be a
differentiable function defined over an open set V in Rm. Suppose that the
function ϕ is differentiable at each point p. Then the derivative of ϕ can
itself be regarded as a function on V taking values in the real vector space
L(Rn,Rm) of linear transformations between the real vector spaces Rn and
Rm. Moreover L(Rn,Rm) can itself be regarded as a Euclidean space whose
Euclidean norm is the Hilbert-Schmidt norm on L(Rn,Rm). It follows that
the definition of differentiability can be applied to derivative of a differen-
tiable function of several real variables to obtain the second derivative of a
twice-differentiable function. Continuing the process, one can obtain the kth
derivative of a k-times differentiable function for any positive integer k. A
more detailed analysis of this process shows that if ϕ is a k-times differen-
tiable function, and if the Cartesian components of ϕ are f1, f2, . . . , fm, so
that

ϕ(x) = (f1(x), f2(x), . . . , fm(x))

for all x ∈ V , then the kth derivative of ϕ at each point of V is represented
by the multilinear transformation that maps each k-tuple (v(1),v(2), . . . ,v(k))
of vectors in Rn to the vector in Rm whose ith component is

n∑
j1=1

n∑
j2=1

· · ·
n∑

jk=1

∂kfi
∂xj1 ∂xj2 · · · ∂xjk

v
(1)
j1
v
(2)
j2
· · · v(k)jk

,

where v
(s)
j denotes the jth component of the vector v(s) for j = 1, 2, . . . , n

and s = 1, 2, . . . , k. The kth derivative of the function ϕ is thus represented
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by a function from the open set V to some real vector space of multilinear
transformations. Such a function is said to be a (Cartesian) tensor field on
V . Such tensor fields are ubiquitous in differential geometry and theoretical
physics.

We can formally define the concept of functions of several variables being
differentiable of order k by recursion on k.

Definition Let V be an open set in Rn. A function ϕ:V → Rm is k-times
differentiable, where k > 1, if it is differentiable and the Dϕ:V → L(Rn,Rm)
that maps each point x of V to the derivative of ϕ at that point is a (k− 1)-
times differentiable function on V .

Definition Let V be an open set in Rn. A function ϕ:V → Rm is k-times
continuously differentiable, where k > 1, if the function Dϕ:V → L(Rn,Rm)
that maps each point x of V to the derivative of ϕ at that point is a (k− 1)-
times continuously differentiable function on V .

A function of several real variables is said to be “Ck” for some positive
integer k if and only if it is k-times continuously differentiable.

Definition A function ϕ:V → Rm is said to be smooth (or C∞) if it is
k-times differentiable for all positive integers k.

If a function of several real variables is (k + 1)-times differentiable, then
the components of its kth order derivative must be continuous functions,
because differentiability implies continuity (see Lemma 7.6). It follows that
a function of several real variables is smooth if and only if it is Ck for all
positive integers k.

Lemma 8.2 Let V be an open set in Rn. A function ϕ:V → Rm is k-times
continuously differentiable (or Ck) if and only if the partial derivatives of the
components of ϕ of all orders up to and including k exist and are continuous
throughout V .

Proof The result can be proved by induction on k. The result is true for
k = 1 by Lemma 8.1. Suppose as our induction hypothesis that k > 1
and that continuously differentiable vector-valued functions on V are Ck−1

if and only if their partial derivatives of orders up to and including k − 1
exist and are continuous throughout V . Now a vector-valued function is
continuously differentiable if and only if its components are continuously
differentiable. Moreover a vector-valued function is Ck−1 if and only if its
components are all Ck−1. It follows that the function ϕ is Ck if and only if the
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components of its derivative are Ck−1. These components are the first-order
partial derivatives of ϕ. The induction hypothesis ensures that these first
order partial derivatives of ϕ are Ck−1 if and only if their partial derivatives
of orders less than or equal to k − 1 exist and are continuous throughout V .
It follows that the function ϕ itself is Ck if and only if its partial derivatives
of orders less than or equal to k exist and are continuous throughout V , as
required.

Lemma 8.3 Let V be an open set in Rn, and let f :V → R and g:V → R be
real-functions on V , and let f + g, f − g and f . g denote the sum, difference
and product of these functions, where

(f +g)(x) = f(x)+g(x), (f −g)(x) = f(x)−g(x), (f . g)(x) = f(x)g(x)

for all x ∈ V . Suppose that the functions f and g are Ck for some positive
integer k. Then so are the functions f + g, f − g and f . g.

Proof The result can be proved by induction on k. It follows from Theo-
rem 7.8 that the result is true when k = 1.

A real-valued function on V is Ck for some positive integer k if and only
if all the partial derivatives of its components of degree less than or equal to
k exist and are continuous throughout the open set V . It follows from this
that a real-valued function f on V is Ck if and only if its first order partial

derivatives ∂if are Ck−1, where ∂if =
∂f

∂xi
for i = 1, 2, . . . , n.

Thus suppose as our induction hypothesis that k > 1 and that all sums,
differences and products of Ck−1 functions are known to be Ck−1. Let f and
g be Ck functions. Then

∂i(f + g) = ∂if + ∂ig, ∂i(f − g) = ∂if − ∂ig,

∂i(f . g) = f . (∂ig) + (∂if) . g

for i = 1, 2, . . . , n. Now the functions f , g, ∂if and ∂ig are all Ck−1. The
induction hypothesis then ensures that ∂i(f + g), ∂i(f − g) and ∂i(f . g) are
all Ck−1 for i = 1, 2, . . . , n, and therefore the functions f + g, f − g and f . g
are Ck.

The required result therefore follows by induction on the degree k of the
derivatives required to be continuous.

Lemma 8.4 Let V and W be open sets in Rn and Rm respectively, and let
ϕ:V → Rm and ψ:W → Rl be functions mapping V and W into Rm and Rl

respectively, where ϕ(V ) ⊂ W . Suppose that the functions ϕ:V → Rm and
ψ:W → Rl are Ck. Then the composition function ψ ◦ϕ:V → Rl is also Ck.
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Proof We prove the result by induction on k. The Chain Rule for functions
of several real variables (Theorem 7.9) ensures that the result is true for
k = 1.

We have shown that sums, differences and products of Ck functions are
Ck (see Lemma 8.3). We suppose as our induction hypothesis that all compo-
sitions of Ck−1 functions of several real variables are Ck−1 for some positive
integer k, and show that this implies that all compositions of Ck functions
of several real variables are Ck.

Let ϕ:V → Rm and ψ:W → Rl be Ck functions, where V is an open
set in Rn, W is an open set in Rm and ϕ(V ) = W . Let the components
of ϕ be f1, f2, . . . , fn and let the components of ψ be g1, g2, . . . , gm, where
f1, f2, . . . , fn are real-valued functions on V , g1, g2, . . . , gm are real-valued
functions on W ,

ϕ(x) = (f1(x), f2(x), . . . , fn(x))

for all x ∈ V and
ψ(y) = (g1(y), g2(y), . . . , fm(y))

for all y ∈ W . It then follows from the Chain Rule (Theorem 7.9) that

∂

∂xi

(
gj(ϕ(x1, x2, . . . , xn))

)
=

m∑
s=1

(
∂gj
∂us
◦ ϕ
)
∂fs
∂xi

.

Now the functions
∂gj
∂us
◦ ϕ are compositions of Ck−1 functions. The in-

duction hypothesis therefore ensures that these functions are Ck−1. This

then ensures that the functions
∂

∂xi

(
gj(ϕ(x1, x2, . . . , xn))

)
are expressible as

sums of products of Ck−1 functions, and must therefore themselves be Ck−1

functions (see Lemma 8.3). We have thus shown that the first order partial
derivatives of the components of the composition function ψ ◦ ϕ are Ck−1

functions. It follows that ψ ◦ ϕ must itself be a Ck function.
The required result therefore follows by induction on the degree k of the

derivatives required to be continuous.

It follows from Lemma 8.3 and Lemma 8.4 that functions that are con-
structed from smooth vector-valued functions defined over open sets in Eu-
clidean spaces by means of the operations of additions, subtraction, multi-
plication and composition of functions must themselves be smooth functions
over the open sets over which they are defined.

We now prove a lemma that guarantees the smoothness of matrix-valued
functions obtained from smooth matrix-valued functions through the opera-
tion of matrix inversion. The lemma applies to functions F :V → GL(m,R)
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defined over an open subset V of a Euclidean space Rn and taking val-
ues in the set GL(m,R) of invertible m × m matrices. The value F (x) of
such a function at a point x of V is thus an invertible m ×m matrix, and
thus the function F :V → GL(m,R) determines a corresponding function
G:V → GL(m,R), where G(x) = F (x)−1 for all x ∈ V . The coefficients of
the matrices F (x) and G(x) are then functions of x as x varies over the open
set V . Now the function F is Ck if and only if, for all i and j between 1 and
m, the coefficient of the matrix F (x) in the ith row and jth column is a Ck

function of x throughout the open set V . We prove that if the function F is
Ck for some positive integer k then the function G is also Ck. It follows that
if the function F is smooth, then the function G is smooth.

Lemma 8.5 Let m be a positive integer, let Mm(R) denote the real vector
space consisting of all m×m matrices with real coefficients, and let GL(m,R)
be the open set in Mm(R) whose elements are the invertible m×m matrices
with real coefficients. Let V be an open set in Rn let F :V → GL(m,R) be
a function mapping V into GL(m,R), and let G:V → GL(m,R) be defined
such that G(x) = F (x)−1 for all x ∈ V . Suppose that the function F is Ck.
Then the function G is Ck.

Proof For each x ∈ V , the matrices F (x) and G(x) satisfy F (x)G(x) = I,
where I is the identity matrix. On differentiating this identity with respect
to the ith coordinate function xi on V , where x = (x1, x2, . . . , xn), we find
that

∂F (x)

∂xi
G(x) + F (x)

∂G(x)

∂xi
= 0,

and therefore

∂G(x)

∂xi
= −F (x)−1

∂F (x)

∂xi
G(x) = −G(x)

∂F (x)

∂xi
G(x).

(In the above equation F (x), G(x) and their inverses and partial derivatives
are m × m matrices that are multiplied using the standard operation of
matrix multiplication.) Now sums and products of Ck real-valued functions
are themselves Ck (see Lemma 8.3). It follows that if matrices are multiplied
together, where the coefficients of those matrices are Ck real-valued functions
defined over the open set V , the coefficients of the resultant matrix will also
be Ck real-valued functions defined over V .

The equation above ensures that if the matrix-valued function F is Ck

(so that the functions determining the coefficients of the matrix are real-
valued Ck functions on V ), then the first order partial derivatives of the
function G are continuous, and therefore the function G itself is C1, where
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G(x) = F (x)−1 for all x ∈ V . Moreover if G is Cj, where 1 ≤ j < k then the
coefficients of the first order partial derivatives of G are expressible as a sums
of products of Cj real-valued functions and thus are themselves Cj functions.
Thus the matrix-valued function G itself is Cj+1. Repeated applications of
this result ensure that G is a Ck function as required.

8.2 Lipschitz Conditions satisfied locally by Continu-
ously Differentiable Functions

Let ϕ:X → Rm be a function defined over a subset X of Rn. The function V
is said to satisfy a Lipschitz condition with Lipschitz constant M on X if the
inequality

|ϕ(x)− ϕ(x′)| ≤M |x− x′|,
satisfied for all points x and x of X. A function on X that satisfies such a
Lipschitz condition is said to be Lipschitz continuous on X.

A standard theorem (often referred to as Picard’s Theorem) in the theory
of ordinary diffential equations guaranteeing the existence and uniqueness of
solutions of initial value problems is only applicable when the function deter-
mining the differential equation satisfies an appropriate Lipschitz condition.

We use the result of Proposition 7.10 to show that continuously differen-
tiable functions satisfy Lipschitz conditions with arbitrarily small Lipschitz
constants in the neighbourhood around points where their derivative is zero.

Proposition 8.6 Let ϕ:V → Rm be a continuously differentiable function
defined over an open set V in Rn, and let p be a point of V at which (Dϕ)p =
0. Then, given any positive real number λ, there exists some positive real
number δ such that

|ϕ(x)− ϕ(x′)| ≤ λ|x− x′|
for all points x and x′ of V that satisfy |x− p| < δ and |x′ − p| < δ.

