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7. Integration (continued)

7.6. Integration by Parts

Proposition 7.25 (Integration by Parts)

Let f and g be continuously differentiable real-valued functions on
the interval [a, b]. Then∫ b

a
f (x)

dg(x)

dx
dx = f (b)g(b)− f (a)g(a)−

∫ b

a
g(x)

df (x)

dx
dx .

Proof
This result follows from Corollary 7.19 on integrating the identity

f (x)
dg(x)

dx
=

d

dx
(f (x)g(x))− g(x)

df (x)

dx
.



7. Integration (continued)

Example
We determine the value of∫ s

0
x sin kx dx

where k is a non-zero real constant. Let

f (x) = x and g(x) = −1

k
cos kx

for all real numbers x . Then

dg(x)

dx
= sin kx .

It follows that
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∫ s

0
x sin kx dx =

∫ s

0
f (x)

dg(x)

dx
dx

= [f (x)g(x)]s0 −
∫ s

0

df (x)

dx
g(x) dx

= −1

k
[x cos kx ]s0 +

1

k

∫ s

0
cos kx dx

= − s

k
cos ks +

1

k2
[sin kx ]s0

= − s

k
cos ks +

1

k2
sin ks.

Thus ∫ s

0
x sin kx dx =

1

k2
sin ks − s

k
cos ks.
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7.7. Integration by Substitution

Proposition 7.26 (Integration by Substitution)

Let ϕ : [a, b]→ R be a continuously-differentiable function on the
interval [a, b]. Then∫ ϕ(b)

ϕ(a)
f (u) du =

∫ b

a
f (ϕ(x))

dϕ(x)

dx
dx .

for all continuous real-valued functions f on the range ϕ([a, b]) of
the function ϕ.
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Proof
Let c = ϕ(a) and d = ϕ(b), and let F and G be the functions on
[a, b] defined by

F (s) =

∫ ϕ(s)

c
f (u)du, G (s) =

∫ s

a
f (ϕ(x))

dϕ(x)

dx
dx .

Then F (a) = 0 = G (a). Moreover F (s) = H(ϕ(s)), where

H(w) =

∫ w

c
f (u) du,

for all w ∈ ϕ([a, b]). Using the Chain Rule (Proposition 5.5) and
the Fundamental Theorem of Calculus (Theorem 7.17), we find
that

F ′(s) = H ′(ϕ(s))ϕ′(s) = f (ϕ(s))ϕ′(s) = G ′(s)

for all s ∈ (a, b). On applying the Mean Value Theorem
(Theorem 5.9) to the function F − G on the interval [a, b], we see
that F (b)−G (b) = F (a)−G (a) = 0. Thus H(d) = F (b) = G (b),
which yields the required identity.
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Let x be a real variable taking values in a closed interval [a, b], and
let u = ϕ(x) for all x ∈ [a, b], where ϕ : [a, b]→ R be a
continuously-differentiable function on the interval [a, b]. The rule
for Integration by Substitution (Proposition 7.26) can then be
stated as follows:∫ u(b)

u(a)
f (u) du =

∫ b

a
f (u(x)))

du

dx
dx .

for all continuous real-valued functions f whose domain includes
u(x) for all real numbers x satisfying a ≤ x ≤ b, where u(a) and
u(b) denote the values of u when x = a and x = b respectively.
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Example
We determine the value of the integral∫ s

0

x5√
1− x2

dx ,

where s is a real number satisfying −1 < s < 1. Let u =
√

1− x2.
Then

du

dx
= −2x × 1

2
√

1− x2
= − x√

1− x2
.

