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101. Complex Numbers

101. Complex Numbers

101.1. The Algebra of Algebraic Couples

Sir William Rowan Hamilton developed a construction of the
system of complex numbers in which complex numbers are
identified with “algebraic couples”.



101. Complex Numbers (continued)

Hamilton gave a brief description of his approach at the 4th
meeting of the British Association for the Advancement of Science
in Edinburgh in 1834. In particular he used his approach in order
to justify a formula for the logarithm of a complex number to a
complex base advocated by his friend John T. Graves. A much
fuller account of his approach to the fundamental principles of
algebra was published in the Transactions of the Royal Irish
Academy in 1837, with the following title:

Theory of Conjugate Functions, or Algebraic Couples;
with a Preliminary and Elementary Essay on Algebra as
the Science of Pure Time.



101. Complex Numbers (continued)

Following Hamilton’s approach fairly closely, we construct an
algebra whose elements are (in Hamilton’s terminology) algebraic
couples. These algebraic couples can subsequently be identified
with complex numbers.

Definition

An algebraic couple is an ordered pair (x , y) whose components x
and y are real numbers.

Ordered pairs of real numbers, by themselves, are not particularly
useful. But we can define natural operations of addition and
subtraction of algebraic couples “componentwise” so that

(x , y) + (u, v) = (x + u, y + v)

and
(x , y)− (u, v) = (x − u, y − v).



101. Complex Numbers (continued)

We define the zero couple O so that

O = (0, 0).

And, given any algebraic couple V, we define the negative −V of
V so that

−V = (−x ,−y) when V = (x , y).

These operations of addition and subtraction on algebraic couples
conform to the following basic “Laws” that are analogous to
corresponding properties of the real number system.



101. Complex Numbers (continued)

(i) (The Commutative Law for Addition) V + U = U + V for all
algebraic couples V and U;

(ii) (The Associative Law for Addition)
(U + V) + W = U + (V + W) for all algebraic couples V, U
and W;

(iii) (Existence of a Zero Couple) there exists a zero couple O that
satisfies V + O = V for all algebraic couples V;

(iv) (Existence of Negatives of Couples) given an algebraic couple
V there exists an algebraic couple −V (the negative of V)
characterized by the property that V + (−V) = O.

Algebraic couples, considered purely in relation to their behaviour
under operations of addition and subtraction, are then
indistinguishable from two-dimensional vectors. Also, like
two-dimensional vectors, they can be represented by points of a
plane, where that plane is provided with a standard Cartesian
coordinate system.



101. Complex Numbers (continued)

The next stage is to introduce an appropriate definition of
multiplication of algebraic couples, assigning to algebraic couples
U and V an algebraic couple U⊗ V that is to be regarded as the
product of U and V.

Now there is no law of logic that compels one to adopt one
definition of multiplication of algebraic couples in preference to any
other. Nevertheless there are design criteria that guide the
selection of laws of multiplication of algebraic couples that provide
useful tools for mathematical investigations.



101. Complex Numbers (continued)

Three basic requirements that guided Hamilton are the following:

the system of algebraic couples, with the proposed law of
multiplication, sould preserve, so far as is possible, the basic
“Laws of Algebra” that identify fundamental properties of the
real number system;

the system of algebraic couples, with the proposed law of
multiplication, should have fruitful applications when applied
in investigating problems in geometry, physics or other
sciences;

the real number system should be naturally embedded within
the system of algebraic couples.
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The operations of addition and multiplication on the system of real
numbers are related by the Distributive Law:

(x + y)z = xz + yz and x(y + z) = xy + xz

for all real numbers x and z . This is a useful property that the
system of algebraic couples should possess. Therefore we restrict
the choice of multiplication operation ⊗ on algebraic couples by
requiring that the Distributive Law be satisfied also in the system
of algebraic couples so that

(U + V)⊗W = U⊗W + V ⊗W

and
U⊗ (V + W) = U⊗ V + U⊗W

for all algebraic couples U, V and W.
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Now the real number system possesses a number 1 with the
property that 1× x = x × 1 = x for all real numbers x . It would
be useful to require that the algebra of algebraic couples possess
an element E with the property that

E⊗ Z = Z⊗ E = Z

for all algebraic couples Z. Moreover this algebraic couple E should
be the algebraic couple that corresponds to the number 1 under
the natural embedding of the real numbers within the system of
algebraic couples that the latter system should possess.



