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7. Integration (continued)

We recall the basic definitions associated with the definition of the
Riemann integral (or Riemann-Darboux) integral of a bounded
real-valued function f : [a, b]→ R on a closed bounded interval
[a, b], where a and b are real numbers satisfying a < b. The
function f is required to be bounded, and therefore there exist real
numbers m and M with the property that m ≤ f (x) ≤ M for all
real numbers x satisfying a ≤ x ≤ b.

A partition P of the interval [a, b], may be specified in the form
P = {x0, x1, x2, . . . , xn}, where x0, x1, . . . , xn are real numbers
satisfying

a = x0 < x1 < x2 < · · · < xn = b



7. Integration (continued)

The quantities mi and Mi are defined for i = 1, 2, . . . , n so that

mi = inf{f (x) | xi−1 ≤ x ≤ xi}

and
Mi = sup{f (x) | xi−1 ≤ x ≤ xi}.

Then the interval [mi ,Mi ] can be characterized as the smallest
closed interval in R that contains the set

{f (x) | xi−1 ≤ x ≤ xi}.

The Darboux lower sum L(P, f ) and Darboux upper sum U(P, f )
determined by the function f and the partition P of the interval
[a, b] are then defined by the identities

L(P, f ) =
n∑

i=1

mi (xi − xi−1), U(P, f ) =
n∑

i=1

Mi (xi − xi−1).
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7. Integration (continued)

The lower Riemann integral L
∫ b
a f (x) dx of the function f on the

interval [a, b] is defined to be the least upper bound of the
Darboux lower sums L(P, f ) as P ranges over all partitions of the
interval [a, b].

Similarly the upper Riemann integral L
∫ b
a f (x) dx of the

function f on the interval [a, b] is defined to be the greatest lower
bound of the Darboux upper sums U(P, f ) as P ranges over all
partitions of the interval [a, b].

The lower and upper Riemann integrals of the function f on the
interval [a, b] are therefore characterized by the properties
presented in the following lemmas.
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Lemma 7.1

Let f : [a, b]→ R be a bounded function on a closed bounded
interval [a, b], where a and b are real numbers satisfying a < b.
Then the lower Riemann integral is the unique real number
characterized by the following two properties:—

(i)

L(P, f ) ≤ L
∫ b

a
f (x) dx

for all partitions P of the interval [a, b].

(ii) given any positive real number ε, there exists a partition P of
the interval [a, b] for which

L(P, f ) > L
∫ b

a
f (x) dx − ε.
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Lemma 7.2

Let f : [a, b]→ R be a bounded function on a closed bounded
interval [a, b], where a and b are real numbers satisfying a < b.
Then the upper Riemann integral is the unique real number
characterized by the following two properties:—

(i)

U(P, f ) ≥ U
∫ b

a
f (x) dx

for all partitions P of the interval [a, b].

(ii) given any positive real number ε, there exists a partition P of
the interval [a, b] for which

U(P, f ) < U
∫ b

a
f (x) dx + ε.
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A bounded function f on the interval [a, b] is then
Riemann-integrable if and only if

L
∫ b

a
f (x) dx = U

∫ b

a
f (x) dx .

The integral
∫ b
a f (x) dx of a Riemann-integrable function f on the

interval [a, b] is then the common value of the upper and lower
Riemann integrals.

In order to develop further the theory of integration, we introduce
the notion of a refinement of a partition, and prove that if we
replace a partition P by a refinement R of that partition, then the
Darboux upper and lower sums satisfy the inequalities

L(R, f ) ≥ L(P, f ) and U(R, f ) ≤ U(P, f ).

for all bounded functions f on [a, b]. This result is an essential tool
in developing the theory of the Riemann integral.
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Definition

Let P and R be partitions of [a, b], given by P = {x0, x1, . . . , xn}
and R = {u0, u1, . . . , um}. We say that the partition R is a
refinement of P if P ⊂ R, so that, for each xi in P, there is some
uj in R with xi = uj .

Lemma 7.3

Let R be a refinement of some partition P of [a, b]. Then

L(R, f ) ≥ L(P, f ) and U(R, f ) ≤ U(P, f )

for any bounded function f : [a, b]→ R.
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Proof
Let P = {x0, x1, . . . , xn}, where

a = x0 < x1 < x2 < · · · < xn = b.

