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7. Integration

7. Integration

7.1. Darboux Sums of a Bounded Function

The approach to the theory of integration discussed below was
developed by Jean-Gaston Darboux (1842–1917). The integral
defined using lower and upper sums in the manner described below
is sometimes referred to as the Darboux integral of a function on a
given interval. However the class of functions that are integrable
according to the definitions introduced by Darboux is the class of
Riemann-integrable functions. Thus the approach using Darboux
sums provides a convenient approach to define and establish the
basic properties of the Riemann integral.



7. Integration (continued)

Let f : [a, b]→ R be a real-valued function on a closed interval
[a, b] that is bounded above and below on the interval [a, b], where
a and b are real numbers satisfying a < b. Then there exist real
numbers m and M such that m ≤ f (x) ≤ M for all real numbers x

satisfying a ≤ x ≤ b. We seek to define a quantity
∫ b
a f (x) dx , the

definite integral of the function f on the interval [a, b], where the
value of this quantity represents the area “below” the graph of the
function where the function is positive, minus the area “above” the
graph of the function where the function is negative.



7. Integration (continued)

We now introduce the definition of a partition of the interval [a, b].

Definition

A partition P of an interval [a, b] is a set {x0, x1, x2, . . . , xn} of real
numbers satisfying

a = x0 < x1 < x2 < · · · < xn−1 < xn = b.

A partition P of the closed interval [a, b] provides a decomposition
of that interval as a union of the subintervals [xi−1, xi ] for
i = 1, 2, . . . , n, where

a = x0 < x1 < x2 < · · · < xn−1 < xn = b.

Successive subintervals of the partition intersect only at their
endpoints.



7. Integration (continued)

Let P be a partition of the interval [a, b]. Then
P = {x0, x1, x2, . . . , xn} where x0, x1, . . . , xn are real numbers
satisfying

a = x0 < x1 < x2 < · · · < xn−1 < xn = b.

The values of the bounded function f : [a, b]→ R satisfy
m ≤ f (x) ≤ M for all real numbers x satisfying a ≤ x ≤ b. It
follows that, for each integer i between i and n, the set

{f (x) | xi−1 ≤ x ≤ xi}.

is a set of real numbers that is bounded below by m and bounded
above by M. The Least Upper Bound Principle then ensures that
the set {f (x) | xi−1 ≤ x ≤ xi} has a well-defined greatest lower
bound and a well-defined least upper bound (see the discussion of
least upper bounds and greatest lower bounds in Subsections 1.15
to 1.19).



7. Integration (continued)

For each integer i between 1 and n, let us denote by mi the
greatest lower bound on the values of the function f on the
interval [xi−1, xi ], and let us denote by Mi the least upper bound
on the values of the function f on the interval [xi−1, xi ], so that

mi = inf{f (x) | xi−1 ≤ x ≤ xi}

and
Mi = sup{f (x) | xi−1 ≤ x ≤ xi}.

Then the interval [mi ,Mi ] can be characterized as the smallest
closed interval in R that contains the set

{f (x) | xi−1 ≤ x ≤ xi}.



7. Integration (continued)

We now consider what the values of the greatest lower bound and
least upper bound on the values of the function are determined in
particular cases where the function has some special behaviour.

First suppose that the function f is non-decreasing on the interval
[xi−1, xi ]. Then mi = f (xi−1) and Mi = f (xi ), because in this case
the values of the function f satisfy f (xi−1) ≤ f (x) ≤ f (xi ) for all
real numbers x satisfying xi−1 ≤ x ≤ xi .

Next suppose that the function f is non-increasing on the interval
[xi−1, xi ]. Then mi = f (xi ) and Mi = f (xi−1), because in this case
the values of the function f satisfy f (xi−1) ≥ f (x) ≥ f (xi ) for all
real numbers x satisfying xi−1 ≤ x ≤ xi .



