MA1S11—Calculus Portion School of Mathematics, Trinity College Michaelmas Term 2016 Lecture 28 (December 8, 2016)

David R. Wilkins

8. The Natural Logarithm and Exponential Functions

8.1. The Natural Logarithm Function

Definition

The natural logarithm function In: $(0,\infty)\to\mathbb{R}$ is defined for all positive real numbers s so that

$$\ln s = \int_1^s \frac{1}{x} \, dx.$$

It follows from this definition that if s is a real number satisfying 0 < s < 1 then

$$\ln s = -\int_{s}^{1} \frac{1}{x} dx.$$

It follows from the definition of the natural logarithm function that $\ln: (0,\infty) \to \mathbb{R}$ is an increasing function which satisfies $\ln(0) = 0$. In particular $\ln(x) > 0$ whenever x > 1, and $\ln(x) < 0$ whenever 0 < x < 1.

Remark

It is commonplace in mathematical texts to denote the natural logarithm $\ln x$ of a positive real number x by $\log x$. The natural logarithm of x is also denoted by $\log_e x$.

Proposition 8.1

The natural logarithm function In satisfies

$$ln(uv) = ln u + ln v$$

for all positive real numbers u and v.

Proof

The identity

$$\int_{1}^{uv} \frac{1}{x} dx = \int_{1}^{u} \frac{1}{x} dx + \int_{u}^{uv} \frac{1}{x} dx$$

is satisfied for all positive real numbers u and v. (see Corollary 7.12). Moreover

$$\int_{u}^{uv} \frac{1}{x} dx = u \int_{1}^{v} \frac{1}{ux} dx = \int_{1}^{v} \frac{1}{x} dx = \ln v.$$

(see Proposition 7.13). It follows that

$$\ln(uv) = \ln u + \ln v,$$

as required.

Proposition 8.2

The logarithm function $\operatorname{ln}\colon (0,\infty) \to \mathbb{R}$ is differentiable, and

$$\frac{d}{dx}\left(\ln(x)\right) = \frac{1}{x}$$

for all positive real numbers x.

Proof

This result follows as an immediate corollary of the Fundamental Theorem of Calculus (Theorem 7.17).

Proposition 8.3

The logarithm function In: $(0,\infty) \to \mathbb{R}$ satisfies

$$\int_{1}^{s} \ln(kx) dx = s \ln ks - s - \ln k + 1$$

for all positive real numbers s and k.

Proof

Differentiating $x \ln x$ using the Product Rule (Proposition 5.3), we find that

$$\frac{d}{dx}(x\ln(kx)) = \ln(kx) + 1$$

It follows that

$$\ln(kx) = \frac{d}{dx} (x \ln(kx) - x).$$

Applying Corollary 7.19, we then find that

$$\int_{1}^{s} \ln(kx) dx = \int_{1}^{s} \frac{d}{dx} (x \ln(kx) - x) dx$$
$$= [x \ln(kx) - x]_{1}^{s}$$
$$= s \ln(ks) - s - \ln k + 1,$$

as required.

Example

We determine the value of the integral

$$\int_0^s \frac{x^3}{1+x^2} \, dx$$

for all real numbers s. We apply the rule for Integration by Substitution (Proposition 7.26).

Let $u = 1 + x^2$. Then $\frac{du}{dx} = 2x$. Also $x^2 = u - 1$. It follows that

$$\int_0^s \frac{x^3}{1+x^2} dx = \frac{1}{2} \int_0^s \frac{(u-1)}{u} \frac{du}{dx} dx$$

$$= \frac{1}{2} \int_{u(0)}^{u(s)} \frac{(u-1)}{u} du$$

$$= \frac{1}{2} \int_1^{1+s^2} \left(1 - \frac{1}{u}\right) du$$

$$= \frac{1}{2} [u - \ln u]_1^{1+s^2}$$

$$= \frac{1}{2} (s^2 - \ln(1+s^2)).$$

8.2. An Infinite Series converging to the Logarithm Function

Let x be a real number satisfying -1 < x < 1, and let n be an positive integer. Then

$$\sum_{i=0}^{n-1} (-x)^{i} = 1 - x + x^{2} - \dots + (-x)^{n-1} = \frac{1 - (-x)^{n}}{1 + x}$$

