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102. The Wave Equation (continued)

102.1. Partial Derivatives

Definition

Let Ψ(x , y , z , t) be a function of four variables x , y , z and t. The
partial derivatives

∂Ψ

∂x
,

∂Ψ

∂y
,

∂Ψ

∂z
,

∂Ψ

∂t

of Ψ with respect to x , y , z and t respectively are defined as
follows:

∂Ψ

∂x
= lim

∆x→0

Ψ(x + ∆x , y , z , t)

∆x
,

∂Ψ

∂y
= lim

∆y→0

Ψ(x , y + ∆y , z , t)

∆y
,

∂Ψ

∂z
= lim

∆z→0

Ψ(x , y , z + ∆z , t)

∆z
,

∂Ψ

∂t
= lim

∆t→0

Ψ(x , y , z , t + ∆t)

∆t
.



102. The Wave Equation (continued)

102.2. The Wave Equation in Three Dimensions

Let c be a positive constant. The three-dimensional (classical)
wave equation characterizing waves moving with speed c is a
partial differential equation satisfied by functions Ψ(x , y , z , t) that
are of the form

Ψ(x , y , z , t) = A cos(k . r − c‖k‖t)

+ B sin(k . r − c‖k‖t)

= A cos(kxx + kyy + kzz − c‖k‖t)

+ B sin(kxx + kyy + kzz − c‖k‖t),

where A and B are constants, r is the three-dimensional vector
with components x , y , z , so that r = (x , y , z), and k is a
three-dimensional vector whose Cartesian components are kx , ky
and kz respectively, so that k = (kx , ky , kz). The length ‖k‖ of the
vector k is defined so that

‖k‖2 = k2
x + k2

y + k2
z .



102. The Wave Equation (continued)

We calculate partial derivatives by taking the derivative of the
function with respect to one of the variables whilst holding the
values of the other variables fixed. Thus

∂

∂x
(cos(kxx + kyy + kzz − c‖k‖t))

= −kx sin(kxx + kyy + kzz − c‖k‖t)

and

∂

∂x
(sin(kxx + kyy + kzz − c‖k‖t))

= kx cos(kxx + kyy + kzz − c‖k‖t)

and therefore



102. The Wave Equation (continued)

∂2

∂x2
(cos(kxx + kyy + kzz − c‖k‖t))

=
∂

∂x

(
∂

∂x
(cos(kxx + kyy + kzz − c‖k‖t))

)
=

∂

∂x
(−kx sin(kxx + kyy + kzz − c‖k‖t))

= −k2
x cos(kxx + kyy + kzz − c‖k‖t).

Similarly

∂2

∂x2
(sin(kxx + kyy + kzz − c‖k‖t))

=
∂

∂x

(
∂

∂x
(cos(kxx + kyy + kzz − c‖k‖t))

)
=

∂

∂x
(kx cos(kxx + kyy + kzz − c‖k‖t))

= −k2
x sin(kxx + kyy + kzz − c‖k‖t).



102. The Wave Equation (continued)

It follows that if

Ψ(x , y , z , t) = A cos(kxx + kyy + kzz − c‖k‖t)

+ B sin(kxx + kyy + kzz − c‖k‖t)

then
∂2Ψ(x , y , z , t)

∂x2
= −k2

x Ψ(x , y , z , t),

and similarly

∂2Ψ(x , y , z , t)

∂y2
= −k2

y Ψ(x , y , z , t),

∂2Ψ(x , y , z , t)

∂z2
= −k2

z Ψ(x , y , z , t),

∂2Ψ(x , y , z , t)

∂t2
= −c2‖k‖2Ψ(x , y , z , t).



102. The Wave Equation (continued)

But
k2
x + k2

y + k2
z = |k|2.

It follows that

∂2Ψ(x , y , z , t)

∂x2
+
∂2Ψ(x , y , z , t)

∂y2
+
∂2Ψ(x , y , z , t)

∂z2

= −(k2
x + k2

y + k2
z )Ψ(x , y , z , t)

= −‖k‖2Ψ(x , y , z , t)

=
1

c2

∂2Ψ(x , y , z , t)

∂t2
.