Also u2 = 1− x2 and therefore x2 = 1− u2 and
x4 = 1− 2u2 + u4. It follows that
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∫ s

0

x5√
1− x2

dx = −
∫ s

0
(1− 2u2 + u4)

du

dx
dx

= −
∫ u(s)

u(0)
(1− 2u2 + u4) du

= −
∫ √1−s2
1

(1− 2u2 + u4) du

= −
[
u − 2

3u
3 + 1

5u
5
]√1−s2
1

= 8
15 −

√
1− s2

(
1− 2

3(1− s2) + 1
5(1− s2)2

)
= 8

15 −
√

1− s2
(

8
15 + 4

15s
2 + 1

5s
4
)
.
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Example
We determine the value of the integral∫ π

0
sin θ cos4 θ dθ

Let u = cos θ. Then
du

dθ
= − sin θ. It follows that∫ π

0
sin θ cos4 θ dθ = −

∫ π

0
u4

du

dθ
dθ

= −
∫ cos(π)

cos(0)
u4 du = −

∫ −1
1

u4 du

=

∫ 1

−1
u4 du =

[
1

5
u5
]1
−1

=
1

5
(15 − (−1)5)

=
2

5
.
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Example
We determine the value of the integral∫ 2

0

x2√
1 + x3

dx .

Let u = 1 + x3. Then
du

dx
= 3x2. It follows that

∫ 2

0

x2√
1 + x3

dx =
1

3

∫ 2

0

1√
u

du

dx
dx

=
1

3

∫ 9

1

1√
u
du =

1

3

∫ 9

1
u−

1
2 du

=
1

3

[
2u

1
2

]9
1

=
2

3
(
√

9−
√

1) =
4

3
.
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Example
We determine the value of the integral∫ s

0
x3 sin5(x4) cos(x4) dx

for all real numbers s. Let u = sin(x4). Then

du

dx
= 4x3 cos(x4).

Applying the rule for Integration by Substitution, we see that∫ s

0
x3 sin5(x4) cos(x4) dx =

1

4

∫ s

0
u5

du

dx
dx =

1

4

∫ u(s)

u(0)
u5 du

=
1

24

[
u6
]u(s)
u(0)

=
1

24
sin6(s4).
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Example
We determine the value of the integral∫ s

1

1

x2
sin

(
2π

x

)
dx

for all positive real numbers s. Let u =
2π

x
. Then

du

dx
= −2π

x2
.

It follows that
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∫ s

1

1

x2
sin

(
2π

x

)
dx = − 1

2π

∫ s

1
sin u

du

dx
dx

= − 1

2π

∫ 2π
s

2π
sin u du

=
1

2π

[
cos u

]2π
s

2π

=
1

2π

(
cos

(
2π

s

)
− 1

)
.



7. Integration (continued)

In the examples we have considered above, we have been given an
integral of the form

∫ b
a F (x) dx , and we have evaluated the

integral by finding a function u of x and a function f (u) of u for

which F (x) = f (u(x))
du

dx
. Some calculus texts refer to

substitutions of this type as u-substitutions.

In some cases it may be possible to evaluate integrals using the
method of Integration by Substitution, but expressing the
variable x of integration as a function of some other real variable.
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Example
We evaluate ∫ 1

0

√
1− x2 dx .

Let x = sin θ. Then 0 = sin 0 and 1 = sin 1
2π. It follows from the

rule for Integration by Substitution (Proposition 7.26) that∫ 1

0

√
1− x2 dx =

∫ 1
2
π

0

√
1− sin2 θ

d(sin θ)

dθ
dθ.

But
d(sin θ)

dθ
= cos θ and

√
1− sin2 θ = cos θ for all real

numbers θ satisfying 0 ≤ θ = 1
2π. It follows that∫ 1

0

√
1− x2 dx =

∫ 1
2
π

0
cos2 θ dθ.
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Now cos2 θ = 1
2(1 + cos 2θ). It follows that∫ 1

2
π

0
cos2 θ dθ =

[
1
2x + 1

4 sin 2θ
] 1
2
π

0
= 1

4(π + sinπ − sin 0) = 1
4π.

