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9. Calculus and Motion (continued)

9.1. Motion under a Central Force

Let the position of a particle in the plane be determined by two
variables r(t) and θ(t) that are functions of time that may be
repeatedly differentiated any number of times, and that determine
the Cartesian coordinates (x(t), y(t)) of the particle at time t
according to the equations

x(t) = r(t) cos θ(t), y(t) = r(t) sin θ(t).

Thus r(t) represents the distance of the particle from the origin at
time t, and θ(t) denotes the angle in radians that the line joining
the particle to the origin makes with the x-axis at time t.



9. Calculus and Motion (continued)

We denote the first and second derivatives of the quantities r(t),
θ(t), x(t), y(t) by putting dots over the respective letters so that

ṙ(t) =
dr(t)

dt
, θ̇(t) =

dθ(t)

dt
,

ẋ(t) =
dx(t)

dt
, ẏ(t) =

dy(t)

dt
,

r̈(t) =
d2r(t)

dt2
, θ̈(t) =

d2θ(t)

dt2
,

ẍ(t) =
d2x(t)

dt2
, ÿ(t) =

d2y(t)

dt2
.



9. Calculus and Motion (continued)

Now ẋ(t) and ẏ(t) are the Cartesian components of the velocity of
the particle at time t. Differentiating we find that

ẋ(t) =
dx(t)

dt
=

d

dt

(
r(t) cos θ(t)

)
=

dr(t)

dt
cos θ(t)− r(t)

d(θ(t))

dt
sin θ(t)

= ṙ(t) cos θ(t)− r(t)θ̇(t) sin θ(t),

ẏ(t) =
dy(t)

dt
=

d

dt

(
r(t) sin θ(t)

)
=

dr(t)

dt
sin θ(t) + r(t)

d(θ(t))

dt
cos θ(t)

= ṙ(t) sin θ(t) + r(t)θ̇(t) cos θ(t).



9. Calculus and Motion (continued)

It is not necessary to indicate explicitly the time dependence of the
quantities r , θ, x , y , ṙ , θ̇ ẋ and ẏ . We may therefore simplify
notation by writing the equations just derived in the form

ẋ =
dx

dt
= ṙ cos θ − r θ̇ sin θ,

ẏ =
dy

dt
= ṙ sin θ + r θ̇ cos θ.



9. Calculus and Motion (continued)

Lemma 9.1

Let a particle move in the plane so that the Cartesian components
x and y of its position satisfy

x = r cos θ and y = r sin θ

at all times t, where r and θ are functions of time t that may be
repeatedly differentiated any number of times. Then

dx

dt
=

dr

dt
cos θ − r

dθ

dt
sin θ,

dy

dt
=

dr

dt
sin θ + r

dθ

dt
cos θ.



9. Calculus and Motion (continued)

We differentiate again to find the Cartesian components ẍ(t) and
ÿ(t) of the acceleration of the particle in terms of r(t), θ(t) and
their first and second derivatives. We find that

ẍ =
d

dt

(
dx

dt

)
=

d

dt
(ṙ cos θ)− d

dt

(
r θ̇ sin θ

)
= r̈ cos θ − ṙ θ̇ sin θ − ṙ θ̇ sin θ

− r θ̈ sin θ − r θ̇2 cos θ

=
(
r̈ − r θ̇2

)
cos θ −

(
2ṙ θ̇ + r θ̈

)
sin θ



9. Calculus and Motion (continued)

Similarly

ÿ =
d

dt

(
dy

dt

)
=

d

dt
(ṙ sin θ) +

d

dt

(
r θ̇ cos θ

)
= r̈ sin θ + ṙ θ̇ cos θ + ṙ θ̇ cos θ

+ r θ̈ cos θ − r θ̇2 sin θ

=
(
r̈ − r θ̇2

)
sin θ +

(
2ṙ θ̇ + r θ̈

)
cos θ



9. Calculus and Motion (continued)

We now suppose that the acceleration of the particle is always
directed towards or away from the origin, and that its magnitude is
determined by the distance of the particle from the origin. Thus
we suppose that, when the particle is located at a distance r from
the origin, its acceleration has magnitude |g(r)|, where g(r) is a
function of r defined for positive real numbers r , and is directed
towards the origin when g(r) > 0, and away from the origin when
g(r) < 0. Then

ẍ(t) = −g(r(t)) cos θ(t), ÿ(t) = −g(r(t)) sin θ(t),

Simplifying notation by suppressing explicit reference to the
time-dependence of the quantities involved, we find that

−g(r) cos θ = ẍ =
(
r̈ − r θ̇2

)
cos θ −

(
2ṙ θ̇ + r θ̈

)
sin θ,

−g(r) sin θ = ÿ =
(
r̈ − r θ̇2

)
sin θ +

(
2ṙ θ̇ + r θ̈

)
cos θ.