Proof Let p = (p1, p2, . . . , pn), and let

ϕ(x) = (f1(x), f2(x), . . . fm(x))

for all x ∈ V . Then the derivative (Dϕ)x of ϕ at a point x of V is repre-
sented by value at x of the Jacobian matrix whose coefficients are the partial

derivatives
∂fi
∂xj

for i, j = 1, 2, . . . , n. Now the first order partial derivatives

of the functions f1, f2, . . . , fm are continuous, because ϕ is a continuously dif-
ferentiable function. It follows that there exists some positive real number δ
such that ∣∣∣∣ ∂fi∂xj

∣∣∣∣ < λ√
mn
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at all points (x1, x2, . . . , xn) that satisfy |xj − pj| < δ for i = 1, 2, . . . , n. It
then follows from Proposition 7.10 that if the points x and x′ of V satisfy
|x− p| < δ and |x′ − p| < δ then

|fi(x′)− fi(x)| ≤ λ√
m
|x′ − x|

for i = 1, 2, . . . ,m. But then

|ϕ(x′)− ϕ(x)|2 =
m∑
i=1

|fi(x′)− fi(x)|2 ≤ λ2|x′ − x|2.

and therefore |ϕ(x′)− ϕ(x)| ≤ λ|x′ − x|, as required.

We shall apply Proposition 8.6 in order to prove a result that yields a
Lipschitz condition satisfied by continuously differentiable functions. The
statement of the result will make reference to the operator norm of a linear
transformation. We therefore proceed by giving the definition of the opera-
tor norm of a linear transformation between (finite-dimensional) Euclidean
spaces.

Definition Let T :Rn → Rm be a linear transformation between Euclidean
spaces Rn and Rm The operator norm ‖T‖op of the linear transformation T
is defined so that

‖T‖op = sup{|Tv| : v ∈ Rn and |v| = 1}.

Let T , T1 and T2 be linear transformations from Rn to Rm and let c be a
real number. Let v be a non-zero vector in Rn, and let v̂ = |v|−1v. Then

|Tv| = ||v| (T v̂)| = |v| |T v̂| ≤ ‖T‖op|v|.

Also |Tv| = 0 when v = 0. It follows that |Tv| ≤ ‖T‖op|v| for all v ∈ Rn.
Also

|(T1 + T2)v| = |T1v + T2v| ≤ |T1v|+ |T2v| ≤ (‖T1‖op + ‖T2‖op)|v|

for all v ∈ Rn. It follows that ‖T1 + T2‖op ≤ ‖T1‖op + ‖T2‖op. Also
|(cT )v| = |c| |Tv| for all v ∈ Rn, and therefore ‖cT‖op = |c| ‖T‖op. The
linear transformation T satisfies ‖T‖op = 0 if and only if T = 0.

Let T :Rn → Rm and S:Rm → Rl be linear transformations. Then

|STv| ≤ ‖S‖op|Tv| ≤ ‖S‖op ‖T‖op|v|,

and therefore ‖ST‖op ≤ ‖S‖op ‖T‖op.
It was shown in Lemma 7.1 that |Tv| ≤ ‖T‖HS|v| for all v ∈ Rn, where

‖T‖HS denotes the Hilbert-Schmidt norm of the linear operator T . It follows
that ‖T‖op ≤ ‖T‖HS.
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Corollary 8.7 Let ϕ:V → Rm be a continuously differentiable function de-
fined over an open set V in Rn, and let p be a point of V . Let M be a positive
real number satisfying M > ‖(Dϕ)p‖op, where

‖(Dϕ)p‖op = sup{|(Dϕ)pv| : v ∈ Rn and |v| = 1}.

Then there exists a positive real number δ such that

|ϕ(x)− ϕ(x′)| ≤M |x− x′|

for all points x and x′ of V that satisfy |x− p| < δ and |x′ − p| < δ.

Proof Let T = (Dϕ)p, and let

M0 = ‖(Dϕ)p‖op = sup{|Tv| : v ∈ Rn and |v| = 1},

and let λ = M −M0. Let ϕ:V → Rm be defined such that

ψ(x) = ϕ(x)− Tx

for all x ∈ V . Then (Dψ)p = (Dϕ)p−T = 0. It follows from Proposition 8.6
that there exists a positive real number δ such that

|ψ(x)− ψ(x′)| ≤ λ|x− x′|

for all points x and x′ of V that satisfy |x− p| < δ and |x′ − p| < δ. Then

|ϕ(x)− ϕ(x′)| = |ψ(x)− ψ(x′) + T (x− x′)|
≤ |ψ(x)− ψ(x′)|+ |T (x− x′)|
≤ λ|x− x′|+M0|x− x′| = M |x− x′|

for all points x and x′ of V that satisfy |x − p| < δ and |x′ − p| < δ, as
required.

Corollary 8.7 ensures that continuously differentiable functions of several
real variables are locally Lipschitz continuous. This means that they sat-
isfy a Lipschitz condition in some sufficiently small neighbourhood of any
given point. This in turn ensures that standard theorems concerning the
existence and uniqueness of ordinary differential equations can be applied to
systems of ordinary differential equations specified in terms of continuously
differentiable functions.
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8.3 Local Invertibility of Differentiable Functions

Definition Let ϕ:V → Rn be a continuous function defined over an open
set V in Rn and mapping that open set into Rn, and let p be a point of V .
A local inverse of the map ϕ:V → Rn around the point p is a continuous
function µ:W → V defined over an open set W in Rn that satisfies the
following conditions:

(i) µ(W ) is an open set in Rn contained in V , and p ∈ µ(W );

(ii) ϕ(µ(y)) = y for all y ∈ W .

If there exists a function µ:W → V satisfying these conditions, then the
function ϕ is said to be locally invertible around the point p.

Lemma 8.8 Let ϕ:V → Rn be a continuous function defined over an open
set V in Rn and mapping that open set into Rn, let p be a point of V . and
let µ:W → V be a local inverse for the map φ around the point p. Then
ϕ(x) ∈ W and µ(ϕ(x)) = x for all x ∈ µ(W ).

Proof The definition of local inverses ensures that µ(W ) is an open subset
of V , p ∈ µ(W ) and ϕ(µ(y)) = y for all y ∈ W . Let x ∈ µ(W ). Then
x = µ(y) for some y ∈ W . But then ϕ(x) = ϕ(µ(y)) = y, and therefore
ϕ(x) ∈ W . Moreover µ(ϕ(x)) = µ(y) = x, as required.

Let ϕ:V → Rn be a continuous function defined over an open set V in Rn

and mapping that open set into Rn, let p be a point of V . and let µ:W → V
be a local inverse for the map φ around the point p. Then the function from
the open set µ(W ) to the open set W that sends each point x of µ(W ) to
ϕ(x) is invertible, and its inverse is the continuous function from W to ϕ(W )
that sends each point y of W to µ(y). A function between sets is bijective if
it has a well-defined inverse. A continuous bijective function whose inverse
is also continuous is said to be a homeomorphism. We see therefore that the
restriction of the map ϕ to the image µ(W ) of the local inverse µ:W → V
determines a homeomorphism from the open set µ(W ) to the open set W .

Example The function ϕ:R2 → R2 \ {(0, 0)} defined such that

ϕ(u, v) = (eu cos v, eu sin v)

for all u, v ∈ R2 is locally invertible, though it is not bijective. Indeed, given
(u0, v0) ∈ R, let

W = {(r cos(v0 + θ), r sin(v0 + θ)) : r, θ ∈ R, r > 0 and − π < θ < π},
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and let
µ(r cos(v0 + θ), r sin(v0 + θ)) = (log r, v0 + θ)

whenever r > 0 and −π < θ < 1. Then W is an open set in R2,

µ(W ) = {(u, v) ∈ R2 : v0 − π < v < v0 + π},

and µ(ϕ(u, v)) = (u, v) for all (u, v) ∈ µ(W ). Note that the smoothness of
the logarithm and inverse trigonometrical functions guarantees that the local
inverse µ:W → R2 is itself smooth.

A smooth function may have a continuous inverse, but that inverse is not
guaranteed to be differentiable, as the following example demonstrates.

Example Let f :R→ R be defined so that f(x) = x3 for all real numbers x.
The function f is smooth and has a continuous inverse f−1:R → R, where
f−1(x) = 3

√
x when x ≥ 0 and f−1(x) = − 3

√
−x when x < 0. This inverse

function is not differentiable at zero.

Lemma 8.9 Let ϕ:V → Rn be a continuously differentiable function defined
over an open set V in Rn. Suppose that ϕ is locally invertible around some
point p of V . Suppose also that a local inverse to ϕ around p is differentiable
at the point ϕ(p). Then the derivative (Dϕ)p:Rn → Rn of ϕ at the point p
is an invertible linear operator on Rn. Thus if

ϕ(x1, x2, . . . , xn) = (y1, y2, . . . , yn),

for all (x1, x2, . . . , xn) ∈ V , where y1, y2, . . . , yn are differentiable functions of
x1, x2, . . . , xn, and if ϕ has a differentiable local inverse around the point p,
then the Jacobian matrix

∂y1
∂x1

∂y1
∂x2

. . .
∂y1
∂xn

∂y2
∂x1

∂y2
∂x2

. . .
∂y2
∂xn

...
...

...
∂yn
∂x1

∂yn
∂x2

. . .
∂yn
∂xn


is invertible at the point p.

Proof Let µ:W → V be a local inverse of ϕ around p, where W is an open
set in Rn, p ∈ µ(W ), µ(W ) ⊂ V and µ(ϕ(x)) = x for all x ∈ µ(W ). Suppose
that µ:W → V is differentiable at ϕ(p). The identity µ(ϕ(x)) = x holds
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throughout the open neighbourhood µ(W ) of point p. Applying the Chain
Rule (Theorem 7.9), we find that (Dµ)ϕ(p)(Dϕ)p is the identity operator
on Rn. It follows that the linear operators (Dµ)ϕ(p) and (Dϕ)p on Rn are
inverses of one another, and therefore (Dϕ)p is an invertible linear operator
on Rn. The result follows.

Lemma 8.10 Let ϕ:V → Rn be a continuously differentiable function de-
fined over an open set V in Rn that is locally invertible around some point
of V and let µ:W → Rn be a local inverse for ϕ. Suppose that ϕ:V → Rn is
continuously differentiable and that the local inverse µ:W → Rn is Lipschitz
continuous throughout W . Then µ:W → Rn is continuously differentiable
throughout W .

Proof The function µ:W → Rn is Lipschitz continuous, and therefore there
exists a positive constant C such that

|µ(y)− µ(y′)| ≤ C |y − y′|

for all q,y ∈ W . Let q ∈ W , let p = µ(q), and let S be the derivative of ϕ
at p. Then

Sv = lim
t→0

1

t
(ϕ(p + tv)− ϕ(p))

for all v ∈ Rn (see Lemma 7.7). If |t| is sufficiently small then p+tv ∈ µ(W ).
It then follows from Lemma 8.8 that

tv = µ(ϕ(p + tv))− µ(ϕ(p)),

and therefore
|t||v| ≤ C |ϕ(p + tv)− ϕ(p)|.

It follows that

|Sv| = lim
t→0

1

|t|
|ϕ(p + tv)− ϕ(p)| ≥ 1

C
|v|

for all v ∈ Rn, and therefore Sv 6= 0 for all non-zero vectors v. It follows from
basic linear algebra that the linear operator S on Rn is invertible. Moreover
|S−1v| ≤ C|v| for all v ∈ Rn.

Now

lim
x→p

1

|x− p|
|ϕ(x)− ϕ(p)− S(x− p)| = 0,

because the function ϕ is differentiable at p. Now µ(y) 6= p when y 6= q,
because q = ϕ(p) and y = ϕ(µ(y)). Also the continuity of µ ensures that
µ(y) tends to p as y tends to q. It follows that

lim
y→q

1

|µ(y)− p|
|y − q− S(µ(y)− p)| = 0.
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Now
|S−1(y − q)− (µ(y)− p)| ≤ C|y − q− S(µ(y)− p)|

for all y ∈ W . Also
1

|y − q|
≤ C

|p− µ(y)|
for all y ∈ W satisfying y 6= q. It follows that

1

|y − q|
|µ(y)− p− S−1(y − q)| ≤ C2

|µ(y)− p|
|y − q− S(µ(y)− p)|.

It follows that

lim
y→q

1

|y − q|
|µ(y)− p− S−1(y − q)| = 0,

and therefore the function µ is differentiable at q with derivative S−1. Thus
(Dµ)q = (Dϕ)−1p for all q ∈ W . It follows from this that (Dµ)q depends
continuously on q, and thus the function µ is continuously differentiable on
W , as required.