Then

L(P, f ) =
n∑

i=1

mi (xi − xi−1)

and

U(P, f ) =
n∑

i=1

Mi (xi − xi−1),

where
mi = inf{f (x) | xi−1 ≤ x ≤ xi}

and
Mi = sup{f (x) | xi−1 ≤ x ≤ xi}.
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Suppose that we add an extra division point to P to obtain a
partition Q. We suppose that the extra division point z is added
between xk−1 and xk , where k is some integer between 1 and n, so
that xk−1 < z < xk . Let

m′k = inf{f (x) | xk−1 ≤ x ≤ z},
M ′k = sup{f (x) | xk−1 ≤ x ≤ z},
m′′k = inf{f (x) | z ≤ x ≤ xk},
M ′′k = sup{f (x) | z ≤ x ≤ xk}.

Then mk ≤ m′k , mk ≤ m′′k , Mk ≥ M ′k and Mk ≥ M ′′k .
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It follows that

mk(xk − xk−1) = mk(z − xk−1) + mk(xk − z)

≤ m′k(z − xk−1) + m′′k(xk − z)

and

Mk(xk − xk−1) = Mk(z − xk−1) + Mk(xk − z)

≥ M ′k(z − xk−1) + M ′′k (xk − z)
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y

xx0 x1 x2 x3 x4

Darboux sums before refinement
y

xx0 x1 z x2 x3 x4

Darboux sums with new division point z between x1 and x2



7. Integration (continued)

But the lower sum L(P, f ) is the sum of the quantities
mi (xi − xi−1) as i ranges from 1 to n, and the lower sum L(Q, f ) is
the analogous sum for the partition Q, obtained on replacing the
summand mk(xk − xk1) by the quantity

m′k(z − xk−1) + m′′k(xk − z),

which is no smaller than mk(xk − xk1). It follows that
L(P, f ) ≤ L(Q, f ).

Similarly U(P, f ) is the sum of the quantities Mi (xi − xi−1) as i
ranges from 1 to n, and the upper sum U(Q, f ) is the analogous
sum for the partition Q, obtained on replacing the summand
Mk(xk − xk−1) by the quantity

M ′k(z − xk−1) + M ′′k (xk − z),

which is no larger than Mk(xk − xk1). It follows that
U(P, f ) ≥ U(Q, f ).
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If the partition R of the interval [a, b] is a refinement of the
partition P, then one can obtain R from P by successively adding
extra division points, one at a time. We have shown that the lower
sums do not decrease, and the upper sums do not increase, each
time a new division point is added. It follows that

L(R, f ) ≥ L(P, f ) and U(R, f ) ≤ U(P, f ),

as required.
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Given any two partitions P and Q of [a, b] there exists a
partition R of [a, b] which is a refinement of both P and Q. Indeed
we can take R to be the partition of [a, b] obtained in taking as
division points all the division points belonging to the partitions P
and Q. Such a partition is said to be a common refinement of the
partitions P and Q.

Lemma 7.4

Let f be a bounded real-valued function on the interval [a, b],
where a and b are real numbers satisfying a < b. Then

L
∫ b

a
f (x) dx ≤ U

∫ b

a
f (x) dx .
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Proof
Let P and Q be partitions of [a, b], and let R be a common
refinement of P and Q. It follows from Lemma 7.3 that
L(P, f ) ≤ L(R, f ) ≤ U(R, f ) ≤ U(Q, f ). Thus, on taking the
supremum of the left hand side of the inequality L(P, f ) ≤ U(Q, f )
as P ranges over all possible partitions of the interval [a, b], we see

that L
∫ b
a f (x) dx ≤ U(Q, f ) for all partitions Q of [a, b]. But

then, taking the infimum of the right hand side of this inequality as
Q ranges over all possible partitions of [a, b], we see that

L
∫ b
a f (x) dx ≤ U

∫ b
a f (x) dx , as required.
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Proposition 7.5

Let f be a bounded real-valued function on the interval [a, b],
where a and b are real numbers satisfying a < b. Then the
function f is Riemann-integrable on f , with Riemann integral∫ b
a f (x) dx if and only if the following two properties are satisfied:

(i)

L(P, f ) ≤
∫ b

a
f (x) dx ≤ U(P, f )

for all partitions P of the interval [a, b];

(ii) given any positive real number ε, there exists a partition P of
the interval [a, b] for which∫ b

a
f (x) dx − ε < L(P, f ) ≤ U(P, f ) <

∫ b

a
f (x) + ε.
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Proof
Let A be a real number. Suppose that L(P, f ) ≤ A ≤ U(P, f ) for
all partitions P of [a, b], and that, given any positive real
number ε, there exists a partition P of [a, b] for which
A− ε < L(P, f ) ≤ U(P, f ) < A + ε. It then follows from