101. Complex Numbers (continued)

Now, given any real number x , let Mx denote the algebraic couple
that corresponds to x under the natural embedding of the real
number system R that the system of algebraic couples should
possess. Then, for the algebraic systems to correspond, we require
that

Mx+y = Mx + My , Mx−y = Mx −My , Mxy = Mx ⊗My

for all real numbers x and y . It follows that

M2x = Mx+x = Mx + Mx ,

M3x = Mx+x+x = Mx + Mx + Mx ,

M4x = Mx+x+x+x = Mx + Mx + Mx + Mx ,
...



101. Complex Numbers (continued)

Let us now choose an algebraic couple E that will correspond to
the real number 1. We set

E = (1, 0).

Experience shows that this is a simple and natural choice that
makes the resultant algebraic system easier to work with. This
choice is not compelled by any logical requirement.

We now investigate some of the logical consequences of the “laws
of algebra” and other design choices that we have chosen to adopt
as design requirements for the algebraic system that we are seeking
to construct.



101. Complex Numbers (continued)

Now M1 = E = (1, 0). It follows that

M2 = M1+1 = M1 + M1 = E + E = (2, 0),

M3 = M1+1+1 = M1 + M1 + M1 = E + E + E = (3, 0),

M4 = M1+1+1+1 = M1 + M1 + M1 + M1

= E + E + E + E = (4, 0),
...

In general Mn = (n, 0) for all positive integers n.
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We require that
M0 + Mn = M0+n = Mn

for all positive integers n. It follows that

M0 = O = (0, 0).

Then

M−n + (n, 0) = M−n + Mn = M(−n)+n = M0 = (0, 0),

and therefore M−n = (−n, 0) for all positive integers n. We
conclude therefore that Mn = (n, 0) for all integers n, whether
they be positive, negative or zero.
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Next let Z be an arbitrary algebraic couple. Then Z = (x , y),
where x and y are real numbers. Now we have required the
algebraic couple E to satisfy the identities

E⊗ Z = Z⊗ E = Z.

Combining this result with the distributive law, we find that

M2 ⊗ Z = (E + E)⊗ Z = E⊗ Z + E⊗ Z

= Z + Z = (x , y) + (x , y)

= (2x , 2y),

M3 ⊗ Z = (E + E + E)⊗ Z = E⊗ Z + E⊗ Z + E⊗ Z

= Z + Z = (x , y) + (x , y) + (x , y)

= (3x , 3y),
...
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It follows that Mn ⊗ (x , y) = (nx , ny) for all positive integers n.
Also

M0 ⊗ (x , y) + Mn ⊗ (x , y) = M0+n ⊗ (x , y) = Mn ⊗ (x , y),

and therefore M0 ⊗ (x , y) = (0, 0). It then follows that, for all
positive integers n,

M−n ⊗ (x , y) + Mn ⊗ (x , y) = M0 ⊗ (x , y) = (0, 0),

and therefore
M−n ⊗ (x , y) = (−nx ,−ny)

for all positive integers n. We conclude that

Mn ⊗ (x , y) = (nx , ny)

for all algebraic couples (x , y) and for all integers n, whether they
be positive, negative or zero.
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What algebraic couple Mp
q

should represent a rational number of

the form
p

q
, where p and q are integers and q > 0? Now

q × p

q
= p. Our design requirements therefore require that

Mq ⊗Mp
q

= Mp = (p, 0).

But if Mp
q

= (u, v) then

Mq ⊗Mp
q

= (qu, qv).

It follows that qu = p and qv = 0 and therefore u = p/q and
v = 0. It follows that

Mp
q

=

(
p

q
, 0

)
.
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Now multiplication of real numbers satisfies the Associative Law.
Therefore, if possible, it is natural to adopt the design requirement
that multiplication of algebraic couples be associative. If we adopt
this design requirement then it follows that

Mr ⊗ (x , y) = (rx , ry)

for all rational numbers r and for all real numbers x and y . Indeed

suppose that r =
p

q
, where p and q are integers and q > 0. Then

Mq⊗(Mp
q
⊗(x , y)) = (Mq⊗Mp

q
)⊗(x , y) = Mp⊗(x , y) = (px , py).

It follows that

Mp
q
⊗ (x , y) =

(
p

q
x ,

p

q
y

)
.
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We next adopt the design requirement that the embedding of the
real number system into the system of algebraic couples be
continuous. Because real numbers can be approximated by rational
numbers to any desired degree of precision, the continuity
requirement ensures that

Mt ⊗ (x , y) = (tx , ty)

for all real numbers t. Our design requirements have therefore
ensured that, if an algebraic system of algebraic couples can be
constructed satisfying those design requirements, then it must
satisfy the identity

Mt ⊗ (x , y) = (tx , ty)

for all real numbers t.