Lemma 8.11 Let ϕ:V → Rn be a continuously differentiable function de-
fined over an open set V in Rn that is locally invertible around some point
of V and let µ:W → Rn be a local inverse for ϕ. Suppose that ϕ:V → Rn

is Ck and that the local inverse µ:W → Rn is differentiable throughout W .
Then µ:W → Rn is Ck throughout W .

Proof The functions ϕ and µ are differentiable, and µ(ϕ(x)) = x for all
x ∈ µ(W ). The Chain Rule (Theorem 7.9) then ensures that (Dµ)ϕ(x)◦(Dϕ)x
is the identity operator. Let F (x) denote the Jacobian matrix representing
the derivative (Dϕ)x of ϕ at each point x of µ(W ), and let G(x) denote the
Jacobian matrix representing the derivative (Dµ)ϕ(x) of µ at ϕ(x). Then the
Chain Rule ensures that G(x)F (x) is the identity matrix. It follows that
F (x) and G(x) are invertible matrices and G(x) = F (x)−1 for all x ∈ µ(W ).
Now the function ϕ is Ck on V and therefore the matrix-valued function
F :µ(W )→ GL(n,R) is is Ck on µ(W ). It follows from Lemma 8.5 that the
matrix-valued function G:µ(W )→ GL(n,R) is also Ck on µ(W ).

Now the (Dµ)y is represented by the matrix G(µ(y)) for all y ∈ W .
It follows from the continuity of µ and G that the derivative Dµ of µ is
continuous on W . It follows that µ is C1. Moreover if µ:W → V is Cj for
any integer j satisfying 1 ≤ j < k then G◦µ is a composition of Cj functions
and is therefore Cj (Lemma 8.4). But the coefficients of the matrix G(µ(y))
are the first order partial derivatives of the components of µ at y at each
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point y of W . It follows therefore that the first order partial derivatives of
µ are Cj and therefore the function µ itself is Cj+1. It follows by repeated
application of this process that the function µ is Ck on W , as required.

8.4 The Inverse Function Theorem

The Inverse Function Theorem ensures that, for a Ck function of several real
variables, mapping an open set in one Euclidean space into a Euclidean space
of the same dimension, the invertibility of the derivative of the function at
a given point is sufficient to ensure the local invertibility of that function
around the given point, and moreover ensures that the inverse function is
also locally a Ck function.

The proof uses the method of successive approximations, using a conver-
gence criterion for infinite sequences of points in Euclidean space that we
establish in the following lemma.

Lemma 8.12 Let x1,x2,x3, . . . be an infinite sequence of points in n-dimen-
sional Euclidean space Rn, and let λ be a real number satisfying 0 < λ < 1.
Suppose that

|xj+1 − xj| ≤ λ|xj − xj−1|

for all integers j satisfying j > 1. Then the infinite sequence x1,x2,x3, . . . is
convergent.

Proof We show that an infinite sequence of points in Euclidean space satis-
fying the stated criterion is a Cauchy sequence and is therefore convergent.
Now the infinite sequence satisfies

|xj+1 − xj| ≤ Cλj

for all positive integers j, where C = |x2 − x1|/λ. Let j and k be positive
integers satisfying j < k. Then

|xk − xj| =

∣∣∣∣∣
k−1∑
s=j

(xs+1 − xs)

∣∣∣∣∣ ≤
k−1∑
s=j

|xs+1 − xs|

≤ C

k−1∑
s=j

λs = Cλj
1− λk−j

1− λ
<

Cλj

1− λ
.

We now show that the infinite sequence x1,x2,x3, . . . is a Cauchy se-
quence. Let some positive real number ε be given. Then a positive inte-
ger N can be chosen large enough to ensure that CλN < (1 − λ)ε. Then
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|xk − xj| < ε whenever j ≥ N and k ≥ N . Therefore the given infinite
sequence is a Cauchy sequence. Now all Cauchy sequences in Rn are conver-
gent (see Lemma 6.4). Therefore the given infinite sequence is convergent,
as required.

Theorem 8.13 (Inverse Function Theorem) Let ϕ:V → Rn be a contin-
uously differentiable function defined over an open set V in n-dimensional
Euclidean space Rn and mapping V into Rn, and let p be a point of V .
Suppose that k ≥ 1 and that the derivative (Dϕ)p:Rn → Rn of the map ϕ
at the point p is an invertible linear transformation. Then there exists an
open set W in Rn and a continuously differentiable function µ:W → V that
satisfies the following conditions:—

(i) µ(W ) is an open set in Rn contained in V , and p ∈ µ(W );

(ii) ϕ(µ(y)) = y for all y ∈ W .

Moreover if the function ϕ:V → Rn is Ck for some positive integer k, then
so is the function µ:W → V .

Proof We may assume, without loss of generality, that p = 0 and ϕ(p) = 0.
Indeed the result in the general case can then be deduced by applying the
result in this special case to the function that sends z to ϕ(p + z)−ϕ(p) for
all z ∈ Rn for which p + z ∈ V .

Now (Dϕ)0:Rn → Rn is an invertible linear transformation, by assump-
tion. Let T = (Dϕ)−10 , and let ψ:V → Rn be defined such that

ψ(x) = x− T (ϕ(x))

for all x ∈ V . Now the derivative of any linear transformation at any point
is equal to that linear transformation (see Lemma 7.4). It follows from the
Chain Rule that the derivative of the composition function T ◦ ϕ at any
point x of V is equal to T (Dϕ)x. It follows that (Dψ)x = I − T (Dϕ)x
for all x ∈ V , where I denotes the identity operator on Rn. In particular
(Dψ)0 = I − T (Dϕ)0 = 0. It then follows from Proposition 8.6 that there
exists a positive real number δ such that

|ψ(x′)− ψ(x)| ≤ 1
2
|x′ − x|

whenever |x| < δ and |x′| < δ.
Now ψ(0) = 0. It follows from the inequality just proved that |ψ(x)| ≤

1
2
|x| whenever |x| < δ.
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Let W be the open set in Rn defined so that

W = {y ∈ Rn : |T (y)| < 1
2
δ},

and let µ0, µ1, µ2, . . . be the infinite sequence of functions from W to Rn

defined so that µ0(y) = 0 for all y ∈ W and

µj(y) = µj−1(y) + T (y − ϕ(µj−1(y)))

for all positive integers j. We shall prove that there is a well-defined function
µ:W → Rn defined such that µ(y) = lim

j→+∞
µj(y) and that this function µ

is a local inverse for ϕ defined on the open set W that satisfies the required
properties.

Let y ∈ W and let xj = µj(y) for all non-negative integers j. Then
x0 = 0 and

xj = xj−1 + T (y − ϕ(xj−1))

= ψ(xj−1) + Ty

for all positive integers j. Now we have already shown that |ψ(x)| ≤ 1
2
|x|

whenever |x| < δ. Also the definition of the open set W ensures that |Ty| <
1
2
δ. It follows that if |xj−1| < δ then

|xj| ≤ |ψ(xj−1)|+ |Ty| ≤ 1
2
|xj−1|+ |Ty| < 1

2
δ + |Ty| < δ.

It follows by induction on j that |xj| < 1
2
δ + |Ty| for all non-negative inte-

gers j. Also

xj+1 − xj = xj − xj−1 − T (ϕ(xj)− ϕ(xj−1))

= ψ(xj)− ψ(xj−1)

for all positive integers j. But |xj| < δ and |xj−1| < δ and therefore

|xj+1 − xj| = |ψ(xj)− ψ(xj−1)| ≤ 1
2
|xj − xj−1|

for all positive integers j. It then follows from Lemma 8.12 that the infinite
sequence x0,x1,x2,x3, . . . is convergent. Now xj = µj(y) for all non-negative
integers j, where y is an arbitrary element of the open set W . The conver-
gence result just obtained therefore guarantees that there is a well-defined
function µ:W → Rn which satisfies

µ(y) = lim
j→+∞

µj(y)
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for all y ∈ W . Moreover |µj(y)| < 1
2
δ + |Ty| for all positive integers j and

for all y ∈ W , and therefore

|µ(y)| ≤ 1
2
δ + |Ty| < δ

for all y ∈ W .
Next we prove that ϕ(µ(y)) = y for all y ∈ W . Now

µ(y) = lim
j→+∞

µj(y) = lim
j→+∞

(µj−1(y) + T (y − ϕ(µj−1(y))))

= µ(y) + T (y − ϕ(µ(y)))

It follows that T (y − ϕ(µ(y))) = 0, and therefore

y − ϕ(µ(y)) = (Dϕ)0(T (y − ϕ(µ(y)))) = (Dϕ)0(0) = 0.

Thus y = ϕ(µ(y)) for all y ∈ W . Also µj(0) = 0 for all non-negative
integers j, and therefore µ(0) = 0.

Next we show that if x ∈ Rn satisfies |x| < δ and if ϕ(x) ∈ W then
x = µ(ϕ(x)). Now x = ψ(x) + Tϕ(x) for all x ∈ V . Also

|Tϕ(x)| ≤ ‖T‖op |ϕ(x)|

for all x ∈ V , where

‖T‖op = sup{|Tv| : v ∈ Rn and |v| = 1}.

It follows that

|x− x′| = |ψ(x)− ψ(x′) + T (ϕ(x)− ϕ(x′))|
≤ |ψ(x)− ψ(x′)|+ |T−1(ϕ(x)− ϕ(x′))|
≤ 1

2
|x− x′|+ ‖T‖op |ϕ(x)− ϕ(x′)|

whenever |x| < δ and |x′| < δ. Subtracting 1
2
|x− x′| from both sides of the

above inequality, and then multiplying by two, we find that

|x− x′| ≤ 2‖T‖op |ϕ(x)− ϕ(x′)|.

whenever |x| < δ and |x′| < δ. Substituting x′ = µ(y), we find that

|x− µ(y)| ≤ 2‖T‖op |ϕ(x)− y|

for all x ∈ V satisfying |x| < δ and for all y ∈ W . It follows that if x ∈ V
satisfies |x| < δ and if ϕ(x) = y for some y ∈ W then x = µ(y). The
inequality also ensures that

|µ(y)− µ(y′)| ≤ 2‖T‖op |y − y′|
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for all y,y′ ∈ W . Thus the function µ:W → V is Lipschitz continuous. It
then follows from Lemma 8.10 that the function µ is continuously differen-
tiable.

Next we prove that µ(W ) is an open subset of V . Now µ(W ) ⊂ ϕ−1(W )
because y = ϕ(µ(y)) for all y ∈ W . We have also proved that |µ(y)| < δ for
all y ∈ W . It follows that

µ(W ) ⊂ ϕ−1(W ) ∩ {x ∈ Rn : |x| < δ}.

But we have also shown that if x ∈ V satisfies |x| < δ, and if ϕ(x) ∈ W then
x = µ(ϕ(x)), and therefore x ∈ µ(W ). It follows that

µ(W ) = ϕ−1(W ) ∩ {x ∈ Rn : |x| < δ}.

Now ϕ−1(W ) is an open subset in V , because ϕ:V → Rn is continuous
and W is an open set in Rn (see Proposition 6.19). It follows that µ(W ) is
an intersection of two open sets, and is thus itself an open set. Moreover
0 ∈ µ(W ), because µ(0) = 0. We have now completed the proof that
µ:W → V satisfies properties (i) and (ii) in the statement of the theorem,
and is thus a continuously differentiable local inverse for the map ϕ:V → Rn.

The result that this local inverse is Ck when ϕ is Ck then follows from
Lemma 8.11. This completes the proof of the Inverse Function Theorem.

Corollary 8.14 Let ϕ:V → Rn be a smooth function defined over an open
set V in n-dimensional Euclidean space Rn and mapping V into Rn. Then ϕ
has a smooth local inverse around any point p at which the derivative (Dϕ)p
is invertible.

Proof This result follows directly from the Inverse Function Theorem (The-
orem 8.13), in view of the fact that a function ϕ:V → Rn is smooth if and
only if it is Ck for all positive integers k.

Definition Let V and W be open sets in n-dimensional Euclidean space Rn,
and let ϕ:V → W be a function from V to W . The function ϕ is said to be
a diffeomorphism if it has a well-defined inverse ϕ−1:W → V and both the
function ϕ:V → W and its inverse ϕ−1:W → V are smooth functions.