9. Calculus and Motion (continued)

It follows that

0 = ẍ sin θ − ÿ cos θ = −
(

2ṙ θ̇ + r θ̈
)

(sin2 θ + cos2 θ)

= −
(

2ṙ θ̇ + r θ̈
)
,

−g(r) = ẍ cos θ + ÿ sin θ

=
(
r̈ − r θ̇2

)
(sin2 θ + cos2 θ)

= r̈ − r θ̇2.

We conclude therefore that

2ṙ θ̇ + r θ̈ = 0 and r̈ − r θ̇2 = −g(r).

We summarize the some of the main results obtained so far in the
following proposition.



9. Calculus and Motion (continued)

Proposition 9.2

Let a particle move in the plane so that the Cartesian components
x and y of its position satisfy

x = r cos θ and y = r sin θ

at all times t, where r and θ are functions of time t that may be
repeatedly differentiated any number of times. Suppose also that
the acceleration of the particle satisfies the equations

d2x

dt2
= −g(r) cos θ and

d2y

dt2
= −g(r) sin θ

at all times, where g(r) is a function of r . Then

2
dr

dt

dθ

dt
+ r

d2θ

dt2
= 0 and

d2r

dt2
− r

(
dθ

dt

)2

= −g(r).



9. Calculus and Motion (continued)

Corollary 9.3

Let a particle move in the plane so that the Cartesian components
x and y of its position satisfy

x = r cos θ and y = r sin θ

at all times t, where r and θ are functions of time t that may be
repeatedly differentiated any number of times. Suppose also that
the acceleration of the particle satisfies the equations

d2x

dt2
= −g(r) cos θ and

d2y

dt2
= −g(r) sin θ

at all times, where g(r) is a function of r . Then

r2
dθ

dt
= h and

d2r

dt2
− h2

r3
= −g(r),

where h is a constant (having the same value at all times).



9. Calculus and Motion (continued)

Proof
Differentiating, and applying the result of Proposition 9.2

d

dt

(
r2
dθ

dt

)
= 2r

dr

dt

dθ

dt
+ r2

d2θ

dt2
= r
(

2
dr

dt

dθ

dt
+ r

d2θ

dt2

)
= 0.

It follows that

r2
dθ

dt
= h

where h is a constant. (In particular the value of h is fixed for all
times.) It follows from Proposition 9.2 that

−g(r) =
d2r

dt2
− r

(
dθ

dt

)2

=
d2r

dt2
− h2

r3
,

as required.



9. Calculus and Motion (continued)

There is a standard method for solving equations of motion for
particle moving in the plane, attributed to Jacques Philippe Marie
Binet (1786–1856), where the acceleration is directed towards a
fixed point located at the origin of a Cartesian coordinate system,
and is determined by the distance of the particle from that fixed
point, which has been handed down the generations. We suppose
that the distance r of the particle from the origin is expressible as a
function of the angle θ, at least over sufficiently short periods of
time, and set

r(t) =
1

u(θ(t))
,

where u(θ) is a function of θ whose values are positive. Then



9. Calculus and Motion (continued)

dr

dt
= − 1

(u(θ))2
d

dt

(
u(θ(t))

)
= −r2 du

dθ

dθ

dt

= −hdu
dθ
,

where h = r2θ̇. Now h is a constant whose value is the same at all
times (Corollary 9.3). Thus if we differentiate again, we find that

d2r

dt2
= −h d

dt

(
du

dθ

)
= −h d2u

dθ2
dθ

dt

= −h2

r2
d2u

dθ2
= −h2u2 d

2u

dθ2
.



9. Calculus and Motion (continued)

It then follows from Corollary 9.3 that

−g
(

1

u

)
= −h2u2 d

2u

dθ2
− h2u3.

It follows that
d2u

dθ2
+ u =

1

h2u2
g

(
1

u

)
.

This equation is referred to as the Binet equation.
We summarize the result just obtained in a proposition.



9. Calculus and Motion (continued)

Proposition 9.4

Let a particle move in the plane so that the Cartesian components
x and y of its position satisfy

x = r cos θ and y = r sin θ

at all times t, where r and θ are functions of time t that may be
repeatedly differentiated any number of times. Suppose also that

d2x

dt2
= −g(r) cos θ and

d2y

dt2
= −g(r) sin θ

at all times, where g(r) is a positive function of r . Then there
exists a constant h such that

dθ

dt
= hu2 and

d2u

dθ2
+ u =

1

h2u2
g

(
1

u

)
,

where u = 1/r .



9. Calculus and Motion (continued)

Corollary 9.5

Let a particle move in the plane so that the Cartesian components
x and y of its position satisfy

x = r cos θ and y = r sin θ

at all times t, where r and θ are functions of time t that may be
repeatedly differentiated any number of times. Suppose also that

d2x

dt2
= − µ

r2
cos θ and

d2y

dt2
= − µ

r2
sin θ

at all times, where µ is a positive constant. Then there exists a
constant h such that

dθ

dt
= hu2 and

d2u

dθ2
+ u =

µ

h2
,

where u = 1/r .