(see Proposition 4.3). It follows that

$$\sum_{i=0}^{n-1} (-x)^{i} - \frac{1}{1+x} = -\frac{(-x)^{n}}{1+x},$$

and therefore

$$\left| \sum_{j=0}^{n-1} (-x)^j - \frac{1}{1+x} \right| \le \frac{|x|^n}{1-|x|}.$$

Now let s be a real number satisfying -1 < s < 1. Then

$$\left| \sum_{j=0}^{n-1} (-x)^j - \frac{1}{1+x} \right| \le \frac{|x|^n}{1-|x|} \le \frac{|s|^n}{1-|s|}.$$

for all real numbers x satisfying $|x| \leq |s|$, and thus

$$-\frac{|s|^n}{1-|s|} \le \sum_{i=0}^{n-1} (-x)^j - \frac{1}{1+x} \le \frac{|s|^n}{1-|s|}$$

for all real numbers x satisfying $|x| \le |s|$. Taking the integral over the interval from 0 to x, we find that

$$-\frac{|s|^{n+1}}{1-|s|} \le \int_0^s \left(\sum_{j=0}^{n-1} (-x)^j - \frac{1}{1+x}\right) dx \le \frac{|s|^{n+1}}{1-|s|}.$$

But

$$\int_0^s \left(\sum_{j=0}^{n-1} (-x)^j - \frac{1}{1+x} \right) dx = \sum_{j=0}^{n-1} \int_0^s (-x)^j dx - \int_0^s \frac{1}{1+x} dx$$

$$= \sum_{j=0}^{n-1} \frac{(-1)^j}{j+1} s^{j+1} - \int_1^{1+s} \frac{1}{u} du$$

$$= \sum_{k=1}^n \frac{(-1)^{k-1}}{k} s^k - \ln(1+s)$$

We conclude therefore that

$$-\frac{|s|^{n+1}}{1-|s|} \le \sum_{k=1}^{n} \frac{(-1)^{k-1}}{k} s^{k} - \ln(1+s) \le \frac{|s|^{n+1}}{1-|s|}$$

for all positive integers n.

We have therefore proved the result stated in the following proposition.

Proposition 8.4

Let x be a real number satisfying -1 < x < 1. Then

$$-\frac{|x|^{n+1}}{1-|x|} \le \sum_{k=1}^{n} \frac{(-1)^{k-1}}{k} x^{k} - \ln(1+x) \le \frac{|x|^{n+1}}{1-|x|}$$

for all positive integers n.

It follows from this proposition that if -1 < x < 1 then $\ln(1+x)$ can be represented as the sum of an infinite series as follows:

$$\ln(1+x) = x - \frac{1}{2}x^2 + \frac{1}{3}x^3 - \frac{1}{4}x^4 + \frac{1}{5}x^5 - \frac{1}{6}x^6 + \cdots$$

We can therefore calculate $\ln(1+x)$ when -1 < x < 1 but summing sufficiently many terms of this infinite series. If for example $|x| \leq \frac{1}{10}$ then taking ten terms of this infinite series should suffice to calculate $\ln(1+x)$ to nine decimal places. The values of the successive approximations to $\ln(1.1)$ computed using the infinite series can be tabulated as follows. The computation has been performed using Python. (The value in the 17th decimal place is affected by rounding error: $\ln(1.1) = 0.09531017980432486004\ldots$ according to WolframAlpha.)

```
Successive approximations to ln(1.1):—
 Sum of 1 terms of ln(1 + 0.1) series
                                       = 0.1.
 Sum of 2 terms of ln(1 + 0.1) series
                                       = 0.095,
 Sum of 3 terms of ln(1 + 0.1) series
                                       Sum of 4 terms of ln(1 + 0.1) series
                                       = 0.0953083333333333334
 Sum of 5 terms of ln(1 + 0.1) series
                                       = 0.0953103333333333334
 Sum of 6 terms of ln(1 + 0.1) series
                                       = 0.09531016666666668.
 Sum of 7 terms of ln(1 + 0.1) series
                                       = 0.09531018095238097.
 Sum of 8 terms of ln(1 + 0.1) series
                                       = 0.09531017970238097
 Sum of 9 terms of ln(1 + 0.1) series
                                       = 0.09531017981349207.
 Sum of 10 terms of ln(1 + 0.1) series
                                       = 0.09531017980349207.
 Sum of 11 terms of ln(1 + 0.1) series
                                       = 0.09531017980440117.
 Sum of 12 terms of ln(1 + 0.1) series
                                       = 0.09531017980431783
 Sum of 13 terms of ln(1 + 0.1) series
                                       = 0.09531017980432552.
 Sum of 14 terms of ln(1 + 0.1) series
                                       = 0.09531017980432481,
 Sum of 15 terms of ln(1 + 0.1) series
                                       = 0.09531017980432488,
 Sum of 16 terms of ln(1 + 0.1) series
                                       = 0.09531017980432488.
```