With the benefit of hindsight, this result should not seem too
surprising! The curve y =

√
1− x2 is an arc of a circle

representing one quarter of the circle, and the definition of the
integral as representing the area between this curve and the x-axis
ensures that the integral measures the area of a sector of the unit
circle subtending a right angle at the centre of the circle. The area
of this sector is then a quarter of the area π of the unit circle.
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Example
We determine the value of the integral∫ s

0

1

(a2 + x2)2
dx

for all positive real numbers s, where a is a positive real constant.
We substitute x = a tan θ. Let β = arctan(s/a). Then a tanβ = s.
The rule for Integration by Substitution (Proposition 7.26) then
ensures that∫ s

0

1

(a2 + x2)2
dx =

∫ β

0

1

a4(1 + tan2 θ)2
d(a tan θ)

dθ
dθ.

Now

1 + tan2 θ = sec2 θ =
1

cos2 θ
.
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Also
d

dθ
(tan θ) = sec2 θ =

1

cos2 θ

(Corollary 6.14). It follows that∫ s

0

1

(a2 + x2)2
dx =

1

a3

∫ β

0
cos4 θ × 1

cos2 θ
dθ

=
1

a3

∫ β

0
cos2 θ dθ =

1

2a3

∫ β

0
(1 + cos 2θ) dθ

=
1

2a3
[
θ + 1

2 sin 2θ
]β
0

=
1

2a3
(β + 1

2 sin 2β)

=
1

2a3
(β + sinβ cosβ)
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Now

sinβ cosβ = tanβ cos2 β =
tanβ

1 + tan2 β

=
a2 tanβ

a2 + a2 tan2 β
=

as

a2 + s2
.

We conclude therefore that∫ s

0

1

(a2 + x2)2
dx =

1

2a3
arctan

( s
a

)
+

s

2a2(a2 + s2)
.
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7.8. Indefinite Integrals

Let f (x) be an integrable function of a real variable x . It is
commonplace to use the notation

∫
f (x) dx to denote some

function g(x) with the property that

d

dx
(g(x)) = f (x).

This function
∫
f (x) dx is said to be an indefinite integral of the

function f .
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It follows from the Fundamental Theorem of Calculus
(Theorem 7.17), we find that that if f (x) is an integrable function
of x on an interval D, and if a is a real number of D then the
function g(x) is an indefinite integral of f (x), where

g(x) =

∫ x

a
f (t) dt.

We can therefore write g(x) =
∫
f (x) dx .
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Note that an indefinite integral is only defined up to addition of an
arbitrary constant: if

∫
f (x) dx is an indefinite integral of f (x)

then so is
∫
f (x) dx + C , where C is a real constant known as the

constant of integration.
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7.9. Riemann Sums

Let f : [a, b]→ R be a bounded function on a closed bounded
interval [a, b], where a < b, and let P be a partition of [a, b]. Then
P = {x0, x1, x2, . . . , xn}, where

a0 = x1 < x2 < x2 < · · · < xn = b.

A Riemann sum for the function f on the interval [a, b] is a sum of
the form

n∑
i=1

f (x∗i )(xi − xi−1),

where xi−1 ≤ x∗i ≤ xi for i = 1, 2, . . . , n.
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The definition of the Darboux lower and upper sums ensures that

L(P, f ) ≤
n∑

i=1

f (x∗i )(xi − xi−1) ≤ U(P, f )

for any Riemann sum
n∑

i=1

f (x∗i )(xi − xi−1) associated with the

partition P. Thus is the partition P is chosen fine enough to
ensure that U(P, f )− L(P, f ) < ε then all Riemann sums
associated with the partition P and its refinements will differ from
one another by at most ε. Moreover if the function f is
Riemann-integrable on [a, b], then all Riemann sums associated
with the partition P and its refinements will approximate to the
value of the integral

∫ b
a f (x) dx to within an error of at most ε.

Some textbooks use definitions of integration that represent
integrals as being, in an appropriate sense, limits of Riemann sums.
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