Definition Let V be an open set in n-dimensional Euclidean space Rn, and
let ϕ:V → Rn be a smooth function from V to Rn. Let U be an open subset
of V . We say that ϕ maps U diffeomorphically onto an open set of Rn if
ϕ(U) is an open set in Rn and the restriction of the function ϕ to U is a
diffeomorphism from U to ϕ(U).
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Corollary 8.15 Let V be an open set in n-dimensional Euclidean space Rn,
and let ϕ:V → Rn be a smooth function from V to Rn, and let p ∈ V .
Suppose that the derivative (Dϕ)p of ϕ is invertible at the point p. Then there
exists an open subset U of V , where p ∈ U , that is mapped diffeomorphically
by ϕ onto an open set in Rn.

Proof The derivative (Dϕ)p of ϕ is invertible at the point p. It follows
from the Inverse Function Theorem (Theorem 8.13) that there exists an open
set W in Rn and a smooth map µ:W → V such that µ(W ) is an open subset
of V , p ∈ µ(W ) and ϕ(µ(y)) = y for all y ∈ W . Let U = µ(W ). Then
ϕ(U) = W , because ϕ(µ(y)) = y for all y ∈ W . Moreover if x ∈ U then
x = µ(y) for some point y of W . But then

µ(ϕ(x)) = µ(ϕ(µ(y))) = µ(y) = x.

Thus µ(ϕ(x)) = x for all x ∈ U . It follows that ϕ maps the open set U
diffeomorphically onto W , and the inverse of this diffeomorphism from U to
W is the smooth map µ. The result follows.

8.5 Smooth Curvilinear Coordinate Systems

Definition Let U be an open set in n-dimensional Euclidean space Rn, and
let u1, u2, . . . , un be smooth real-valued functions defined throughout U , and
let

Ũ = {(u1(x), u2(x), . . . , un(x)) : x ∈ U}.

Then the smooth real-valued functions u1, u2, . . . , un are said to constitute a
smooth curvilinear coordinate system on U if Ũ is an open set in Rn and there
exist smooth real-valued functions ξ1, ξ2, . . . , ξn defined over Ũ such that

xi = ξi(u1(x1, x2, . . . , xn), u2(x1, x2, . . . , xn), . . . , un(x1, x2, . . . , xn))

for all x ∈ U .

Let U be an open set in n-dimensional Euclidean space Rn, and let
u1, u2, . . . , un be smooth real-valued functions defined throughout U , and
let

Ũ = {(u1(x), u2(x), . . . , un(x)) : x ∈ U}.

Let ϕ:U → Ũ be defined so that

ϕ(x) = (u1(x), u2(x), . . . , un(x)).
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Then the smooth real-valued functions u1, u2, . . . , un constitute a smooth
curvilinear coordinate system on U if and only if ϕ:U → Ũ is a diffeomor-
phism.

Suppose that u1, u2, . . . , un constitute a smooth curvilinear coordinate
system on the open set U . Let the open set Ũ and the diffeomorphism ϕU →
Ũ be defined as described above. A differentiable function f :U determines a
corresponding differentiable function f ◦ϕ−1: Ũ → U . The partial derivatives
of the function f with respect to the curvilinear coordinates u1, u2, . . . , un are
then defined so that

∂f

∂uj

∣∣∣∣
p

= (∂j(f ◦ ϕ−1))(ϕ(p))

=
∂f(ξ1(y1, . . . , yn), . . . , ξn(y1, . . . , yn))

∂yj

∣∣∣∣
(y1,...,yn)=ϕ(p)

for all p ∈ U , where ∂j(f ◦ϕ−1) denotes the partial derivative of f ◦ϕ−1 with
respect to the jth Cartesian coordinate on the open set Ũ . The Chain Rule
(Theorem 7.9) ensures that

(Df)p = D(f ◦ ϕ−1)ϕ(p)(Dϕ)p.

It follows that

∂f

∂xi

∣∣∣∣
p

= (∂if)(p) =
n∑
j=1

(∂j(f ◦ ϕ−1))(ϕ(p)) (∂iuj)(p)

=
n∑
j=1

(∂j(f ◦ ϕ−1))(ϕ(p)) (∂iuj)(p)

=
n∑
j=1

∂f

∂uj

∣∣∣∣
p

∂uj
∂xi

∣∣∣∣
p

.

This establishes the Chain Rule

∂f

∂xi
=

n∑
j=1

∂f

∂uj

∂uj
∂xi

used to compute the partial derivatives of a smooth real-valued function f
on the domain U of a smooth curvilinear coordinate system u1, u2, . . . , un.

We can apply the Chain Rule when the functions to be differentiated are
the Cartesian coordinate functions on U itself. We find that

n∑
j=1

∂xk
∂uj

∂uj
∂xi

=

{
1 if i = k;
0 if i 6= k.
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It follows that the Jacobian matrices associated with the change of coordi-
nates satisfy

∂x1
∂u1

∂x1
∂u2

. . .
∂x1
∂un

∂x2
∂u1

∂x2
∂u2

. . .
∂x2
∂un

...
...

...
∂xn
∂u1

∂xn
∂u2

. . .
∂xn
∂un


=



∂u1
∂x1

∂u1
∂x2

. . .
∂u1
∂xn

∂u2
∂x1

∂u2
∂x2

. . .
∂u2
∂xn

...
...

...
∂un
∂x1

∂un
∂x2

. . .
∂un
∂xn



−1

.

Let v1, v2, ldots, vn be another smooth local coordinate system defined over
an open set V , where U ∩ V is non-empty. Then

n∑
j=1

∂f

∂uj

∂uj
∂xi

=
∂f

∂xi
=

n∑
k=1

∂f

∂vk

∂vk
∂xi

=
n∑
j=1

n∑
k=1

∂f

∂vk

∂vk
∂uj

∂uj
∂xi

throughout U ∩ V for i = 1, 2, . . . , n. It then follows from the invertibility
of the Jacobian matrix of partial derivatives of u1, u2, . . . , un with respect to
x1, x2, . . . , xn that

∂f

∂uj
=

n∑
j=1

∂f

∂vk

∂vk
∂uj

throughout U ∩ V for j = 1, 2, . . . , n.
The fact that compositions of smooth functions are smooth ensures that

the smooth curvilinear coordinates v1, v2, . . . , vn can be expressed as smooth
functions of u1, u2, . . . , un and vice versa throughout the open set U∩V where
the domains of the smooth curvilinear coordinate systems overlap.

Proposition 8.16 Let u1, u2, . . . , un be smooth real-valued functions defined
throughout some open neighbourhood of a point p of n-dimensional Euclidean
space Rn. Suppose that the Jacobian matrix

∂u1
∂x1

∂u1
∂x2

. . .
∂u1
∂xn

∂u2
∂x1

∂u2
∂x2

. . .
∂u2
∂xn

...
...

...
∂un
∂x1

∂un
∂x2

. . .
∂un
∂xn


of partial derivatives of u1, u2, . . . , un with respect to x1, x2, . . . , xn is invert-
ible at the point p. Then there exists an open set U containing the point p
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such that the restrictions of the functions u1, u2, . . . , un to the open set U
constitute a smooth curvilinear coordinate system over the open set U .

Proof This result is essentially a restatement of the Inverse Function The-
orem (Theorem 8.13), and follows directly from Corollary 8.15 and the defi-
nition of smooth curvilinear coordinate systems.

8.6 The Implicit Function Theorem

Theorem 8.17 Let p be a point of Rn, where p = (p1, p2, . . . , pn) and let
u1, u2, . . . , um be a smooth real-valued functions defined over an open neigh-
bourhood V of the point p in Rn, where m < n, and let

M = {x ∈ V : uj(x) = 0 for j = 1, 2, . . . ,m}.

Suppose that u1, u2, . . . , un are zero at p and that the matrix

∂u1
∂x1

∂u1
∂x2

. . .
∂u1
∂xm

∂u2
∂x1

∂u2
∂x2

. . .
∂u2
∂xm

...
...

...
∂um
∂x1

∂um
∂x2

. . .
∂um
∂xm


is invertible at the point p. Then there exists an open neighbourhood U of p
and a smooth functions f1, f2, . . . , fm of n−m real variables, defined around
(pm+1, . . . , pn) in Rn−m, such that

M ∩ U = {(x1, x2, . . . , xn) ∈ U : xj = fj(xm+1, . . . , xn) for j = 1, 2, . . . ,m}.

Proof Let uj = xj for j = m+ 1, . . . , n, and let

J0 =



∂u1
∂x1

∂u1
∂x2

. . .
∂u1
∂xm

∂u2
∂x1

∂u2
∂x2

. . .
∂u2
∂xm

...
...

...
∂um
∂x1

∂um
∂x2

. . .
∂um
∂xm


, J =



∂u1
∂x1

∂u1
∂x2

. . .
∂u1
∂xn

∂u2
∂x1

∂u2
∂x2

. . .
∂u2
∂xn

...
...

...
∂un
∂x1

∂un
∂x2

. . .
∂un
∂xn


.
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(The matrix J0 is thus the leading m×m minor of the n×n matrix J .) Now

J =



∂u1
∂x1

. . .
∂u1
∂xm

∂u1
∂xm+1

∂u1
∂xm+2

. . .
∂u1
∂xn

...
. . .

...
...

...
∂um
∂x1

. . .
∂um
∂xm

∂um
∂xm+1

∂um
∂xm+2

. . .
∂um
∂xn

0 . . . 0 1 0 . . . 0
0 . . . 0 0 1 . . . 0
...

...
...

...
. . .

...
0 . . . 0 0 0 . . . 1


.

It follows from basic properties of determinants that det J = det J0, and
therefore det J is non-zero at the point p. It follows that matrix J whose
coefficients are the first order partial derivatives of u1, u2, . . . , un with respect
to x1, x2, . . . , xn is invertible at the point p. It then follows from Proposi-
tion 8.16 that u1, u2, . . . , un is a smooth curvilinear coordinate system de-
fined over some open set U that contains the point p and satisfies uj = xj for
j > m. It then follows that there exist smooth real-valued functions ξ1, ξ2, ξn
such that

xj = ξj(u1, u2, . . . , um, xm+1, . . . , xn)

for j = 1, 2, . . . , n. Let

fj(xm+1, . . . , xn) = ξj(0, 0, . . . , 0, xm+1, . . . , xn)

for j = 1, 2, . . . ,m. Then

M ∩ U = {(x1, x2, . . . , xn) ∈ U : xj = fj(xm+1, . . . , xn) for j = 1, 2, . . . ,m},

as required.

Corollary 8.18 Let u:V → R be a smooth real-valued function defined over

an open subset V of Rn. Suppose that
∂u

∂xn
6= 0 at some point p of V , where

p = (p1, p2, . . . , pn). Then there exist an open neighbourhood U of p and a
smooth real-valued function f , defined throughout some open neighbourhood
of (p1, p2, . . . , pn−1) in Rn−1, such that

{x ∈ U : u(x) = 0} = {(x1, x2, . . . , xn) ∈ U : xn = f(x1, x2, . . . , xn−1)}.

Proof This result comes directly on applying the Implicit Function Theorem
(Theorem 8.17), after reordering Cartesian coordinates so that xn precedes
x1, x2, . . . , xn−1.
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8.7 Submanifolds of Euclidean Spaces

A function is said to be injective (or one-to-one) if distinct points of the
domain get mapped to distinct points of the codomain.

Let M be a subset of n-dimensional Euclidean space Rn, and let Let
α:U →M be a smooth function mapping some open subset U of a Euclidean
space Rk into M , where 0 < k < n. The function α is injective if and
only if α(u) 6= α(u′) for all u,u′ ∈ U satisfying u 6= u′. If α:U → M is
injective, then there is a well-defined function ρ:α(U)→ U defined such that
ρ(α(x)) = x for all x ∈ U .

The range α(U) of the map α is open in M if and only if, given any
point p of α(U), there exists some δ > 0 such that all points of M that lie
within a distance δ of the point p belong to α(U).

The derivative (Dα)u of α at each point u has a rank which is by def-
inition the dimension of the image (Dα)u(Rk) of the linear transformation
(Dα)u:Rk → Rn. The rank of (Dα)u is some integer between 0 and k.
We consider the local properties of the image of a smooth injective function
α:U → Rn defined over an open subset U of Rk in the case where the rank
of the derivative of α at each point of U has its maximum possible value,
which is k.

