Course MA1S11: Michaelmas Term 2016. Tutorial 1: Sample October 4–7, 2016 Solutions

Problem 1

Let intervals be defined as follows:—

 $I=(2,8), \quad J=[1,15], \quad K=[6,12), \quad L=[11,17].$

Also let sets A to H be defined as follows:—

 $\begin{array}{rcl} A & = & [1,17], \\ B & = & (2,17], \\ C & = & [6,8), \\ D & = & [6,11), \\ E & = & [8,11), \\ F & = & (2,6) \cup [11,17], \\ G & = & (2,6) \cup [12,17], \\ H & = & (2,8) \cup [11,17]. \end{array}$

Each of the sets tabulated below is equal to one of the sets A-H. In each row of the table below, enter the set from A-H that is equal to the specified set

$I \cup L$	Н
$K \setminus L$	D
$(I \cup L) \setminus K$	G
$J \cup (L \setminus K)$	A
$(I \cup L) \cup (K \setminus L)$	В
$(I \cup L) \cap (K \setminus L)$	C
$(I \cup L) \setminus (K \setminus L)$	F
$(K \setminus L) \setminus (I \cup L)$	E

A	=	[1, 17],
В	=	(2, 17],
C	=	[6, 8),
D	=	[6, 11),
E	=	[8, 11),
F	=	$(2,6) \cup [11,17],$
G	=	$(2,6) \cup [12,17],$
Η	=	$(2,8) \cup [11,17].$

$$\begin{split} I \cup L &= (2,8) \cup [11,17] = H, \\ K \setminus L &= [6,11) = D, \\ (I \cup L) \setminus K &= (2,6) \cup [12,17] = G, \\ J \cup (L \setminus K) &= [1,17] = A, \\ (I \cup L) \cup (K \setminus L) &= (2,17] = B, \\ (I \cup L) \cap (K \setminus L) &= [6,8) = C, \\ (I \cup L) \setminus (K \setminus L) &= (2,6) \cup [11,17] = F, \\ (K \setminus L) \setminus (I \cup L) &= [8,11) = E. \end{split}$$

Problem 2: prove the identity

$$\sum_{j=1}^{n} \frac{4}{(3j+4)(3j+1)} = \frac{n}{3n+4}.$$

by induction on n.

Proof by Induction. If n = 1 then

$$\sum_{j=1}^{n} \frac{4}{(3j+4)(3j+1)} = \frac{4}{7\times 4} = \frac{4}{28} = \frac{1}{7} = \frac{n}{3n+4}.$$

Thus the result holds when n = 1. Suppose the result holds when n = k, so that

$$\sum_{j=1}^{k} \frac{4}{(3j+4)(3j+1)} = \frac{k}{3k+4}.$$

Then

$$\begin{split} \sum_{j=1}^{k+1} \frac{4}{(3j+4)(3j+1)} &= \sum_{j=1}^{k} \frac{4}{(3j+4)(3j+1)} + \frac{4}{(3(k+1)+4)(3k+4)} \\ &= \frac{k}{3k+4} + \frac{4}{(3(k+1)+4)(3k+4)} \\ &= \frac{k(3k+7)}{(3k+7)(3k+4)} + \frac{4}{(3k+7)(3k+4)} \\ &= \frac{3k^2 + 7k + 4}{(3k+7)(3k+4)} \\ &= \frac{(k+1)(3k+4)}{(3k+7)(3k+4)} \\ &= \frac{k+1}{3k+7} \\ &= \frac{k+1}{3(k+1)+4}. \end{split}$$

Thus if the result holds when n = k then it also holds when n = k + 1. It follows from the Principle of Mathematical Induction that the result holds for all natural numbers n.