Lemma 7.1 and Lemma 7.2 that A = L
∫ b
a f (x) dx and

A = U
∫ b
a f (x) dx . Therefore the function f is Riemann-integrable

on [a, b], and
∫ b
a f (x) dx = A.
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Conversely, suppose that the function f is Riemann-integrable on
[a, b], with Riemann integral equal to the real number A. Then

A = L
∫ b
a f (x) dx = U

∫ b
a f (x) dx , and therefore

L(P, f ) ≤ A ≤ U(P, f ) for all partitions P of [a, b]. Moreover it
follows from Lemma 7.1 and Lemma 7.2 that there exist partitions
P1 and P2 of [a, b] for which L(P1, f ) > A− ε and
U(P2, f ) < A + ε. Let P be a common refinement of the partitions
P1 and P2. It follows from Lemma 7.3 that

A− ε < L(P1, f ) ≤ L(P, f ) ≤ U(P, f ) < U(P2, f ) < A + ε.

The result follows.
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Corollary 7.6

Let f : [a, b]→ R be a bounded function on a closed bounded
interval [a, b], where a and b are real numbers satisfing a ≤ b.
Then the function f is Riemann-integrable on [a, b] if and only if,
given any positive real number ε, there exists a partition P of [a, b]
with the property that

U(P, f )− L(P, f ) < ε.

Proof
Suppose that the bounded function f is Riemann-integrable on
[a, b]. Let A =

∫ b
a f (x) dx . It follows from Proposition 7.5 that,

given any positive real number ε, there exists a partition P of [a, b]
for which

A− 1
2ε < L(P, f ) ≤ U(P, f ) < A + 1

2ε.

Then U(P, f )− L(P, f ) < ε.
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Conversely suppose that f is a bounded function on [a, b] for
which there exists a partition P with U(P, f )− L(P, f ) < ε. Then

L(P, f ) ≤ L
∫ b

a
f (x) dx ≤ U

∫ b

a
f (x) dx ≤ U(P, f )

(see Lemma 7.4). Therefore

0 ≤ U
∫ b

a
f (x) dx − L

∫ b

a
f (x) dx < ε

for all positive real numbers ε. But the difference of the upper and
lower Riemann integrals is independent of ε. It follows that

U
∫ b

a
f (x) dx − L

∫ b

a
f (x) dx = 0,

and thus the function f is Riemann-integrable on [a, b], as
required.
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Corollary 7.7

Let f : [a, b]→ R be a bounded Riemann-integrable function on a
closed bounded interval [a, b], where a < b, and let u and v be real
numbers belonging to [a, b]. Then the function f is
Riemann-integrable on the interval with endpoints u and v , and∫ v

u
f (x) dx = −

∫ u

v
f (x) dx .

Proof
First suppose that a ≤ u < v ≤ b. Let some positive real number ε
be given. Then there exists a partition P of [a, b] for which
U(P, f )− L(P, f ) < ε. Let Q be the partition of [u, v ] consisting
of the endpoints u and v of the closed interval [u, v ] together with
those division points of P that lie in the interior of this interval.
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An examination of the relevant definitions shows that

U(Q, f )− L(Q, f ) ≤ U(P, f )− L(P, f ) < ε.

It follows that if a ≤ u < v ≤ b then the function f is
Riemann-integrable on [u, v ]. The definition of the relevant
integrals then ensures that∫ u

v
f (x) dx = −

∫ v

u
f (x) dx .

(see subsection 7.2).
If a ≤ v < u ≤ b then the required result follows from the case
already proved on interchanging u and v . If a ≤ u = v ≤ b then

the integrals

∫ v

u
f (x) dx and

∫ u

v
f (x) dx are equal to zero, and

therefore the result follows in this case also. This completes the
proof.
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Lemma 7.8

Let f : [a, b]→ R and g : [a, b]→ R be bounded
Riemann-integrable functions on a closed interval [a, b], where
a < b. Suppose that f (x) ≤ g(x) for all real numbers x satisfying
a ≤ x ≤ b. Then ∫ b

a
f (x) dx ≤

∫ b

a
g(x) dx .

Proof
The Darboux lower and uppse sums of the functions f and g
satisfy L(P, f ) ≤ L(P, g) and U(P, f ) ≤ U(P, g). It follows that

L
∫ b

a
f (x) dx ≤ L

∫ b

a
g(x) dx and U

∫ b

a
f (x) dx ≤ U

∫ b

a
g(x) dx .