Proposition 8.19 Let k and n be positive integers satisfying k < n, let let
U be an open set in Rk, let α:U → Rn be a smooth injective function from
U into Rn. Suppose that the following conditions are satisfied:—

(i) the function α:U → Rn is injective;

(ii) the inverse of α on the set α(U) is a continuous map from α(U) to U ;

(iii) the derivative (Dα)u of α at each point u of U has rank k.

Then, given any point p of α(U), there exists an open set W in Rn, where
p ∈ W , and a smooth curvilinear coordinate system w1, w2, . . . , wn defined
over W such that

α(U) ∩W = {x ∈ W : wj(x) = 0 for k < j ≤ n}

and wj(α(u1, u2, . . . , uk)) = uj for all (u1, u2, . . . , uk) ∈ U .

Proof Let p be a point of α(U). Then there exists u ∈ U such that p =
α(u). We may assume, without loss of generality, that p = α(0). Then
(Dα)0(Rk) is a vector subspace of Rn of dimension k. Let

vj =
∂α(u1, u2, . . . , uk)

∂uj

∣∣∣∣
(u1,u2,...,uk)=0
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for j = 1, 2, . . . , k. Then the vectors v1,v2, . . . ,vk are linearly independent
vectors in (Dα)p(Rk) that span this vector space. It follows from standard
linear algebra that there exist vectors vj in Rn for j = k + 1, . . . , n such
that the vectors v1,v2, . . . ,vn consistute a basis of the vector space Rn. The
smooth function α:U → Rn then extends to a smooth function β:V → Rn,
where

V = {(u1, u2, . . . , uk, 0, . . . , 0) ∈ Rn : (u1, u2, . . . , uk) ∈ U}

and

β(u1, u2, . . . , un) = α(u1, u2, . . . , uk) +
n∑

j=k+1

ujvj.

Let λ:U → V be defined so that

λ(u1, u2, . . . , uk) = (u1, u2, . . . , uk, 0, . . . , 0)

for all (u1, u2, . . . , uk) ∈ U . Then α(u) = β(λ(u)) for all u ∈ U .
Let ej be the unit vector in Rn whose jth component has the value 1 and

whose other components are zero for j = 1, 2, . . . , n. Then (Dβ)0 ej = vj for
j = 1, 2, . . . , n. It follows that (Dβ)0 is an invertible linear transformation
whose inverse sends vj to ej for j = 1, 2, . . . , n. It then follows from the
Inverse Function Theorem (Theorem 8.13) that there exists a smooth local
inverse µ:W0 → V for the map α around the point p defined over some open
set W0 in Rn. Then p ∈ W0, µ:W0 → V is a smooth function from W0 to V ,
µ(W0) is an open subset of V and β(µ(x)) = x for all x ∈ W0.

Now λ−1(µ(W0)) is an open set in Rk and 0 ∈ λ−1(µ(W0)). It follows
that there exists some positive number η such that u ∈ λ−1(µ(W0)) for all
u ∈ Rk satisfying |u| < η. The continuity of the inverse of α on α(U) then
ensures the existence of a positive real number δ such that |u| < η for all
u ∈ U satisfying |α(u)− p| < δ. Let

W = {x ∈ W0 : |x− p| < δ}.

If u ∈ U and if α(u) ∈ W then |α(u) − p| < δ, and therefore |u| < η. But
then u ∈ λ−1(µ(W0)), and therefore λ(u) = µ(x) for some x ∈ W0. But then

α(u) = β(λ(u)) = β(µ(x)) = x.

It follows that
µ(α(u)) = µ(x) = λ(u).

We have thus shown that µ(α(u)) = λ(u) for all u ∈ U for which α(u) ∈ W .
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Let the smooth real-valued functions w1, w2, . . . , wn be defined through-
out the open subset W of Rn so that

µ(x) = (w1(x), w2(x), . . . , wn(x))

for all x ∈ W . Then w1, w2, . . . , wn is a smooth curvilinear coordinate system
defined over the open set W . Let u ∈ U . Suppose that α(u) ∈ W . Then
µ(α(u)) = λ(u). It follows that wj(α(u)) = uj for j = 1, 2, . . . , k, and
wj(α(u)) = 0 when j > k. It follows from this that

α(U) ∩W = {x ∈ W : wj(x) = 0 for k < j ≤ n},

as required.

The proof of Proposition 8.19 involves some technicalities that depend on
the requirement that the inverse of the map α:U → Rn in the statement of
the proposition be continuous on α(U). The following example demonstrates
that the conclusions of the proposition may fail to hold in situations where
the other requirements of the proposition are satisfied by the continuity re-
quirement (ii) in the statements of the proposition is not satisfied.

Example Let ν be an irrational number and let γ:R → R3 be the smooth
curve in R3 defined such that

γ(t) = ((2 + cos 2πt) cos 2πνt, (2 + cos 2πt) sin 2πνt sin 2πt)

for all t ∈ R. Then γ is a smooth curve which winds around the torus

{(x, y, z) ∈ R3 : (
√
x2 + y2 − 2)2 + z2 = 1}.

Morover the velocity vector
dγ(t)

dt
is everywhere non-zero. The map γ is

injective. Indeed suppose that t1 and t2 are real numbers satisfying γ(t1) =
γ(t2). Then both t1 − t2 and ν(t1 − t2) are integers, and the fact that ν is
irrational ensures that this can only happen when t1 = t2.

Now if p, p′, q, q′ are integers and if and if p− νq = p′ − νq′ then p = p′

and q = q′. We use this fact to construct infinite sequences p1, p2, p3, . . . and
q1, q2, q3, . . . of integers such that pn − qnν > 0 and

0 < pn+1 − νqn+1 <
1
2
(pn − νqn)

for all positive integers n. Choose integers p1 and q1 for which 0 < p1−νq1 <
1. Then suppose that integers p1, . . . , pn and q1, . . . , qn have been determined
so as to satisfy the required inequalities. Then 0 < pn − νqn < 1. We show
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how to determine integers pn+1 and qn+1 for which 0 < pn+1 − νqn+1 <
1
2
(pn − νqn).

Let p = pn+1 and q = qn. Then p−νq > pn−νqn and p−νq 6= k(pn−νqn)
for all integers k. Let k0 be the largest integer for which k0(pn−νqn) < p−νq,
and let p′ = p − k0pn and q′ = q − k0qn. Then p′ − νq′ < pn − νqn. Then
let pn+1 = (1 − k1)pn − k1p′ and qn+1 = (1 − k1)qn − k1q′, where k1 be the
largest positive integer for which (pn − νqn) + k1(p

′ − pn − ν(q′ − qn)) > 0.
Then 0 < pn+1 − νqn+1 <

1
2
(pn − νqn). The infinite sequences of integers

constructed in this fashion have the property that

0 < pn − qnω <
1

2n−1
(p1 − q1ω)

for all positive integers n. It follows that if un = pn − qnω then the real
numbers u1, u2, u3, . . . constitute a decreasing sequence of real numbers con-
verging to zero. Moreover the real numbers uj are all distinct, and each
uj is uniquely determined by the value of qj. It follows that the integers
q1, q2, q3, . . . are distinct.

Now cos 2πqn = 1, sin 2πqn = 0 for all positive integers n. Also

cos 2πνqn = cos 2π(pn + un) = cos 2πun

and similarly sin 2πνqn = sin 2πun for all positive integers n. It follows that

γ(qn) = (3 cos 2πun, 3 sin 2πun, 0)

for all positive integers n, and therefore γ(qn) → (3, 0, 0) as n → +∞. But
the infinite sequence q1, q2, q3, . . . of distinct integers is not convergent. It fol-
lows that the inverse of the function γ is not continuous on γ(R). Also, given
any open neighbourhood of (3, 0, 0), no matter how small, the curve γ passes
infinitely often through that open neighbourhood. It is not therefore possible
to find a smooth curvilinear coordinate system around (3, 0, 0) satisfying the
requirements in the statement of Proposition 8.19.

Definition Let M be a subset of n-dimensional Euclidean space Rn. Then
M is said to be a smooth submanifold of Rn of dimension k if and only if,
given any point p of M , there exists an open set W , where p ∈ W , and a
smooth curvilinear coordinate system w1, w2, . . . , wn defined over the open
set W such that

M ∩W = {x ∈ W : wj(x) = 0 for k < j ≤ n}

and wj(α(u1, u2, . . . , uk)) = uj for all (u1, u2, . . . , uk) ∈ U .

147



Let M be a k-dimensional smooth submanifold of Rn, and let p be
a point of M . Then there exists s smooth curvilinear coordinate system
w1, w2, . . . , wn defined over an open set W in Rn such that

M ∩W = {x ∈ W : wj(x) = 0 for k < j ≤ n}.

Let U be the open set in Rk defined so that

U = {(w1(x), w2(x), . . . , wk(x)) : x ∈M ∩W},

and let α:U → Rn be the smooth map from U to W defined such that

wj(α(u1, u2, . . . , uk) = uj for j = 1, 2, . . . , k

and
wj(α(u1, u2, . . . , uk)) = uj for j > k.

Then α(U) = M ∩W , and therefore α(U) is open in M . Also the smooth
map α:U → Rn is injective, and the components of its inverse on α(U) are
the restrictions of the smooth real-valued functions w1, w2, . . . , wk to α(U).
It follows that the inverse of α is continuous on α(U). Finally the derivative
(Dα)q of α at any point q of U is represented by a matrix product JA where
the components of the matrices n×n matrix J and the n×k matrix A satisfy

Ji,j =
∂xi
∂wj

∣∣∣∣
α(q)

for i, j = 1, 2, . . . , n

and

Aj,l =
∂wj(α(u1, . . . , uk))

∂ul

∣∣∣∣
q

for j = 1, 2, . . . , n and l = 1, 2, . . . , k.

Now Ai,m = 1 when m = i, and Ai,m = 0 when m 6= i. It follows that the
matrix A has rank k. Also the matrix J is invertible. It follows that the
derivative (Dα)q of the function α has rank k at each point of U .

Corollary 8.20 Let M be a subset of n-dimensional Euclidean space Rn.
Then M is a k-dimensional smooth submanifold of Rn if and only if, given
any point p of M , there exists a smooth map α:U → M , defined over some
open set in Rk, which satisfies the following conditions:

(i) α(U) is open in M and p ∈ α(U);

(ii) the function α:U →M is injective;
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(iii) the inverse of α on the set α(U) is a continuous map from α(U) to U ;

(iv) the derivative (Dα)u of α at each point u of U has rank k.

Proof The preceding remarks show that if M is a smooth k-dimensional
submanifold of Rk, so that, given any point p of M , there exists an open
set W in Rn, where p ∈ W , and a smooth curvilinear coordinate system
w1, w2, . . . , wn on W such that

M ∩W = {x ∈ W : wj(x) = 0 for k < j ≤ n},

if
U = {(w1(x), w2(x), . . . , wk(x)) : x ∈M ∩W},

and if α:U → Rn is the smooth map from U to W defined such that

wj(α(u1, u2, . . . , uk) = uj for j = 1, 2, . . . , k,

then conditions (i), (ii), (iii) and (iv) of the corollary are satisfied by the
map α.

Conversely if, given any point p there exist a smooth map α satisfying
conditions (i), (ii), (iii) and (iv) of the corollary, then Proposition 8.19 ensures
that M is a smooth submanifold of Rn, as required.
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9 Topologies, Compactness, and the Multidi-

mensional Heine-Borel Theorem

9.1 Open Sets in Subsets of Euclidean Spaces

Let X be a subset of n-dimensional Euclidean space Rn. A subset U of X is
said to be open in X if, given any point u of U , there exists some positive
real number δ such that

{x ∈ X : |x− u| < δ} ⊂ U.

Lemma 9.1 Let X be a subset of Rn, and let U be a subset of X. Then
U is open in X if and only if there exists some open set V in Rn for which
U = V ∩X.

Proof First suppose that U = V ∩X for some open set V in Rn. Let u ∈ U .
Then the definition of open sets in Rn ensures that there exists some positive
real number δ such that

{x ∈ Rn : |x− u| < δ} ⊂ V.

Then
{x ∈ X : |x− u| < δ} ⊂ U.

This shows that U is open in X.
Conversely suppose that the subset U of X is open in X. For each point u

of U there exists some positive real number δu such that

{x ∈ X : |x− u| < δu} ⊂ U.