101. Complex Numbers (continued)

In order to simplify notation, it is natural now to define an
operation of multiplication of algebraic couples by real numbers
that conforms to the standard definition in vector algebra, setting

t(x , y) = (tx , ty)

for all real numbers x , y and t. Then

Mt ⊗ (x , y) = t(x , y)

for all real numbers x , y and t.



101. Complex Numbers (continued)

Earlier we introduced an algebraic couple E, where E = (1, 0). Let
us now define I = (0, 1). Let Z be an arbitrary algebraic couple,
and let Z = (x , y), where x and y are real numbers. Then

Z = (x , 0) + (0, y) = Mx ⊗ E + My ⊗ I = xE + y I.

Now, whether or not we adopt the Commutative Law for
multiplication as a design requirement, the identity

(x , y)⊗ E = (x , y)

ensures that

(x , y)⊗M2 = (x , y)⊗ (E + E) = (x , y)⊗ E + (x , y)⊗ E

= (x , y) + (x , y) = (2x , 2y),

etc.



101. Complex Numbers (continued)

Adapting the argument presented above, we find first that

(x , y)⊗ (n, 0) = (x , y)⊗Mn = (nx , ny)

for all positive integers n. It easily follows from this that the
identity (x , y)⊗ (n, 0) = (nx , ny) is valid for all real numbers x
and y and for all integers n, positive, negative or zero. It then
follows that (x , y)⊗ (r , 0) = (rx , ry) is valid for all rational
numbers r . The continuity of the embedding of the real numbers
into the system of algebraic couples then ensures that

(x , y)⊗ (t, 0) = (tx , ty) = t(x , y)

for all real numbers t.
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Now let Z and W be algebraic couples, and let Z = (x , y) and
W = (u, v). Then the logical consequences of our design
requirements ensure that

(x , y)⊗ (u, v) =
(

(x , 0) + (0, y)
)
⊗
(

(u, 0) + (0, v)
)

= (x , 0)⊗ (u, 0) + (x , 0)⊗ (0, v)

+ (0, y)⊗ (u, 0) + (0, y)⊗ (0, v)

= (xu, 0) + (0, xv) + (0, yu) + (0, y)⊗ (0, v)

= (xu, xv + yu) + (0, y)⊗ (0, v)
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Moreover, using the Associative Law for multiplication of algebraic
couples (which we have adopted as a design requirement), we see
that

(0, y)⊗ (0, v) = (0, y)⊗
(

(v , 0)⊗ (0, 1)
)

=
(

(0, y)⊗ (v , 0)
)
⊗ (0, 1)

= (0, yv)⊗ (0, 1)

=
(

(yv , 0)⊗ (0, 1)
)
⊗ (0, 1)

= (yv , 0)⊗
(

(0, 1)⊗ (0, 1)
)

= (yv , 0)⊗
(
I ⊗ I

)
.

It follows that

(x , y)⊗ (u, v) = (xu, xv + yu) + yv (I ⊗ I ).



101. Complex Numbers (continued)

It follows that the design requirements for the sought algebra of
algebraic couples that we have so far adopted ensure that the
operation ⊗ of multiplication of algebraic couples is completely
determined by the algebraic couple I ⊗ I , where I = (0, 1). Let us
follow Hamilton’s example and notation by writing I ⊗ I = (γ1, γ2),
where γ1 and γ2 are real numbers. We then find that

(x , y)⊗ (u, v) = (xu + γ1yv , xv + yu + γ2yv).

(Hamilton’s derivation of this equation, with x , y , u and v replaced
by a1, a2, a1 and a2 respectively, can be found in Section 4 of his
paper on the Theory of Conjugate Functions, or Algebraic Couples,
published in the Transactions of the Royal Irish Academy in 1837.)



101. Complex Numbers (continued)

Now the design requirements adopted so far are not sufficient to
constrain the values of the constants γ1 and γ2. Accordingly
Hamilton adopted a further requirement: it should always be
possible to divide an algebraic couple by a non-zero algebraic
couple. Hamilton showed that, for this to be the case, it was
necessary and sufficient that

γ1 +
1

4
γ22 < 0.