8.3. The Exponential Function

Proposition 8.5

Let x be a real number. Then there exists a positive real number u for which $\ln u = x$.

Proof

The natural logarithm function is both increasing and continuous. Moreover

$$\ln(b^n) = n \ln(b)$$

for all positive real numbers b and for all integers n. Let b be chosen such that b>1. Then, given any real number x, there exists some positive integer n large enough to ensure that

$$-n \ln b \le x \le n \ln b$$
.

Then $\ln b^{-n} < x < \ln b^n$.

The natural logarithm function is differentiable on the interval $[b^{-n},b^n]$ (see Proposition 8.2). It is therefore continuous on that interval. The Intermediate Value Theorem (Theorem 4.28) then guarantees the existence of a real number u satisfying $b^{-n} \le u \le b^n$ for which $\ln u = x$. The fact that the natural logarithm function is an increasing function on the set of positive real numbers then ensures that this positive real number u is the unique positive real number for which u = x. This completes the proof.

Definition

The exponential function $\exp \colon \mathbb{R} \to \mathbb{R}$ is defined so that, for all real number x, $\exp(x)$ is the unique positive real number for which $\ln(\exp(x)) = x$.

It follows from the definition of the natural logarithm function that, for any real number x, $\exp(x)$ is the unique positive real number u for which

$$\int_1^u \frac{1}{t} dt = x.$$

Remark

One can also show that, given any real number x, there exists a positive real number u satisfying $\ln u = x$ using the Least Upper Bound Principle and the definition of continuity. Indeed the Least Upper Bound Principle guarantees the existence of a positive real number u that satisfies

$$u = \sup\{z \in (0, +\infty) : \ln z \le x\}.$$

The continuity of the natural logarithm function can then be used to rule out the possibilities that $\ln u < x$ and $\ln u > x$. It follows that the number u defined as a least upper bound as specified above must satisfy $\ln u = x$.

The exponential function $\exp\colon \mathbb{R} \to \mathbb{R}$ is an increasing function, because the natural logarithm function is an increasing function. The range $\exp(\mathbb{R})$ of the exponential function is the set of positive real numbers.

Lemma 8.6

The exponential function and the natural logarithm functions satisfy the identities

$$ln(exp(x)) = x$$
 and $exp(ln(u)) = u$

for all real numbers x and for all positive real numbers u.

Proof

It follows from the definition of the exponential function that ln(exp(x)) = x for all real numbers x. Let u be a positive real number, and let x = ln(u). Then

$$ln(exp(ln(u))) = ln(exp(x)) = x = ln(u).$$

But the logarithm function is an increasing function. It follows that $\exp(\ln(u)) = u$ (Lemma 3.4).

Proposition 8.7

The exponential function $\exp \colon \mathbb{R} \to \mathbb{R}$ satisfies $\exp(u+v) = \exp(u) \exp(v)$ for all real numbers u and v.

Proof

It follows from Proposition 8.1 that

$$ln(exp(u) exp(v)) = ln(exp(u)) + ln(exp(v)) = u + v.$$

But $\exp(u+v)$ is by definition the unique positive real number for which $\ln(\exp(u+v)) = u+v$. It follows that $\exp(u+v) = \exp(u) \exp(v)$, as required.