The result follows.
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Proposition 7.9

Let f : [a, b]→ R and g : [a, b]→ R be bounded
Riemann-integrable functions on a closed bounded interval [a, b],
where a and b are real numbers satisfying a ≤ b. Then the
functions f + g and f − g are Riemann-integrable on [a, b], and
moreover∫ b

a
(f (x) + g(x)) dx =

∫ b

a
f (x) dx +

∫ b

a
g(x) dx .
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Proof
Let

∫ b
a f (x) dx = A′ and

∫ b
a g(x) dx = A′′, and let A = A′ + A′′.

Let some positive number ε be given. It follows from
Proposition 7.5 that there exist partitions P ′ and P ′′ of [a, b] that
satisfy

A′ − 1
2ε < L(P ′, f ) < U(P ′, f ) < A′ + 1

2ε

and
A′′ − 1

2ε < L(P ′′, g) < U(P ′′, g) < A′′ + 1
2ε

Let P be a common refinement of the partitions P ′ and P ′′. Then
L(P ′, f ) ≤ L(P, f ), L(P ′′, g) ≤ L(P, g), U(P ′, f ) ≥ U(P, f ) and
U(P ′′, g) ≥ L(P, g), and therefore

A− ε < L(P, f ) + L(P, g) ≤ U(P, f ) + U(P, g) < A + ε.
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Let P = {x0, x1, x2, . . . , xn}, where

a = x0 < x1 < x2 < · · · < xn = b,

and let

M ′i = sup{f (x) : xi−1 ≤ x ≤ xi},
M ′′i = sup{g(x) : xi−1 ≤ x ≤ xi},
Mi = sup{f (x) + g(x) : xi−1 ≤ x ≤ xi},
m′i = inf{f (x) : xi−1 ≤ x ≤ xi},
m′′i = inf{g(x) : xi−1 ≤ x ≤ xi},
mi = inf{f (x) + g(x) : xi−1 ≤ x ≤ xi}.
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Let i be an integer between 1 and n. Then m′i ≤ f (x) ≤ M ′i and
m′′i ≤ g(x) ≤ M ′′i for all real numbers x satisfying xi−1 ≤ x ≤ xi ,
and therefore

m′i + m′′i ≤ f (x) + g(x) ≤ M ′i + M ′′i

for all real numbers x satisfying xi−1 ≤ x ≤ xi . It follows that

m′i + m′′ ≤ mi ≤ Mi ≤ M ′i + M ′′

for i = 1, 2, . . . , n. Multiplying by xi − xi−1 and summing over i ,
we find that

n∑
i=1

m′i (xi − xi−1) +
n∑

i=1

m′′i (xi − xi−1)

≤
n∑

i=1

mi (xi − xi−1) ≤
n∑

i=1

Mi (xi − xi−1)

≤
n∑

i=1

M ′i (xi − xi−1) +
n∑

i=1

M ′′i (xi − xi−1).
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Thus

L(P, f ) + L(P, g) ≤ L(P, f + g)

≤ U(P, f + g) ≤ U(P, f ) + U(P, g).

It then follows from inequalities obtained earlier in the proof that

A− ε < L(P, f + g) ≤ L(P, f + g) < A + ε.

The result therefore follows on applying Proposition 7.5 to the
function f + g on [a, b].
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Lemma 7.10

Let f : [a, b]→ R be a bounded Riemann-integrable function on a
closed bounded interval [a, b], where a < b, and let c be a real
number. Then cf is Riemann-integrable on [a, b], and∫ b

a
(cf (x)) dx = c

∫ b

a
f (x) dx .
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Proof
Let A =

∫ b
a f (x) dx . The result is immediate if c = 0. Suppose

that c > 0. Then L(P, cf ) = cL(P, f ) and U(P, cf ) = cU(P, f ) for
all partitions P of [a, b]. It follows that L(P, cf ) ≤ cA ≤ U(P, cf )
for all partitions P of [a, b]. Also, given any positive real number ε,
there exists a partition P of [a, b] for which

A− ε/c < L(P, f ) ≤ U(P, f ) < A + ε/c

(see Proposition 7.5). But then

cA− ε < L(P, cf ) ≤ U(P, cf ) < cA + ε.

The result therefore follows in the case when c > 0.