For each u ∈ U , let B(u, δu) denote the open ball in Rn of radius δu about
the point u, so that

B(u, δu) = {x ∈ Rn : |x− u| < δu}

for all u ∈ U , and let V be the union of all the open balls B(u, δu) as u
ranges over all the points of U . Then V is an open set in Rn. Indeed every
open ball in Rn is an open set (Lemma 6.13), and any union of open sets
in Rn is itself an open set (Proposition 6.15). The set V is a union of open
balls. It is therefore a union of open sets, and so must itself be an open set.

Now B(u, δu) ∩ X ⊂ U . for all u ∈ U . Also every point of V belongs
to B(u, δu) for at least one point u of U . It follows that V ∩ X ⊂ U . But
u ∈ B(u, δu) and B(u, δu) ∈ V for all u ∈ U , and therefore U ⊂ V , and thus
U ⊂ V ∩X. It follows that U = V ∩X, as required.
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9.2 Topological Spaces

Definition A topological space X consists of a set X together with a collec-
tion of subsets, referred to as open sets, such that the following conditions
are satisfied:—

(i) the empty set ∅ and the whole set X are open sets,

(ii) the union of any collection of open sets is itself an open set,

(iii) the intersection of any finite collection of open sets is itself an open set.

The collection consisting of all the open sets in a topological space X is
referred to as a topology on the set X.

Remark If it is necessary to specify explicitly the topology on a topological
space then one denotes by (X, τ) the topological space whose underlying set
is X and whose topology is τ . However if no confusion will arise then it is
customary to denote this topological space simply by X.

It follows from Proposition 6.15 that if X is a subset of n-dimensional
Euclidean space then the collection of subsets of X that are open in X is
a topology on X. We refer to this topology as the usual topology on X. A
subset U of X is open with respect to the usual topology on X if and only if,
given any point u of U , there exists some positive real number δ such that

{x ∈ X : |x− u| < δ} ⊂ U.

Definition A topological space X is said to be a Hausdorff space if and only
if it satisfies the following Hausdorff Axiom:

• if x and y are distinct points of X then there exist open sets U and V
such that x ∈ U , y ∈ V and U ∩ V = ∅.

Any subset of a Euclidean space is a Hausdorff space. Indeed let X be
a subset of a Euclidean space Rn, and let x and y be distinct points of X.
Let δ = 1

2
|x− y|. Then the open balls of radius δ about the points x and y

are open sets in X containing x and y respectively whose intersection is the
empty set.

Let X be a topological space with topology τ , and let A be a subset of X.
Let τA be the collection of all subsets of A that are of the form V ∩ A for
V ∈ τ . Then τA is a topology on the set A. (It is a straightforward exercise
to verify that the topological space axioms are satisfied.) The topology τA
on A is referred to as the subspace topology on A.
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Any subset of a Hausdorff space is itself a Hausdorff space (with respect
to the subspace topology).

Euclidean space Rn of dimension n is a topological space with the usual
topology. It follows from Lemma 9.1 that the usual topology on any subset X
of Rn is the subspace topology on that subset.

Definition A function f :X → Y from a topological space X to a topological
space Y is said to be continuous if f−1(V ) is an open set in X for every open
set V in Y , where

f−1(V ) = {x ∈ X : f(x) ∈ V }.

A continuous function from X to Y is often referred to as a map from X
to Y .

It follows from Proposition 6.19 that the definition of continuity for func-
tions between topological spaces generalizes the standard definition of conti-
nuity for functions between subsets of Euclidean spaces.

It is an easy exercise to prove from the definition of continuity for func-
tions between topological spaces that any composition of continuous func-
tions is continuous.

Let f :X → Y be a continuous function between topological spaces X
and Y . Then f−1(G) is closed in X for all closed sets G in Y . Indeed if G is
a closed set in Y then the complement Y \G of Y in G is an open set in Y .
The continuity of f :X → Y ensures that f−1(Y \ G) is closed in X. But it
is straightforward to verify that f−1(Y \ G) = X − f−1(G). It follows that
f−1(G) is closed in X.

Definition Let X and Y be topological spaces. A function h:X → Y is said
to be a homeomorphism if and only if the following conditions are satisfied:

• the function h:X → Y is both injective and surjective (so that the
function h:X → Y has a well-defined inverse h−1:Y → X),

• the function h:X → Y and its inverse h−1:Y → X are both continuous.

Two topological spaces X and Y are said to be homeomorphic if there exists
a homeomorphism h:X → Y from X to Y .

If h:X → Y is a homeomorphism between topological spaces X and Y
then h induces a one-to-one correspondence between the open sets of X and
the open sets of Y . Thus the topological spaces X and Y can be regarded
as being identical as topological spaces.
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9.3 Compact Topological Spaces

Let X be a topological space, and let A be a subset of X. A collection of
subsets of X in X is said to cover A if and only if every point of A belongs to
at least one of these subsets. In particular, an open cover of X is collection
of open sets in X that covers X.

If U and V are open covers of some topological space X then V is said to
be a subcover of U if and only if every open set belonging to V also belongs
to U .

Definition A topological space X is said to be compact if and only if every
open cover of X possesses a finite subcover.

Lemma 9.2 Let X be a topological space. A subset A of X is compact (with
respect to the subspace topology on A) if and only if, given any collection U
of open sets in X covering A, there exists a finite collection V1, V2, . . . , Vr of
open sets belonging to U such that A ⊂ V1 ∪ V2 ∪ · · · ∪ Vr.

Proof A subset B of A is open in A (with respect to the subspace topology
on A) if and only if B = A∩V for some open set V in X. The desired result
therefore follows directly from the definition of compactness.

Lemma 9.3 Let A be a closed subset of some compact topological space X.
Then A is compact.

Proof Let U be any collection of open sets in X covering A. On adjoining
the open set X \ A to U , we obtain an open cover of X. This open cover
of X possesses a finite subcover, since X is compact. Moreover A is covered
by the open sets in the collection U that belong to this finite subcover. It
follows from Lemma 9.2 that A is compact, as required.

Lemma 9.4 Let f :X → Y be a continuous function between topological
spaces X and Y , and let A be a compact subset of X. Then f(A) is a
compact subset of Y .

Proof Let V be a collection of open sets in Y which covers f(A). Then A is
covered by the collection of all open sets of the form f−1(V ) for some V ∈ V .
It follows from the compactness of A that there exists a finite collection
V1, V2, . . . , Vk of open sets belonging to V such that

A ⊂ f−1(V1) ∪ f−1(V2) ∪ · · · ∪ f−1(Vk).

But then f(A) ⊂ V1 ∪ V2 ∪ · · · ∪ Vk. This shows that f(A) is compact.
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Lemma 9.5 Let f :X → R be a continuous real-valued function on a com-
pact topological space X. Then f is bounded above and below on X.

Proof For each positive integer m let

Um = {x ∈ X : −m < f(x) < m}.

Then Um = f−1((−m,m)), where (−m,m) is the open interval in R con-
sisting of all real numbers t that satisfy −m < t < m. It follows from the
definition of continuity for functions between topological space that Um is
open in X for all positive integers k. Now, given any point x of X, there
exists some positive integer m such that −m < f(x) < m. It follows that
the open sets U1, U2, U3, . . . cover the compact space X. The definition of
compactness ensures the existence of a finite subcover Um1 , Um2 , . . . , Umk

,
where m1,m2, . . . ,mk are positive integers. Let M be the maximum of
m1,m2, . . . ,mk. Then −M < f(x) < M for all x ∈ X. The result fol-
lows.

Proposition 9.6 Let f :X → R be a continuous real-valued function on a
compact topological space X. Then there exist points u and v of X such that
f(u) ≤ f(x) ≤ f(v) for all x ∈ X.

Proof Let m = inf{f(x) : x ∈ X} and M = sup{f(x) : x ∈ X}. There
must exist v ∈ X satisfying f(v) = M , for if f(x) < M for all x ∈ X then
the function x 7→ 1/(M − f(x)) would be a continuous real-valued function
on X that was not bounded above, contradicting Lemma 9.5. Similarly
there must exist u ∈ X satisfying f(u) = m, since otherwise the function
x 7→ 1/(f(x)−m) would be a continuous function on X that was not bounded
above, again contradicting Lemma 9.5. But then f(u) ≤ f(x) ≤ f(v) for all
x ∈ X, as required.

9.4 Compact Subsets of Euclidean Spaces

Proposition 9.7 Let A be a compact subset of n-dimensional Euclidean
space Rn. Then A is closed and bounded in Rn.

Proof The function that sends each x ∈ A to |x| is a continuous function
on A. Every continuous function on a compact topological space is bounded
(Lemma 9.5). It follows that there exists a real number M such that |x| < M
for all x in A. Thus the set A is bounded.

Let p be a point of Rn that does not belong to A, and let f(x) = |x−p).
The function f is continuous on Rn. It therefore follows from Proposition 9.6
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that there is a point q of A such that f(x) ≥ f(q) for all x ∈ A, since A is
compact. Now f(q) > 0, since q 6= p. Let δ satisfy 0 < δ ≤ f(q). Then
the open ball of radius δ about the point p is contained in the complement
of A, since f(x) < f(q) for all points x of this open ball. It follows that the
complement of A is an open set in Rn, and thus A itself is closed in Rn.

We shall prove the converse of Proposition 9.7. The proof will make use
of the following proposition.

Proposition 9.8 Let X be a closed bounded set in n-dimensional Euclidean
space, and let V be an open cover of X. Then there exists a positive real
number δL with the property that, given any point u of X, there exists a
member V of the open cover V for which

{x ∈ X : |x− u| < δL} ⊂ V.

Proof Let
BX(u, δ) = {x ∈ X : |x− u| < δ}

for all u ∈ X and for all positive real numbers δ. Suppose that there did not
exist any positive real number δL with the stated property. Then, given
any positive number δ, there would exist a point u of X for which the
ball BX(u, δ) would not be wholly contained within any open set V be-
longing to the open cover V . Then BX(u, δ) ∩ (X \ V ) 6= ∅ for all mem-
bers V of the open cover V . There would therefore exist an infinite sequence
u1,u2,u3, . . . of points of X with the property that, for all positive inte-
gers j, the open ball BX(uj, 1/j) ∩ (X \ V ) 6= ∅ for all members V of the
open cover V . The sequence u1,u2,u3, . . . would be bounded, because the
set X is bounded. It would then follow from the multidimensional Bolzano-
Weierstrass Theorem (Theorem 6.20) that there would exist a convergent
subsequence uj1 ,uj2 ,uj3 , . . . of u1,u2,u3, . . .. Let p be the limit of this con-
vergent subsequence. Then the point p would then belong to X, because X
is closed (see Lemma 6.18). But then the point p would belong to an open
set V belonging to the open cover V . It would then follow from the defini-
tion of open sets that there would exist a positive real number δ for which
BX(p, 2δ) ⊂ V . Let j = jk for a positive integer k large enough to ensure
that both 1/j < δ and uj ∈ BX(p, δ). The Triangle Inequality would then
ensure that every point of X within a distance 1/j of the point uj would lie
within a distance 2δ of the point p, and therefore

BX(uj, 1/j) ⊂ BX(p, 2δ) ⊂ V.

But B(uj, 1/j) ∩ (X \ V ) 6= ∅ for all members V of the open cover V , and
therefore it would not be possible for this open set to be contained in the
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open set V . Thus the assumption that there is no positive number δL with
the required property has led to a contradiction. Therefore there must exist
some positive number δL with the property that, for all u ∈ X the open ball
BX(u, δL) in X is contained wholly within at least one open set belonging to
the open cover V , as required.

Definition Let X be a subset of n-dimensional Euclidean space, and let V
be an open cover of X. A positive real number δL is said to be a Lebesgue
number for the open cover V if, given any point p of X, there exists some
member V of the open cover V for which

{x ∈ X : |x− p| < δL} ⊂ V.

Proposition 9.8 ensures that, given any open cover of a closed bounded
subset of n-dimensional Euclidean space, there exists a positive real number
that is a Lebesgue number for that open cover.

Definition The diameter diam(A) of a bounded subset A of n-dimensional
Euclidean space is defined so that

diam(A) = sup{|x− y| : x,y ∈ A}.

It follows from this definition that diam(A) is the smallest real number K
with the property that |x− y| ≤ K for all x,y ∈ A.