Corollary 8.8

The exponential function $\exp \colon \mathbb{R} \to \mathbb{R}$ satisfies $\exp(nx) = \exp(x)^n$ for all natural numbers n and for all real numbers x. u and v.

Proof

It follows from the definition of the natural logarithm function that ln(1) = 0. It follows that exp(0) = 1. If n > 0 then

$$\exp((n+1)x) = \exp(nx + x) = \exp(nx)\exp(x)$$

(Proposition 8.7). A straightforward proof by induction on n therefore establishes that $\exp(nx) = (\exp(x))^n$ for all positive integers n. Also $\exp(-nx) \exp(nx) = 1$ and therefore $\exp(-nx) = (\exp(x))^{-n}$ for all positive integers n. It follows that $\exp(nx) = (\exp(x))^n$ for all integers n, as required.

Corollary 8.9

Let b be a positive real number. Then $b^q = \exp(kq)$ for all rational numbers q, where $k = \ln b$.

Proof

Let q = m/n, where m and n are integers and n > 0, let s = k/n, where $k = \ln(b)$, and let $u = \exp(s)$. Then

$$u^n = \exp(ns) = \exp(k) = \exp(\ln(b)) = b.$$

(We have here made use of both Lemma 8.6 and Corollary 8.8.) and therefore $u=b^{\frac{1}{n}}$. Applying the Laws of Indices applicable when the base is a positive real number and the exponents are rational numbers (see Proposition 1.15), we find that

$$b^q = b^{\frac{m}{n}} = u^m = \exp(s)^m = \exp(ms) = \exp\left(\frac{mk}{n}\right) = \exp(kq),$$

as required.

Definition

Let b be a positive real number, and let x be an irrational number. We define $b^x = \exp(kx)$, where $k = \ln b$.

Proposition 8.10

Let b be a positive real number. Then $b^x = \exp(kx)$ for all real numbers x, where $k = \ln b$.

Proof

The result follows from Corollary 8.9 in the case where the real number x is rational. The result follows from the definition of b^x in the case where the real number x is irrational. The result is therefore true for all real numbers x.

Proposition 8.11

Let b be a positive real number. Then $b^{x+y} = b^x b^y$ and $b^{xy} = (b^x)^y$ for all real numbers x and y.

Proof

Let x and y be real numbers, and let $k = \ln b$. Then

$$b^{x+y} = \exp(k(x+y)) = \exp(kx + ky) = \exp(kx) \exp(ky) = b^x b^y.$$

(We have here used Proposition 8.7 and Proposition 8.10.)

Also ln(kx) = kx (Lemma 8.6), and therefore

$$(bx)y = (\exp(kx))y = \exp((kx)y) = \exp(kxy) = bxy,$$

as required.

Corollary 8.12

The exponential function satisfies $\exp(x) = e^x$ for all real numbers x, where $e = \exp(1)$.

Proof

Let $e = \exp(1)$. Then $\ln(e) = 1$. It follows from Proposition 8.10 that $e^x = \exp(x)$ for all real numbers x, as required.

Remark

Numerical calculations show that

$$e = \exp(1) = 2.718281828459045...$$

It can be shown that

$$\exp(x) = 1 + x + \frac{x^2}{2} + \frac{x^3}{6} + \frac{x^4}{24} + \frac{x^5}{120} + \cdots$$
$$= \sum_{n=0}^{+\infty} \frac{x^n}{n!}.$$

value of $\exp(x)$ can be computed to any desired degree of precision by taking sufficiently many terms of the infinite series $\sum_{n=0}^{+\infty} \frac{x^n}{n!}$. The value of e can of course be computed by setting x=1 in this

What this means in practice is that, for any real number x, the

$$e = \lim_{n \to +\infty} \left(1 + \frac{1}{n} \right)^n.$$

infinite series. The number e satisfies the identity

Lemma 8.13

The exponential function exp: $\mathbb{R} \to \mathbb{R}$ is continuous.