102. The Wave Equation (continued)

Let c be a positive constant. The (classical) three-dimensional
wave equation characterizing wave motion with speed c is the
partial differential equation

∂2Ψ

∂x2
+
∂2Ψ

∂y2
+
∂2Ψ

∂z2
=

1

c2

∂2Ψ

∂t2
.

Note that if Ψ1 and Ψ2 are functions of x , y , z and t that satisfy
the wave equation, then the function A1Ψ1 + A2Ψ2 also satisfies
the wave equation for all real constants A1 and A2. Therefore
solutions of the wave equation can be superposed, and the
resultant solutions may often exhibit the phenomenon of
interference which is characteristic behaviour of waves interacting
with one another.



102. The Wave Equation (continued)

102.3. The Wave Equation in One Dimension

We now restrict our attention to the one-dimensional wave
equation, which describes waves travelling in directions parallel to
the x-axis whose wave fronts are perpendicular to the x-axis. Such
waves are represented by functions of the form Ψ(x , t) that have
no dependence on the values of the Cartesian coordinates y and z .
Such waves satisfy the one-dimensional wave equation

∂2Ψ

∂x2
=

1

c2

∂2Ψ

∂t2
.



102. The Wave Equation (continued)

Let c be a positive constant, let f and g be twice-differentiable
real-valued functions of a single real variable, and let

Ψ(x , t) = f (x − ct) + g(x + ct).

Then

∂Ψ(x , t)

∂x
= f ′(x − ct) + g ′(x + ct),

∂Ψ(x , t)

∂t
= −cf ′(x − ct) + cg ′(x + ct),

∂2Ψ(x , t)

∂x2
= f ′′(x − ct) + g ′′(x + ct),

∂2Ψ(x , t)

∂x t
= c2f ′′(x − ct) + c2g ′′(x + ct).

It follows that
∂2Ψ

∂x2
=

1

c2

∂2Ψ

∂t2
.

Thus the function Ψ satisfies the wave equation.



102. The Wave Equation (continued)

One may regard Ψ(x , t) as a superposition of two waves: one wave
travelling with speed c in the positive x-direction with shape
represented by the function f ; the other wave travelling with
speed c in the negative x-direction with shape represented by the
function g . The shape of the resultant wave will be determined by
the interference of these two waves travelling in opposite directions.



102. The Wave Equation (continued)

We now investigate waves of a fixed frequency. If we fix position,
the variation in time should be represented by a sinusoidal wave
function that is a superposition of a sine and a cosine function.
Given constants c and ω, where c > 0, a solution Φ(x , t) of the
wave equation with speed c and frequency ν should take the form

Ψ(x , t) = ψ1(x) cos(2πνt) + ψ2(x) sin(2πνt).

Differentiating, we find that

∂2Ψ(x , t)

∂t2
= −4π2ν2Ψ(x , t).

It follows from this that Ψ(x , t) satisfies the wave equation if and
only if the functions ψ1 and ψ2 satisfy the ordinary differential
equations

d2ψ1(x)

dx2
= −4π2ν2

c2
ψ1(x) and

d2ψ2(x)

dx2
= −4π2ν2

c2
ψ2(x).



102. The Wave Equation (continued)

Standard results in the theory of ordinary differential equations
ensure that the functions ψ1 and ψ2 satisfy these equations if and
only if there exist constants A1, A2, B1 and B2 such that

ψ1(x) = A1 cos

(
2πνx

c

)
+ B1 sin

(
2πνx

c

)
.

and

ψ2(x) = A2 cos

(
2πνx

c

)
+ B2 sin

(
2πνx

c

)
.



102. The Wave Equation (continued)

Thus if the function Ψ(x , t) satisfies the wave equation with speed
c , where c > 0, and if, for each fixed x , the function sending
time t to Ψ(x , t) is sinusoidal, representing an oscillation with
frequency ν, then the wave equation ensures that, at any given
fixed time, the shape of the wave in space is a superposition of
sinusoidal waves, where these sinusoidal waves each represent a
waveform with wavelength λ satisfying the equation νλ = c . The
waveforms of these sinusoidal waves are then represented by
functions of the form

sin

(
2π(x − x0)

λ

)
,

where x0 is a constant that determines the phase of the wave.
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