A hypercube in n-dimensional Euclidean space Rn is a subset of Rn of the
form

{(x1, x2, . . . , xn) ∈ Rn : ui ≤ xi ≤ ui + l},

where l is a positive constant that is the length of the edges of the hypercube
and (u1, u2, . . . , un) is the point in Rn at which the Cartesian coordinates
of points in the hypercube attain their minimum values. The diameter of a
hypercube with edges of length l is l

√
n.

Lemma 9.9 Let X be a bounded subset of n-dimensional Euclidean space,
and let δ be a positive real number. Then there exists a finite collection
A1, A2, . . . , As of subsets of X such that the diam(Ai) < δ for i = 1, 2, . . . , s
and

X = A1 ∪ A2 ∪ · · · ∪ Ak.

Proof The set X is bounded, and therefore there exists some positive real
number M such that that if (x1, x2, . . . , xn) ∈ X then −M ≤ xj ≤ M for
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j = 1, 2, . . . , n. Choose k large enough to ensure that 2M/k < δL/
√
n. Then

the large hypercube

{(x1, x2, . . . , xn) ∈ Rn : −M ≤ xj ≤M for j = 1, 2, . . . , n}
can be subdivided into kn hypercubes with edges of length l, where l = 2M/k.
Each of the smaller hypercubes is a set of the form

{(x1, x2, . . . , xn) ∈ Rn : uj ≤ xj ≤ uj + l for j = 1, 2, . . . , n},
where (u1, u2, . . . , un) is the corner of the hypercube at which the Cartesian
coordinates have their minimum values. If p is a point belonging to such a
small hypercube, then all points of the hypercube lie within a distance l

√
n

of the point p. It follows that the small hypercube is wholly contained within
the open ball BRn(p, δL) of radius δ about the point p.

Now the number of small hypercubes resulting from the subdivision is
finite. Let H1, H2, . . . , Hs be a listing of the small hypercubes that intersect
the set X, and let Ai = Hi ∩X. Then diam(Hi) ≤

√
nl < δL and

X = A1 ∪ A2 ∪ · · · ∪ Ak,
as required.

Theorem 9.10 (The Multidimensional Heine-Borel Theorem) A subset of
n-dimensional Euclidean space Rn is compact if and only if it is both closed
and bounded.

Proof It follows from Proposition 9.15 that a compact subset of Rn is both
closed and bounded. We must prove the converse.

Let X be a closed bounded subset of Rn, and let V be an open cover of
X. It follows from Proposition 9.8 that there exists a Lebesgue number δL
for the open cover V . It then follows from Lemma 9.9 that there exist subsets
A1, A2, . . . , As of X such that diam(Ai) < δL for i = 1, 2, . . . , s and

X = A1 ∪ A2 ∪ · · · ∪ As.
We may suppose that Ai is non-empty for i = 1, 2, . . . , s (because if Ai = ∅
then Ai could be deleted from the list). Choose pi ∈ Ai for i = 1, 2, . . . , s.
Then Ai ⊂ BX(pi, δL) for i = 1, 2, . . . , s. The definition of the Lebesgue
number δL then ensures that there exist members V1, V2, . . . , Vs of the open
cover V such that BX(pi, δL) ⊂ Vi for i = 1, 2, . . . , s. Then Ai ⊂ Vi for
i = 1, 2, . . . , s, and therefore

X ⊂ V1 ∪ V2 ∪ · · · ∪ Vs.
Thus V1, V2, . . . , Vs constitute a finite subcover of the open cover U . We
have therefore proved that every closed bounded subset of n-dimensional
Euclidean space is compact, as required.
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9.5 Compact Metric Spaces

Definition A metric space (X, d) consists of a set X together with a distance
function d:X ×X → [0,+∞) on X satisfying the following axioms:

(i) d(x, y) ≥ 0 for all x, y ∈ X,

(ii) d(x, y) = d(y, x) for all x, y ∈ X,

(iii) d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X,

(iv) d(x, y) = 0 if and only if x = y.

The quantity d(x, y) should be thought of as measuring the distance be-
tween the points x and y. The inequality d(x, z) ≤ d(x, y)+d(y, z) is referred
to as the Triangle Inequality.

An n-dimensional Euclidean space Rn is a metric space with with respect
to the Euclidean distance function d, defined by

d(x,y) = |x− y| =

√√√√ n∑
i=1

(xi − yi)2

for all x,y ∈ Rn. Any subset X of Rn may be regarded as a metric space
whose distance function is the restriction to X of the Euclidean distance
function on Rn defined above.

Definition Let (X, d) be a metric space. Given a point x of X and r ≥ 0,
the open ball BX(x, r) of radius r about x in X is defined by

BX(x, r) = {x′ ∈ X : d(x′, x) < r}.

Definition Let (X, d) be a metric space. A subset V of X is said to be an
open set if and only if the following condition is satisfied:

• given any point v of V there exists some δ > 0 such that BX(v, δ) ⊂ V .

By convention, we regard the empty set ∅ as being an open subset of X.
(The criterion given above is satisfied vacuously in this case.)

Let (X, d) be a metric space. Then ∅ and X itself are open subsets of
X. Every union of open subsets in X is itself an open set in X. Also any
finite intersection of open sets in X is an open set in X. (The proof of these
results is a straightforward generalization of the proof of Proposition 6.15).
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Lemma 9.11 Any open ball in a metric space is an open set.

Proof Let X be a metric space with distance function d let x be a point of
X, and let r be a positive real number. If y ∈ BX(x, r) and if z ∈ BX(y, δ),
where BX(x, r) and BX(y, δ) are the open balls of radius r and δ about the
points x and y respectively, then

d(z, x) ≤ d(z, y) + d(y, x) < d(y, x) + δ.

But d(y, x) < r. It follows that if 0 < δ < r − d(y, x) then BX(y, δ) ⊂
BX(x, r).

Lemma 9.12 All metric spaces are Hausdorff spaces.

Proof Let X be a metric space with distance function d, and let x and
y be points of X, where x 6= y. Let δ = 1

2
d(x, y). Then x ∈ BX(x, δ)

and y ∈ BX(y, δ). Moreover BX(x, δ) ∩ BX(y, δ) = ∅. Indeed were there
to exist some point z in the intersection of BX(x, δ) ∩ BX(y, δ) = ∅ then
d(x, y) ≤ d(x, y)+d(y, z) < 2δ; but this contradicts the choice of δ. The balls
BX(x, δ) and BX(y, δ) are open in X (Lemma 9.11). The result follows.

The following definition of continuity for functions between metric spaces
generalizes that for functions of a real or complex variable.

Proposition 9.13 Let X and Y be metric spaces with distance functions
dX and dY respectively. Then one can prove that a function f :X → Y from
X to Y is continuous (in accordance with the definition of continuity for
functions between topological spaces) if and only if, given any point x of X
and given any positive real number ε, there exists some positive real number
δ such that dY (f(x), f(x′)) < ε for all points x′ of X satisfying dX(x, x′) < δ.

The proof of Proposition 9.13 this result is a straightforward generaliza-
tion of the proof of Proposition 6.19.

Lemma 9.14 Let X be a metric space with distance function d, and let p
be a point of X. Let fp:X → R be the function defined such that fp(x) =
d(x, p) for all x ∈ X. Then the function fp is continuous on X. Moroever
|fp(x)− fp(y)| ≤ d(x, y) for all x, y ∈ X.

Proof Let x and y be points of X. Then

fp(x) = d(x, p) ≤ d(x, y) + d(y, p) = fp(y) + d(x, y)

and therefore fp(x) − fp(y) ≤ d(x, y). Interchanging x and y, we find that
fp(y) − fp(x) ≤ d(x, y). It follows that |fp(x) − fp(y)| ≤ d(x, y) for all
x, y ∈ X. The required result then follows on applying Lemma 9.14.
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Proposition 9.15 Let A be a compact subset of a metric space X. Then A
is closed in X.

Proof Let p be a point of X that does not belong to A, and let fp(x) =
d(x, p), where d is the distance function on X. It follows from Proposition 9.6
that there is a point a0 of A such that fp(a) ≥ fp(a0) for all a ∈ A, since A
is compact. Now fp(a0) > 0, since a0 6= p. Let δ satisfy 0 < δ ≤ f(a0). Then
the open ball of radius δ about the point p is contained in the complement of
A, since fp(x) < fp(a0) for all points x of this open ball. It follows that the
complement of A is an open set in X, and thus A itself is closed in X.

Let X be a metric space with distance function d. Given a closed subset A
of X, we denote by d(x,A) the greatest lower bound on the distances from
x to the points of the set A. Thus

d(x,A) = inf{d(x, a) : a ∈ A}.

Lemma 9.16 Let X be a metric space with distance function d, let A be a
closed set in X, and let fA:X → R be defined so that

fA(x) = d(x,A) = inf{d(x, a) : a ∈ A}.

Then the function fA is continuous on X, and

A = {x ∈ X : fA(x) = 0}.

Moreover |fA(x)− fA(y)| ≤ d(x, y) for all x, y ∈ A.

Proof Let x and y be points of X. Then d(x, a) ≥ fA(x) and d(y, a) ≥ fA(y)
for all x ∈ A. Let some positive real number ε be given. Then there exist
points p and q of A such that d(x, p) < fA(x) + ε and d(y, q) < fA(y) + ε.
Then

fA(x) ≤ d(x, q) ≤ d(x, y) + d(y, q) ≤ fA(y) + d(x, y) + ε.

It follows from this that fA(x) − fA(y) < d(x, y) + ε for all positive real
numbers ε, and therefore fA(x)− fA(y) ≤ d(x, y). Similarly fA(y)− fA(x) ≤
d(x, y). Thus |fA(x) − fA(y)| < d(x, y) for all x, y ∈ X. It follows from
Lemma 9.14 that the function fA:X → R is continuous. If x ∈ A then
0 ≤ fA(x) ≤ d(x, x), and d(x, x) = 0, and therefore fA(x) = 0. If x 6∈ A then
there exists some positive real number δ such that the open ball of radius
δ about the point A is contained in the complement of A and therefore
fA(x) ≥ δ > 0. Therefore A point x of X belongs to the subset A if and only
if fA(x) = 0. The result follows.
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Definition Let X be a metric space with distance function d. A subset A
of X is said to be bounded if there exists a non-negative real number K
such that d(x, y) ≤ K for all x, y ∈ A. The smallest real number K with
this property is referred to as the diameter of A, and is denoted by diamA.
(Note that diamA is the supremum of the values of d(x, y) as x and y range
over all points of A.)

Let X be a metric space with distance function d. A subset A of X is
said to be bounded if there exists some non-negative real number K with the
property that d(x, y) ≤ K for all x, y ∈ A.

Definition Let X be a metric space with distance function d. The diameter
diam(A) of a bounded subset A of X is defined so that

diam(A) = sup{d(x, y) : x, y ∈ A}.

Lemma 9.17 (Lebesgue Covering Lemma) Let (X, d) be a compact metric
space. Let U be an open cover of X. Then there exists a positive real num-
ber δL such that every subset of X whose diameter is less than δL is contained
wholly within one of the open sets belonging to the open cover U .

1st Proof The open cover U of X has a finite subcover, because X is
compact. Therefore there exists a finite collection V1, V2, . . . , Vk of open
sets belonging to the open cover U which covers X. Let Ai = X \ Vi for
i = 1, 2, . . . , k, let

fi(x) = d(x,Ai) = inf{d(x, a) : a ∈ Ai}.

for i = 1, 2, . . . , k, and let

F (x) =
k∑
i=1

fi(x) =
k∑
i=1

d(x,Ai).

It follows from Lemma 9.16 that each function fi is a continuous function on
X. Therefore the function F :X → R is a continuous real-valued function on
X.

Given any point x of X there exists some integer i between 1 and k for
which x ∈ Vi. Then x 6∈ Ai. It follows from Lemma 9.16 that fi(x) > 0.
Therefore F (x) > 0. Thus F (x) is strictly positive for all x ∈ X. It follows
from Proposition 9.6 that there exists some point u of X with the property
that F (x) ≥ F (u) for all x ∈ X. Let δL be a positive real number for which
kδL < F (u).

161



Let g(x) = maximum(f1(x), f2(x), . . . , fk(x) for all x ∈ X. Then kδL <
F (u) ≤ F (x) ≤ kg(x) for all x ∈ X. Therefore, given any point x in X,
there exists some integer i between 1 and k for which fi(x) > δL. But then
d(x,Ai) > δL, and therefore the open ball BX(x, δL) of radius δL about the
point x is wholly contained in the open set Vi. Now any non-empty subset
of X of diameter less than δL is contained within BX(x, δ) for any x ∈ L.
Therefore every subset of X of diameter less than δL is wholly contained
within one of the open sets belonging to the open cover U , as required.