(see equation (45) in Hamilton’s 1837 paper cited above). And, as
Hamilton pointed out (prior to equation (36):

“It is clear, however, that the simplicity and elegance of
our future operations and results must mainly depend on
our making a simple and suitable choice of thse two
constants of multiplication. . .
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Having stated his requirement that division by non-zero algebraic
couples be always well-defined, Hamilton continued

“It is easy to show that no choice simpler than the
following,

γ1 = −1, γ2 = 0,

would satisfy this essential condition; and for that reason
we shall now select these two numbers, [. . . ], for the two
constants of multiplication,. . .



101. Complex Numbers (continued)

Following Hamilton’s argument, and Hamilton’s design choices, we
finally arrive at the following formula for the multiplication of two
algebraic couples:—

(x , y)⊗ (u, v) = (xu − yv , xv + yu).

Letting E = (1, 0) and I = (0, 1), and defining t(x , y) = (tx , ty)
for all algebraic couples (x , y) and real numbers t, we find that

(x , y) = xE + y I,

and
(x , y)⊗ (u, v) = (xy − uv)E + (xv + yu)I,

where
E⊗ E = E, E⊗ I = I,

I⊗ E = I, I⊗ I = −E.



101. Complex Numbers (continued)

To recover the familiar notation used for complex numbers, it
suffices to identify the real number x with the algebraic couple xE,
represent the algebraic couple I with the letter i , or with the
expression

√
−1, and we find that each algebraic couple (x , y)

represents and is represented by a “complex number” of the form
x + yi , where x and y are real numbers, and i2 = −1. Moreover

(x + yi)(u + vi) = (xu − yv) + (xv + yu)i

for all real numbers x , y , u and v .



101. Complex Numbers (continued)

The formula

(x + yi)(u + vi) = (xu − yv) + (xv + yu)i

can be taken as the definition of multiplication within the system
of complex numbers. An important consequence follows on setting
u = x and v = −y . We find that

(x + yi)(x − yi) = x2 + y2.

It follows that, in the system of complex numbers

1

x + yi
=

x

x2 + y2
− y

x2 + y2
i ,

The usual Commutative, Associative and Distributive Laws are
satisfied within the system of complex numbers.
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Complex numbers x + yi and u + vi are equal if and only if x = u
and y = v .
The definitions of addition, subtraction, multiplication and division
for complex numbers are as follows:

(x + yi) + (u + vi) = (x + u) + (y + v)i ,

(x + yi)− (u + vi) = (x − u) + (y − v)i ,

(x + yi)× (u + vi) = (xu − yv) + (xv + yu)i ,

x + yi

u + vi
=

xu + yv

u2 + v2
+

yu − xv

u2 + v2
i .

(Note that division by u + vi is defined if and only if u + vi 6= 0.)
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These definitions are translations of the definitions of addition,
subtraction, multiplication and division in Hamilton’s algebra of
algebraic couples:

(x , y) + (u, v) = (x + u, y + v),

(x , y)− (u, v) = (x − u, y − v),

(x , y)⊗ (u, v) = (xu − yv , xv + yu),

(x , y)÷ (u, v) =

(
xu + yv

u2 + v2
,
yu − xv

u2 + v2

)
.

(Note that division by the algebraic couple (u, v) is defined if and
only if (u, v) 6= (0, 0).)
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Proposition 101.1

Let multiplication of algebraic couples be defined such that

(x , y)⊗ (u, v) = (xu − yv , xv + yu)

for all algebraic couples (x , y) and (u, v). Then

Z⊗W = W ⊗ Z

for all algebraic couples Z and W. Thus multiplication of algebraic
couples satisfies the Commutative Law.

Proof
This result follows directly from the definition of multiplication of
algebraic couples.
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Proposition 101.2

Let multiplication of algebraic couples be defined such that

(x , y)⊗ (u, v) = (xu − yv , xv + yu)

for all algebraic couples (x , y) and (u, v). Then

(Z1 ⊗ Z2)⊗ Z3 = Z1 ⊗ (Z2 ⊗ Z3)

for all algebraic couples Z1, Z2 and Z3. Thus multiplication of
algebraic couples satisfies the Associative Law.