Proof

Let s be a real number, and let some positive real number ε be given. Then there exist positive real numbers u and v such that $s-\varepsilon \leq u < \exp(s) < v \leq s+\varepsilon$. Let δ be the smaller of the two positive real numbers $\ln v - s$ and $s - \ln u$. If x is a real number satisfying $s-\delta < x < s+\delta$ then $\ln u < x < \ln v$, and therefore $u < \exp(s) < v$. But then $s-\varepsilon < \exp(x) < s+\varepsilon$. The result follows.

Proposition 8.14

The exponential function exp: $\mathbb{R} \to \mathbb{R}$ is differentiable, where $\exp(x) = e^x$ for all real numbers x, and

$$\frac{d}{dx}\left(e^{x}\right)=e^{x}$$

for all real numbers x.

Proof

Let s be a real number, let $v=\exp(s)$, and let $G:(0,+\infty)\to\mathbb{R}$ be defined so that

$$G(u) = \begin{cases} \frac{\ln(u) - s}{u - v} & \text{if } u > 0 \text{ and } u \neq v; \\ \frac{1}{v} & \text{if } u = v. \end{cases}$$

Then $s = \ln(v)$, and

$$\lim_{u \to v} G(u) = \lim_{u \to v} \frac{\ln(u) - \ln(v)}{u - v} = \frac{d}{du} (\ln u) \Big|_{u = v}$$
$$= \frac{1}{v} = G(v).$$

It follows that the function G is continuous at v. It then follows from the continuity of the exponential function at s (Lemma 8.13) that the function sending each real number s to s (exp(s)) is continuous at s, and thus

$$\lim_{x \to s} \frac{\exp(x) - \exp(s)}{x - s} = \lim_{x \to s} \frac{1}{G(\exp(x))} = \frac{1}{G(\exp s)}$$
$$= \frac{1}{G(v)} = v = \exp(s).$$

(Specifically these identities follow from applications of Proposition 4.26, Lemma 4.16 and Proposition 4.21.) Therefore the exponential function is differentiable at *s*, and

$$\frac{d}{dx}(e^x)\Big|_{x=s} = \frac{d}{dx}(\exp(x))\Big|_{x=s} = \exp(x) = e^x,$$

as required.

Corollary 8.15

Let k be a real number. Then

$$\frac{d}{dx}\left(e^{kx}\right) = ke^{kx}$$

for all real numbers x.

Proof

This result follows on applying Proposition 8.14 in conjunction with the Chain Rule (Proposition 5.5).

Corollary 8.16

Let b be a positive real number. Then

$$\frac{d}{dx}(b^x) = (\ln b)b^x$$

for all real numbers x.

Proof

This result follows on combining the results of Proposition 8.10 and Corollary 8.15.

Proposition 8.17

Let x be a real variable that varies over an interval D, and let the dependent variable u be a function of x with the property that

$$\frac{du}{dx} = k(u - B)$$

for all real values of x belonging to D, where k and B are real constants. Then

$$u = Ae^{kx} + B$$

for all real values of x belonging to D, where A is a real constant.

Proof

First suppose that u > B for some value of x within the interval D. It follows from the Chain Rule (Proposition 5.5) that the function u of x satisfies

$$\frac{d}{dx}(\ln(u-B)) = \frac{1}{u-B}\frac{du}{dx} = k.$$

It follows that $\ln(u-B)=kx+C$ throughout the interval D, where C is a real constant. But then $u-B=e^{kx+C}$ for all $x\in D$, and thus

$$u = Ae^{kx} + B$$

for all $x \in D$, where $A = e^{C}$.

The result in the case where u < B for some value of x within the interval x follows on applying the result just obtained with u and B replaced by -u and -B respectively.

If neither of these cases apply then u = B throughout D. The result follows.

Proposition 8.18

Let k and s be real numbers, where $k \neq 0$. Then

$$\int_0^s e^{kx} dx = \frac{1}{k} \left(e^{ks} - 1 \right).$$

Proof

Applying Corollary 7.19, we find that

$$\int_0^s e^{kx} dx = \frac{1}{k} \int_0^s \frac{d}{dx} \left(e^{kx} \right) dx = \frac{1}{k} \left[e^{kx} \right]_0^s$$
$$= \frac{1}{k} \left(e^{kx} - 1 \right),$$

as required.