The result is also true in the case where c = −1, because
L(P,−f ) = −U(P, f ) and U(P,−f ) = −L(P, f ) for all
partitions P of the interval [a, b]. Combining these results, we see
that the result is true for all real numbers c , as required.
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Proposition 7.11

Let f be a bounded real-valued function on the interval [a, c].
Suppose that f is Riemann-integrable on the intervals [a, b] and
[b, c], where a < b < c . Then f is Riemann-integrable on [a, c],
and ∫ c

a
f (x) dx =

∫ b

a
f (x) dx +

∫ c

b
f (x) dx .

Proof
Let some positive real number ε be given. There exist partitions
P1 and P2 of [a, b] and [b, c] respectively for which∫ b

a
f (x) dx − 1

4ε < L(P1, f ) ≤ U(P1, f ) <

∫ b

a
f (x) dx + 1

4ε∫ c

b
f (x) dx − 1

4ε < L(P2, f ) ≤ U(P2, f ) <

∫ c

b
f (x) dx + 1

4ε

(see Proposition 7.5).
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The partitions P1 and P2 combine to give a partition P of [a, c],
where P = P1 ∪ P2. Moreover

L(P, f ) = L(P1, f )+L(P2, f ) and U(P, f ) = U(P1, f )+U(P2, f ).

It follows that∫ b

a
f (x) dx +

∫ c

b
f (x) dx − 1

2ε

< L(P, f ) ≤ U(P, f )

<

∫ b

a
f (x) dx +

∫ c

b
f (x) dx + 1

2ε,

and therefore U(P, f )− L(P, f ) < ε. It now follows from
Corollary 7.6 that the function f is Riemann-integrable in [a, b],
and then follows from Proposition 7.5 that∫ c

a
f (x) dx =

∫ b

a
f (x) dx +

∫ c

b
f (x) dx ,

as required.
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Corollary 7.12

Let f : [a, b]→ R be a bounded Riemann-integrable function on a
closed interval [a, b], where a < b. Then∫ w

u
f (x) dx =

∫ v

u
f (x) dx +

∫ w

v
f (x) dx

for all real numbers u, v and w belonging to [a, b].

Proof
In the case where u = w , the result follows from the identity∫ u

v
f (x) dx = −

∫ v

u
f (x) dx

(see Lemma 7.7). In the case where u = v and when v = w the
result follows from the definition of the integral, which requires
that

∫ u
u f (x) dx = 0 and

∫ w
w f (x) dx = 0.
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In the case when u < v < w , the result follows directly from
Proposition 7.11. In the case when u < w < v , it follows from
Proposition 7.11 that∫ v

u
f (x) dx =

∫ w

u
f (x) dx +

∫ v

w
f (x) dx

It then follows that∫ w

u
f (x) dx =

∫ v

u
f (x) dx −

∫ v

w
f (x) dx

=

∫ v

u
f (x) dx +

∫ w

v
f (x) dx .
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It then follows that if either v < w < u or v < u < w then∫ u

v
f (x) dx =

∫ w

v
f (x) dx +

∫ u

w
f (x) dx ,

and therefore∫ w

u
f (x) dx = −

∫ u

w
f (x) dx

= −
∫ u

v
f (x) dx +

∫ w

v
f (x) dx

=

∫ v

u
f (x) dx +

∫ w

v
f (x) dx .
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Finally if w < u < v or w < v < u then∫ v

w
f (x) dx =

∫ u

w
f (x) dx +

∫ v

u
f (x) dx ,

and therefore∫ w

u
f (x) dx = −

∫ u

w
f (x) dx

=

∫ v

u
f (x) dx −

∫ v

w
f (x) dx

=

∫ v

u
f (x) dx +

∫ w

v
f (x) dx .

This completes the proof.



7. Integration (continued)

Proposition 7.13

Let f : [a, b]→ R be a bounded Riemann-integrable real-valued
function on a closed bounded interval [a, b], where a < b, and let
k be a positive real number. Then∫ b

a
f (x) dx = k

∫ b/k

a/k
f (ku) du.
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Proof
Let g : [a/k, b/k]→ R be defined so that g(u) = f (ku) for all real
numbers u satisfying a/k ≤ u ≤ b/k . Each partition P of [a, b]
determines a corresponding partition Q of [a/k , b/k] so that if
P = {x0, x1, x2, . . . , xn}, where

a = x0 < x1 < x2 < · · · < xn = b,

then Q = {u0, u1, . . . , un}, where ui = xi/k for i = 1, 2, . . . , n.
Then kL(Q, g) = L(P, f ) and kU(Q, g) = U(P, f ). This ensures
that

k

∫ b/k

a/k
f (ku) du = k

∫ b/k

a/k
g(u) du =

∫ b

a
f (x) dx ,

as required.
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