Course MA1S11: Michaelmas Term 2016.

Tutorial 3: Sample

October 18–21, 2016

Solutions

Results that may be useful.

Quadratic Polynomials and related Functions

Let a, b and c be real or complex numbers, where $a \neq 0$. The roots of the quadratic polynomial $ax^2 + bx + c$ are given by the quadratic formula

$$\frac{-b \pm \sqrt{b^2 - 4ac}}{2a}.$$

Moreover if a = 1 then the sum of the roots is -b and the product of the roots is c.

Let a and c be real constants, where a > 0 and c > 0, and let $F: (0, +\infty) \to \mathbb{R}$ be the function on the set of positive real numbers defined such that

$$F(x) = ax + \frac{c}{x}$$

for all positive real numbers x. A real number y satisfies the equation y = F(x) for some positive real number x if and only if $ax^2 - yx + c = 0$. The real numbers x (if any) that satisfy the equation y = F(x) can therefore be determined from the quadratic formula. The minimum value of F(x) on $(0, +\infty)$ is $2\sqrt{ac}$, and this value is attained when $x = \sqrt{c/a}$.

Notation for intervals

Let a and b be real numbers, where $a \le b$. Then

$$[a,b] = \{x \in \mathbb{R} \mid a \le x \le b\}, \quad (a,b] = \{x \in \mathbb{R} \mid a < x \le b\},$$
$$[a,b) = \{x \in \mathbb{R} \mid a \le x < b\}, \quad (a,b) = \{x \in \mathbb{R} \mid a < x < b\},$$
$$(-\infty,a] = \{x \in \mathbb{R} \mid x \le a\}, \quad (-\infty,a) = \{x \in \mathbb{R} \mid x < a\},$$
$$[a,+\infty) = \{x \in \mathbb{R} \mid x \ge a\}, \quad (a,+\infty) = \{x \in \mathbb{R} \mid x > a\}.$$

Functions

A function $f: X \to Y$ maps elements of a set X to elements of a set Y. The set X is the *domain* of the function $f: X \to Y$, and the set Y is the *codomain* of this function. The function $f: X \to Y$ is *injective* if it maps distinct elements of domain X to distinct elements of the codomain Y. Thus $f: X \to Y$ is injective if and only if

$$u, v \in X$$
 and $f(u) = f(v) \Rightarrow u = v$.

The range of the function $f: X \to Y$ is the set f(X), where

$$f(X) = \{f(x) | x \in X\}.$$

The function $f: X \to Y$ is surjective if f(X) = Y. The function $f: X \to Y$ is bijective if it is both injective and surjective. An inverse $g: Y \to X$ for the function $f: X \to Y$ is a function $g: Y \to X$ with the properties that g(f(x)) = x for all $x \in X$ and f(g(y)) = y for all $y \in Y$. A function $f: X \to Y$ has a well-defined inverse $g: Y \to X$ if and only if it is bijective.

Problem 1

(a) Let $f:(1,54] \to \mathbb{R}$ be defined such that $f(x) = 3x + \frac{108}{x}$ for all $x \in (1,54]$.

Note for solution: note that if $F(x) = 3x + \frac{108}{x}$ for all positive real numbers x then F(x) attains a minimum value 18 at x = 6. Relevant values are F(2) = 60, F(6) = 36, F(18) = 60, F(54) = 164.

(i) Is the function $f:(1,54]\to\mathbb{R}$ injective? Tick the correct box below:—

$$Yes$$
 $No \checkmark$

(ii) What is the range of the function $f: (1, 54] \to \mathbb{R}$? Write your answer in the box below as an interval in one of the forms [a, b], [a, b), (a, b], (a, b) as appropriate, where a and b are suitably-chosen real numbers satisfying a < b.

