Course MA1S11: Michaelmas Term 2016. Tutorial 6: Sample

November 15–18, 2016

Results that may be useful.

Quadratic Polynomials

Let a, b and c be real or complex numbers, where $a \neq 0$. The roots of the quadratic polynomial $ax^2 + bx + c$ are given by the quadratic formula

$$\frac{-b \pm \sqrt{b^2 - 4ac}}{2a}.$$

Definition of Continuity

Definition Let $f: D \to \mathbb{R}$ be a real-valued function defined over a subset D of the set of real numbers, and let s be a real number belonging to D. The function f is continuous at s if, given any strictly positive real number ε , there exists some strictly positive real number δ such that $|f(x) - f(s)| < \varepsilon$ for all real numbers x belonging to D that satisfy $|x - s| < \delta$.

Definition of Limits

Definition Let D be a subset of the set \mathbb{R} of real numbers, let $f: D \to \mathbb{R}$ be a real-valued function on D, let s be a limit point belonging to D, and let L be a real number. The real number L is said to be the *limit* of f(x), as x tends to s in D, if and only if the following criterion is satisfied:—

given any strictly positive real number ε , there exists some strictly positive real number δ such that $|f(x) - L| < \varepsilon$ for all real numbers x in D that satisfy $0 < |x - s| < \delta$.

Some Properties of Limits

Let $f: D \to \mathbb{R}$ and $g: D \to \mathbb{R}$ be real-valued functions defined on a subset D of the set of real numbers, and let s be a real number. Suppose that the limits $\lim_{x\to s} f(x)$ and $\lim_{x\to s} g(x)$ exist. Then

$$\lim_{x \to s} (f(x) + g(x)) = \lim_{x \to s} f(x) + \lim_{x \to s} g(x),$$

$$\lim_{x \to s} (f(x) - g(x)) = \lim_{x \to s} f(x) - \lim_{x \to s} g(x),$$

$$\lim_{x \to s} (f(x) \times g(x)) = \lim_{x \to s} f(x) \times \lim_{x \to s} g(x).$$

If moreover g(x) is non-zero around s, and if $\lim_{x\to s}g(x)\neq 0$, then

$$\lim_{x \to s} \frac{f(x)}{g(x)} = \frac{\lim_{x \to s} f(x)}{\lim_{x \to s} g(x)}.$$

A Specimen ε - δ Proof

Theorem Let $f: D \to \mathbb{R}$ be a continuous real-valued functions defined on a subset D of the set of real numbers, let m and b be real numbers, where m > 0, and let $g: D \to \mathbb{R}$ be defined so that g(x) = mf(x) + b for all real numbers x belonging to D. Then the function $g: D \to \mathbb{R}$ is continuous on D.

Proof Let s be a real number belonging to D, and let some positive real number ε be given. Let $\varepsilon_0 = \varepsilon/m$. Then $\varepsilon_0 > 0$. The continuity of the function f at s then ensures that there exists some positive real number δ such that

$$f(s) - \varepsilon_0 < f(x) < f(s) + \varepsilon_0$$

whenever $|x - s| < \delta$. Then

$$mf(s) - m\varepsilon_0 < mf(x) < mf(s) + m\varepsilon_0$$

because m > 0, and therefore

$$mf(s) + b - m\varepsilon_0 < mf(x) + b < mf(s) + b + m\varepsilon_0.$$

whenever $|x-s| < \delta$. But mf(x) + b = g(x). and $m\varepsilon_0 = \varepsilon$. We conclude that

$$g(s) - \varepsilon < g(x) < g(s) + \varepsilon$$

whenever $|x - s| < \delta$. Thus the function g is continuous at s. Q.E.D.

Problem 1

Determine the values of the limits below.

(It is recommended that you include intermediate steps, but you should make sure that the final numerical answer is clearly presented, either as a whole number or else as a fraction whose numerator and denominator are whole numbers.)

(a)	$\lim_{x \to 0} \frac{20x^6 + 37x^{13}}{4x^6 + 7x^{18}}$	
(b)	$\lim_{x \to 3} \frac{x^2 + 2x - 15}{x - 3}$	
(c)	$\lim_{x \to 3} \frac{x^2 + x - 12}{x^2 + 4x - 21}$	
(d)	$\lim_{x \to 3} \frac{x^3 - 27}{x^3 - 3x^2}$	

Problem 2

Let $f: \mathbb{R} \to \mathbb{R}$ be a real-valued function defined on the set of real numbers and let a and I be real numbers. Suppose that $\lim_{x \to \infty} f(x) = I$. Prove that
and let s and L be real numbers. Suppose that $\lim_{x\to+\infty} f(x) = L$. Prove that
$\lim_{u \to 0} f\left(\frac{1}{u^2}\right) = L.$

Additional Work

• •	 • •		• •	• •	• • •		 	 	• •			• •	٠.	٠.	• •	 • •				 • •			• •	 • •	• •	 • •	
	 					. 	 	 								 				 				 		 	
	 					. 	 	 								 				 				 		 	
	 					. 	 	 								 				 				 		 	
	 					. 	 	 								 				 				 		 	
	 					. 	 	 	• • •							 				 				 		 	
	 					. 	 	 								 				 				 		 	
	 						 	 								 				 				 	• •	 	
	 					. 	 	 								 				 				 		 	
	 • •						 	 								 				 			• •	 		 	
	 • •	• • •					 	 	• • •							 	• • •			 			• •	 	• •	 	
• •																										 	
• •	 • •		• •				 	 								 				 				 	• •	 	
• •	 • •			• •		. 	 	 	• • •				• •		• •	 • •				 	• •		• • •	 	• •	 	
• •	 • •		· • •	• •			 	 	• • •							 	• • •			 • •	• •	• •	• • •	 • •	• •	 	
• •	 • •	• • •		• •			 	 	• •	• •			• •		• •	 • •	• •	• •	• •	 	• •	• •	• •	 	• •	 • • •	
	 ٠.			• •			 	 	• •		٠.	٠.	٠.	٠.		 				 			• •	 	٠.	 	

• • • •	• • •				 • •		• •	• •			• •	• •	 • •		• •			• • •	• •	• •		• •	• •		• •		
	• • • •				 • •	• • •	• •	• •	• • •	• •	• •	• •	 • •	• •	• • •		• •	• • •	• •	• •	• • •	• • •	• •		• •		
					 • •		• •	• •			• •	• •	 		• •			• •		• •			• •		• •		
					 								 												• •		
• • • •	• • • •		• • •		 • •		• • •	• •		• •	• •	• •	 • •		• • •			• • •	• • •	• •		• • •	• •		• •		
					 ••		• •	• •		• •	• •	• •	 • •	• •	• • •		• •	• • •	• •	• •			• •		• •		
					 						٠.		 												• •		
• • • •	• • • •		• • •		 • •		• • •	• •		• •	• •	• •	 • •		• • •			• • •	• • •	• •		• • •	• •		• •		
• • • •		• • •			 • •		• •	• •		• •	• •	• •	 • •	• •	• • •		• •	• • •	• •	• •		• • •	• •		• •		
					 								 												• •		
		- '	-	•	 - '	•	-	-	•	•	-	-	•	-		•	-	- '	•	-	•	,	-	•		•	,
		• • •	• • •		 • •	• • •	• •	• •		• •	• •	• •	 • •	• •	• • •		• •	• • •	• •	• •		•••	• •		• •		
		• • •			 • •		• •	• •				• •	 • •	• •			• •	• • •		• •					• •		