101. Complex Numbers (continued)

Proof
Let Z1 = (x1, y1), Z2 = (x2, y2) and Z3 = (x3, y3). Then

(Z1 ⊗ Z2)⊗ Z3 = ((x1, y1)⊗ (x2, y2))⊗ (x3, y3)

= (x1x2 − y1y2, x1y2 + y1x2)⊗ (x3, y3)

= (x1x2x3 − y1y2x3 − x1y2y3 + y1x2y3,

x1y2y3 + y1x2y3 + x1x2y3 − y1y2y3)

Z1 ⊗ (Z2 ⊗ Z3) = (x1, y1)⊗ ((x2, y2)⊗ (x3, y3))

= (x1, y1)⊗ ((x2x3 − y2y3, x2y3 + y2x3)

(x1x2x3 − x1y2y3 − y1x2y3 − y1y2x3,

x1x2y3 + x1y2x3 + y1x2x3 − y1y2y3)

= (Z1 ⊗ Z2)⊗ Z3

The result follows.
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Remark
Translated into more traditional notation, the proof of
Proposition 101.2 amounts to showing that if z1, z2 and z3 are
complex numbers, and if

z1 = x1 + y1i , z2 = x2 + y2i , z3 = x3 + y3i ,

where x1, y1, x2, y2, x3 and y3 are real numbers and i2 = −1, then

(z1z2)z3 = x1x2x3 − x1y2y3 − y1x2y3 + y1y2x3

+ (y1x2x3 + x1y2x3 + x1x2y3 − y1y2y3)i

= z1(z2z3).



101. Complex Numbers (continued)

Proposition 101.3

Let addition and multiplication of algebraic couples be defined
such that

(x , y) + (u, v) = (x + u, y + v)

and
(x , y)⊗ (u, v) = (xu − yv , xv + yu)

for all algebraic couples (x , y) and (u, v). Then

(Z1 + Z2)⊗W = (Z1 ⊗W) + (Z2 ⊗W)

and
W ⊗ (Z1 + Z2)⊗W = W ⊗ Z1 + W ⊗ Z2

for all algebraic couples Z1, Z2 and W. Thus multiplication of
algebraic couples satisfies the Distributive Law.
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Proof
Let Z1 = (x1, y1), Z2 = (x2, y2) and W = (u, v). Then

(Z1 + Z2)⊗W = ((x1, y1) + (x2, y2))⊗ (u, v)

= (x1 + x2, y1 + y2)⊗ (u, v)

= (x1u + x2u − y1v + y2v ,

+ x1v + x2v + y1u + y2u)

= (x1u − y1v , x1 + y1u)

+ (x2u − y2v , x2 + y2u)

= (Z1 ⊗W) + (Z2 ⊗W).

The identity

W ⊗ (Z1 + Z2)⊗W = W ⊗ Z1 + W ⊗ Z2

then follows either from a calculation similar to the above, or
alternatively as a consequence of the fact that multiplication of
algebraic couples is commutative. The result follows.
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The results of the previous propositions guarantee that

zw = wz , (z1z2)z3 = z1(z2z3),

(z1 + z2)w = z1w + z2w , w(z1 + z2) = wz1 + wz2

for all complex numbers z , z1, z2, z3 and w . Many standard
properties of the complex number system follow from application
of these fundamental identities. These include the relevant forms
of the Laws of Indices which we now discuss.
Given a complex number z and a natural number p, the pth power
zp of z is defined recursively so that zp+1 = zpz for all natural
numbers z .

Lemma 101.4

Let z be a complex number and let p and q be natural numbers.
Then zp+q = zpzq.
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Proof
The identity zp+q = zpzq can be proved by induction on q. The
recursive definition of zp+1 ensures that, for fixed p, zp+q = zpzq

when q = 1. Suppose that zm+k = zmzk for some natural
number k. Then

zm+k+1 = zm+ka = (zmzk)z

But multiplication of complex numbers is associative (see
Proposition 101.2 and the remarks following the proof of this
proposition). It follows that

zm+k+1 = zm(zkz) = zmzk+1.

Thus if the identity zm+n = zmzn holds when q = k for some
natural number k , then it also holds for q = k + 1. It follows from
the Principle of Mathematical Induction that the identity
zp+q = zpzq holds for all real numbers a and for all natural
numbers p and q, as required.
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Given a non-zero complex number z and a positive integer p, the
complex number z−p is defined so that

z−p =
1

zp
.

One can then proceed, as in the case of powers of non-zero real
numbers, to prove that zm+n = zmzn and zmn = (zm)n for all
non-zero complex numbers z and for all integers m and n. Also the
fact that multiplication of complex numbers is commutative can be
used to prove that (zw)n = znwn for all non-zero complex
numbers z and w and for all integers n.
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