2nd Proof Every point of X is contained in at least one of the open sets
belonging to the open cover U . It follows from this that, for each point x of X,
there exists some δx > 0 such that the open ball B(x, 2δx) of radius 2δx about
the point x is contained wholly within one of the open sets belonging to the
open cover U . But then the collection consisting of the open balls B(x, δx)
of radius δx about the points x of X forms an open cover of the compact
space X. Therefore there exists a finite set x1, x2, . . . , xr of points of X such
that

B(x1, δ1) ∪B(x2, δ2) ∪ · · · ∪B(xr, δr) = X,

where δi = δxi for i = 1, 2, . . . , r. Let δL > 0 be given by

δL = minimum(δ1, δ2, . . . , δr).

Suppose that A is a subset of X whose diameter is less than δL. Let u be a
point of A. Then u belongs to B(xi, δi) for some integer i between 1 and r.
But then it follows that A ⊂ B(xi, 2δi), since, for each point v of A,

d(v, xi) ≤ d(v, u) + d(u, xi) < δL + δi ≤ 2δi.

But B(xi, 2δi) is contained wholly within one of the open sets belonging to
the open cover U . Thus A is contained wholly within one of the open sets
belonging to U , as required.

Definition Let U be an open cover of a compact metric space X. A Lebesgue
number for the open cover U is a positive real number δL such that every
subset of X whose diameter is less than δL is contained wholly within one of
the open sets belonging to the open cover U .

The Lebesgue Covering Lemma thus states that there exists a Lebesgue
number for every open cover of a compact metric space.

Definition Let X and Y be metric spaces with distance functions dX and
dY respectively, and let f :X → Y be a function from X to Y . The function f
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is said to be uniformly continuous on X if and only if, given ε > 0, there
exists some δ > 0 such that dY (f(x), f(x′)) < ε for all points x and x′ of X
satisfying dX(x, x′) < δ. (The value of δ should be independent of both x
and x′.)

Theorem 9.18 Let X and Y be metric spaces. Suppose that X is compact.
Then every continuous function from X to Y is uniformly continuous.

Proof Let dX and dY denote the distance functions for the metric spaces X
and Y respectively. Let f :X → Y be a continuous function from X to Y .
We must show that f is uniformly continuous.

Let ε > 0 be given. For each y ∈ Y , define

Vy = {x ∈ X : dY (f(x), y) < 1
2
ε}.

Note that Vy = f−1
(
BY (y, 1

2
ε)
)
, where BY (y, 1

2
ε) denotes the open ball of

radius 1
2
ε about y in Y . Now the open ball BY (y, 1

2
ε) is an open set in Y ,

and f is continuous. Therefore Vy is open in X for all y ∈ Y . Note that
x ∈ Vf(x) for all x ∈ X.

Now {Vy : y ∈ Y } is an open cover of the compact metric space X. It
follows from the Lebesgue Lemma (Lemma 9.17) that there exists some δ > 0
such that every subset of X whose diameter is less than δ is a subset of some
set Vy. Let x and x′ be points of X satisfying dX(x, x′) < δ. The diameter
of the set {x, x′} is dX(x, x′), which is less than δ. Therefore there exists
some y ∈ Y such that x ∈ Vy and x′ ∈ Vy. But then dY (f(x), y) < 1

2
ε and

dY (f(x′), y) < 1
2
ε, and hence

dY (f(x), f(x′)) ≤ dY (f(x), y) + dY (y, f(x′)) < ε.

This shows that f :X → Y is uniformly continuous, as required.

Definition A metric space X with distance function d is said to be totally
bounded if and only if, given any positive real number δ, there exists a finite
collection A1, A2, . . . , As of subsets of X such that diam(Ai) < δ for i =
1, 2, . . . , s and

X = A1 ∪ A2 ∪ · · · ∪ Ak.

Lemma 9.9 ensures that every bounded subset of n-dimensional Euclidean
space is totally bounded.

Lemma 9.19 Let X be a metric space that is totally bounded. Suppose that
every open cover of X has a Lebesgue number. Then X is compact.

163



Proof Let V be an open cover of X. Then there exists a positive real
number δL that is a Lebesgue number for this open cover. There then exists
a finite collection A1, A2, . . . , Ak of subsets of X such that diam(Ai) < δ for
i = 1, 2, . . . , s and

X = A1 ∪ A2 ∪ · · · ∪ Ak,
because X is totally bounded. The definition of Lebesgue numbers then
ensures that, for each integer i between 1 and k, there exists an open set Vi
belonging to the open cover V such that Ai ⊂ Vi. Then

X ⊂ V1 ∪ V2 ∪ · · · ∪ Vk.

Thus the open cover V has a finite subcover. This proves that X is compact,
as required.

Remark The proof of Lemma 9.19 is an obvious generalization of part of
the proof of the multidimensional Heine-Borel Theorem (Theorem 9.10) given
above.

Definition A metric space X is said to be sequentially compact if every
sequence of points in X has a convergent subsequence.

The multidimensional Bolzano-Weierstrass Theorem (Theorem 6.20) and
Lemma 6.18 together ensure that every closed bounded subset of a Euclidean
space is sequentially compact.

Proposition 9.20 Let X be a sequentially compact metric space. Then,
given any open cover of X, there exists a Lebesgue number for that open
cover.

Proposition 9.8 is a special case of Proposition 9.20, and the proof of the
latter proposition is an obvious generalization of that of the former.

Let X be a metric space with distance function d An infinite sequence
x1, x2, x3, . . . of points in X is said to be a Cauchy sequence if, given any posi-
tive real number ε, there exists some positive integer N such that d(xj, xk) <
ε whenever j ≥ N and k ≥ N .

It can be shown that the three following conditions on a metric space are
equivalent:—

(i) the metric space is compact;

(ii) the metric space is sequentially compact;

(iii) the metric space is complete and totally bounded;

(iv) the metric space is totally bounded and, given any open cover of the
space, there is a Lebesgue number for that open cover.
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9.6 Norms on a Finite-Dimensional Vector Space

Definition A norm ‖.‖ on a real or complex vector space X is a function,
associating to each element x of X a corresponding real number ‖x‖, such
that the following conditions are satisfied:—

(i) ‖x‖ ≥ 0 for all x ∈ X,

(ii) ‖x+ y‖ ≤ ‖x‖+ ‖y‖ for all x, y ∈ X,

(iii) ‖λx‖ = |λ| ‖x‖ for all x ∈ X and for all scalars λ,

(iv) ‖x‖ = 0 if and only if x = 0.

A normed vector space (X, ‖.‖) consists of a a real or complex vector space X,
together with a norm ‖.‖ on X.

Any normed vector space (X, ‖.‖) is a metric space with distance func-
tion d defined so that d(x, y) = ‖x− y‖ for all x, y ∈ X.

In addition to the Euclidean norm, the norms on Rn include the norms
‖.‖1 and ‖.‖sup, where

‖(x1, x2, . . . , xn)‖1 = |x1|+ |x2|+ · · ·+ |xn|

and
‖(x1, x2, . . . , xn)‖sup = maximum(|x1|, |x2|, . . . , |xn|).

Definition Let X and Y be normed vector spaces. A linear transformation
T :X → Y is said to be bounded if there exists some non-negative real num-
ber C with the property that ‖Tx‖ ≤ C‖x‖ for all x ∈ X. If T is bounded,
then the smallest non-negative real number C with this property is referred
to as the operator norm of T , and is denoted by ‖T‖.

A linear transformation between normed vector spaces is continuous if
and only if it is bounded.

Definition Let ‖.‖ and ‖.‖∗ be norms on a real vector space X. The norms
‖.‖ and ‖.‖∗ are said to be equivalent if and only if there exist constants c
and C, where 0 < c ≤ C, such that

c‖x‖ ≤ ‖x‖∗ ≤ C‖x‖

for all x ∈ X.
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If two norms on a real vector space are equivalent to a third norm then
they are equivalent to each other.

Suppose that norms ‖.‖ and ‖.‖∗ be equivalent norms on a real vector
space X. Then there exist positive constants C and C∗ such that ‖x‖∗ ≤
C‖x‖ and ‖x‖ ≤ C∗‖x‖∗ for all x ∈ X. Let V be a subset of X that is open
with respect to the norm ‖.‖∗, and let p ∈ V . Then there exists a positive
real number δ small enough to ensure that

{x ∈ X : ‖x− p‖∗ < Cδ} ⊂ V.

Then
{x ∈ X : ‖x− p‖ < δ} ⊂ V.

It follows that if V is open in the topology generated by the ‖.‖∗ norm then
it is also open in the topology generated by the ‖.‖ norm. Conversely if V
is open in the topology generated by the ‖.‖ norm then it is also open in
the topology generated by the ‖.‖∗ norm. Thus if norms ‖.‖ and ‖.‖∗ are
equivalent, then they generate the same topology on X.

We shall show that all norms on a finite-dimensional real vector space are
equivalent.

Lemma 9.21 Let ‖.‖ be a norm on Rn. Then the function x 7→ ‖x‖ is con-
tinuous with respect to the topology generated by the Euclidean norm on Rn.

Proof Let e1, e2, . . . , en denote the basis of Rn given by

e1 = (1, 0, 0, . . . , 0), e2 = (0, 1, 0, . . . , 0), · · · , en = (0, 0, 0, . . . , 1).

Let x and y be points of Rn, given by

x = (x1, x2, . . . , xn), y = (y1, y2, . . . , yn).

Using Schwarz’ Inequality, we see that

‖x− y‖ =

∥∥∥∥∥
n∑
j=1

(xj − yj)ej

∥∥∥∥∥ ≤
n∑
j=1

|xj − yj| ‖ej‖

≤

(
n∑
j=1

(xj − yj)2
) 1

2
(

n∑
j=1

‖ej‖2
) 1

2

= C|x− y|,

where
C2 = ‖e1‖2 + ‖e2‖2 + · · ·+ ‖en‖2
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and |x− y| denotes the Euclidean norm of x− y, defined so that

|x− y| =

(
n∑
j=1

(xj − yj)2
) 1

2

.

Also |‖x‖ − ‖y‖| ≤ ‖x− y‖, since

‖x‖ ≤ ‖x− y‖+ ‖y‖, ‖y‖ ≤ ‖x− y‖+ ‖x‖.

We conclude therefore that

|‖x‖ − ‖y‖| ≤ C|x− y|,

for all x,y ∈ Rn, and thus the function x 7→ ‖x‖ is continuous on Rn with
respect to the topology generated by the Euclidean norm on Rn.

Theorem 9.22 Any two norms on Rn are equivalent.

Proof Let ‖.‖ be any norm on Rn. We show that ‖.‖ is equivalent to the
Euclidean norm |.|. Let Sn−1 denote the unit sphere in Rn, defined by

Sn−1 = {x ∈ Rn : |x| = 1}.

Now Sn−1 is a compact subset of Rn, since it is both closed and bounded.
Also the function x 7→ ‖x‖ is continuous (Lemma 9.21). Also it follows from
the Extreme Value Theorem (Theorem 6.21) that any continuous real-valued
function on a closed bounded subset of Euclidean space attains both its
maximum and minimum values on that subset. Therefore there exist points
u and v of Sn−1 such that ‖u‖ ≤ ‖x‖ ≤ ‖v‖ for all x ∈ Sn−1. Set c = ‖u‖
and C = ‖v‖. Then 0 < c ≤ C (since it follows from the definition of norms
that the norm of any non-zero element of Rn is necessarily non-zero).

If x is any non-zero element of Rn then λx ∈ Sn−1, where λ = 1/|x|. But
‖λx‖ = |λ| ‖x‖ (see the the definition of norms). Therefore c ≤ |λ| ‖x‖ ≤ C,
and hence c|x| ≤ ‖x‖ ≤ C|x| for all x ∈ Rn, showing that the norm ‖.‖ is
equivalent to the Euclidean norm |.| on Rn. If two norms on a vector space
are equivalent to a third norm, then they are equivalent to each other. It
follows that any two norms on Rn are equivalent, as required.

Let X be a finite-dimensional real vector space. Then X is isomorphic to
Rn, where n is the dimension of X. It follows immediately from Theorem 9.22
and that all norms on X are equivalent and therefore generate the same
topology on X. This result does not generalize to infinite-dimensional vector
spaces.
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