9. Calculus and Motion (continued)

Theorem 9.6

Let a particle move in the plane so that the Cartesian components
x and y of its position satisfy

x = r cos θ and y = r sin θ

at all times t, where r and θ are functions of time t that may be
repeatedly differentiated any number of times. Suppose also that

d2x

dt2
= − µ

r2
cos θ and

d2y

dt2
= − µ

r2
sin θ

at all times, where µ is a positive constant. Then there exist
constants h, θ0 and e, where e ≥ 0, such that

r2
dθ

dt
= h and

h2

µr
= 1 + e cos(θ − θ0).



9. Calculus and Motion (continued)

Proof
It follows from Corollary 9.5 that there exists a constant h such
that

dθ

dt
= hu2 and

d2u

dθ2
+ u =

µ

h2
,

where u = 1/r . Let

w =
1

cos θ

(
u − µ

h2

)
throughout the time period over which the equations of motion of
the particle are to be solved. Then

u =
µ

h2
+ w cos θ

and
d2u

dθ2
=

(
d2w

dθ2
− w

)
cos θ − 2

dw

dθ
sin θ,



9. Calculus and Motion (continued)

and therefore
d2w

dθ2
cos θ − 2

dw

dθ
sin θ = 0.

But then

d

dθ

(
dw

dθ
cos2 θ

)
=

d2w

dθ2
cos2 θ − 2

dw

dθ
cos θ sin θ = 0.

It follows that
dw

dθ
cos2 θ = B,

where B is a constant. Thus

dw

dθ
=

B

cos2 θ
=

d

dθ
(B tan θ) .

It follows that w = A + B tan θ, where A and B are constants. But
then

1

r
= u =

µ

h2
+ A cos θ + B sin θ.
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Let

e =
h2
√
A2 + B2

µ
.

Then the point (
h2A

eµ
,
h2B

eµ

)
lies on the circle of radius 1 about the origin in the plane, and
therefore there exists some real number θ0 such that

h2A

eµ
= cos θ0 and

h2B

eµ
= sin θ0.

Then

h2

µr
= 1 + e cos θ cos θ0 + e sin θ sin θ0 = 1 + e cos(θ − θ0),

as required.



9. Calculus and Motion (continued)

For simplicity, we can orient the Cartesian coordinate system so
that θ0 = 0. We also let ` = h2/µ. Then the equation of the orbit
of the particle around the origin becomes

`

r
= 1 + e cos θ,

where
x = r cos θ and y = r sin θ.

Multiplying both sides of this equation by r , we find that

` = r + er cos θ = r + ex =
√

x2 + y2 + ex .

It follows that the orbit of the particle has equation

x2 + y2 = (`− ex)2.



9. Calculus and Motion (continued)

Expanding the right hand side of this equation and rearranging, we
find that

(1− e2)x2 + 2e`x + y2 = `2.

The shape of the curve is then determined by the value of the
constant e. There are three distinct cases: e < 1, e = 1, and
e > 1.
The case when e = 1 is the simplest to analyze. In that case the
equation of the orbit takes the form

y2 = `(`− 2x).

This curve is a parabola which comes closest to the origin at the
point (12`, 0). Moreover the tangent line at this point of closest
approach to the origin is the line x = 1

2`.



9. Calculus and Motion (continued)

Now let us restrict attention to the cases where e 6= 1. In those
cases

(1− e2)

(
x +

e`

1− e2

)2

+ y2 = `2
(

1 +
e2

1− e2

)
=

`2

1− e2
,

and therefore
(x + ae)2

a2
+

y2

a2(1− e2)
= 1,

where

a =
`

1− e2
.



9. Calculus and Motion (continued)

In the case when 0 ≤ e < 1 we can write the equation of the orbit
in the form

(x + ae)2

a2
+

y2

b2
= 1,

where b = a
√

1− e2. This is the equation of an ellipse centred on
the point (−ae, 0) with semi-major axis equal to a and semi-minor
axis equal to b. The quantity e that determines the shape of the
ellipse is known as the eccentricity of the ellipse. The semi-latus
rectum of the ellipse is equal to `, where ` = a(1− e2).
The case where 0 ≤ e < 1 characterizes a closed orbit whose
distance from the origin remains bounded. The cases where e ≥ 1
describe motion in which the particle escapes “to infinity”. The
following corollary therefore summarizes results we have obtained
in analysing the orbit of a particle in the case where the
eccentricity e of the orbit satisfies 0 ≤ e < 1.
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Corollary 9.7

Let a particle move in a closed orbit in the plane so that its
acceleration is always directed towards the origin and is inversely
proportional to the square of the distance from the origin, and let a
Cartesian coordinate system be oriented so that points where the
particle is closest to the origin when it crosses the positive x-axis.
Then the orbit of the particle is an ellipse with equation

(x + ae)2

a2
+

y2

b2
= 1,

where the real numbers a, b and e satisfy a > 0, 0 ≤ e < 1 and
b = a

√
1− e2. Moreover if x = r cos θ and y = r sin θ then r and

θ satisfy the equation

(1− e2)a

r
= 1 + e cos θ.
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