Note for solution: the function $f:(1,54] \to \mathbb{R}$ achieves a minimum value of 36 when x=6, where 6 belongs to the given domain (1,54]; this determines the lower bound of the range; considering also values of the given polynomial at the endpoints of the domain, and noting that the expression defining this function takes the values 60, 36 and 164 at 2, 6 and 54 respectively, we see that the endpoints of the range must be 36 and 164, and that the range itself must be [36,164]. Coincidences such as, for example, f(2) = f(18), show that the function f is not injective.

- (b) Let $g:(2,6] \to \mathbb{R}$ be defined such that $g(x) = 3x + \frac{108}{x}$ for all $x \in (2,6]$.
 - (i) Is the function $g:(2,6]\to\mathbb{R}$ injective? Tick the correct box below:—

 $Yes \sqrt{\ }$ No

(ii) What is the range of the function $g:(2,6] \to \mathbb{R}$? Write your answer in the box below as an interval in one of the forms [a,b], [a,b), (a,b], (a,b) as appropriate, where a and b are suitably-chosen real numbers satisfying a < b.

[36,60)

Note for solution: the function g is decreasing on the given domain. It is therefore injective, and the range is determined by the images of the endpoints of the domain interval under the function g.

Problem 2

(a) Consider the function $f:[0,4] \to [0,64]$ defined such that

$$f(x) = \begin{cases} 37 + 9x & \text{if } 0 \le x \le 3; \\ 64 - x^3 & \text{if } 3 < x \le 4. \end{cases}$$

for all $x \in [0, 4]$.

(i) Is the function $f:[0,4] \to [0,64]$ injective? Tick the correct box below:—

$$Yes \sqrt{\ }$$
 No

If you claim that this function is not injective, give a reason for your answer in not more than three sentences in the following box:

N/A

(ii) Is the function $f:[0,4] \to [0,64]$ surjective? Tick the correct box below:—

$$Yes \sqrt{\ }$$
 No

If you claim that this function is not surjective, give a reason for your answer in not more than three sentences in the following box:

N/A			

(iii) Is the function $f:[0,4] \to [0,64]$ bijective? Tick the correct box below:—

$$Yes \sqrt{No}$$

(b) Consider the function $g:[0,4] \to [0,64)$ defined such that

$$g(x) = \begin{cases} 37 + 9x & \text{if } 0 \le x < 3; \\ 64 - x^3 & \text{if } 3 \le x \le 4. \end{cases}$$

for all $x \in [0, 4]$.

(i) Is the function $g:[0,4] \to [0,64)$ injective? Tick the correct box below:—

$$Yes$$
 $No \sqrt{\ }$

If you claim that this function is not injective, give a reason for

your answer in not more than three sentences in the following box:

The function $g: [0,3] \rightarrow [0,27)$ satisfies g(0) = 37 = g(3), and therefore this function is not injective.

(ii) Is the function $g:[0,4] \to [0,64)$ surjective? Tick the correct box below:—

 $Yes \sqrt{\ No}$

If you claim that this function is not surjective, give a reason for your answer in not more than three sentences in the following box:

N/A

(iii) Is the function $g:[0,4] \to [0,64)$ bijective? Tick the correct box below:—

 $Yes \sqrt{\ }$ No

(c) Consider the function $h: [0,4] \to [0,64]$ defined such that

$$h(x) = \begin{cases} 64 - 8x & \text{if } 0 \le x < 3; \\ x^3 - 27 & \text{if } 3 \le x \le 4. \end{cases}$$

for all $x \in [0, 4]$.

(i) Is the function $h:[0,4] \to [0,64]$ injective? Tick the correct box below:—

 $Yes \sqrt{\ }$ No

If you claim that this function is not injective, give a reason for your answer in not more than three sentences in the following box:

N/A

(ii) Is the function $h:[0,4] \to [0,64]$ surjective? Tick the correct box below:—

Yes $No \checkmark$

If you claim that this function is not surjective, give a reason for your answer in not more than three sentences in the following box:

The range of this function does not include real numbers in the interval (37,40].

(iii) Is the function $h: [0,4] \to [0,64]$ bijective? Tick the correct box below:—

Yes No v