7. Integration (continued)

Next suppose that that the function f is continuous on the interval
[xi−1, xi ]. The Extreme Value Theorem (Theorem 4.29) then
ensures the existence of real numbers ui and vi , where
xi−1 ≤ ui ≤ xi and xi−1 ≤ vi ≤ xi with the property that

f (ui ) ≤ f (x) ≤ f (vi )

for all real numbers x satisfying xi−1 ≤ ui ≤ xi . Then mi = f (ui )
and Mi = f (vi ).

Finally consider the function f : R→ R defined such that
f (x) = x − bxc for all real numbers x , where bxc is the greatest
integer satisfying the inequality bxc ≤ x . Then 0 ≤ f (x) < 1 for all
real numbers x . If the interval [xi−1, xi ] includes an integer in its
interior then

sup{f (x) | xi−1 ≤ x ≤ xi} = 1,

and thus Mi = 1, even though there is no real number x for which
f (x) = 1.



7. Integration (continued)

We now summarize the essentials of the discussion so far.
The function f : [a, b]→ R is a bounded function on the closed
interval [a, b], where a and b are real numbers satisfying a < b.
There then exist real numbers m and M such that m ≤ f (x) ≤ M
for all real numbers x satisfying a ≤ x ≤ b. We are given also a
partition P of the interval [a, b]. This partition P is representable
as a finite set of real numbers in the interval [a, b] that includes
the endpoints of the interval. Thus

P = {x0, x1, . . . , xn}

where
a = x0 < x1 < x2 < · · · < xn−1 < xn = b.



7. Integration (continued)

The quantities mi and Mi are then defined so that

mi = inf{f (x) | xi−1 ≤ x ≤ xi}

and
Mi = sup{f (x) | xi−1 ≤ x ≤ xi}.

for i = 1, 2, . . . , n. Then mi ≤ f (x) ≤ Mi for all real numbers x
satisfying xi−1 ≤ x ≤ xi . Moreover [mi ,Mi ] is the smallest closed
interval that contains all the values of the function f on the
interval [xi−1, xi ].



7. Integration (continued)

Definition

Let f : [a, b]→ R be a bounded function defined on a closed
bounded interval [a, b], where a < b, and let the partition P be a
partition of [a, b] given by P = {x0, x1, . . . , xn}, where

a = x0 < x1 < x2 < · · · < xn−1 < xn = b.

Then the lower sum (or lower Darboux sum) L(P, f ) and the upper
sum (or upper Darboux sum) U(P, f ) of f for the partition P of
[a, b] are defined so that

L(P, f ) =
n∑

i=1

mi (xi − xi−1), U(P, f ) =
n∑

i=1

Mi (xi − xi−1),

where mi = inf{f (x) | xi−1 ≤ x ≤ xi} and
Mi = sup{f (x) | xi−1 ≤ x ≤ xi}.



7. Integration (continued)

Clearly L(P, f ) ≤ U(P, f ). Moreover
n∑

i=1
(xi − xi−1) = b − a, and

therefore

m(b − a) ≤ L(P, f ) ≤ U(P, f ) ≤ M(b − a),

for any real numbers m and M satisfying m ≤ f (x) ≤ M for all
x ∈ [a, b].



7. Integration (continued)

Remark
Let us consider how the lower and upper sum of a bounded
function f : [a, b]→ R on a closed bounded interval [a, b] are
related to the notion of the area “under the graph of the
function f ” on the interval a, in the case where the function f is
non-negative on the interval [a, b]. Thus suppose that f (x) ≥ 0 for
all x ∈ [a, b], and let X denote the region of the plane bounded by
the graph of the function f from x = a to x = b and the lines
x = a, x = b and y = 0. Then

X = {(x , y) ∈ R2 | a ≤ x ≤ b and 0 ≤ y ≤ f (x)},

where R2 is the set of all ordered pairs of real numbers. (The
elements of R2 are then regarded as Cartesian coordinates of
points of the plane.)



7. Integration (continued)

For each integer i let

Xi = {(x , y) ∈ X | xi−1 ≤ x ≤ xi}
= {(x , y) ∈ R2 | xi−1 ≤ x ≤ xi and 0 ≤ y ≤ f (x)}.

If the regions X and Xi have well-defined areas for i = 1, 2, . . . , n
satisfying the properties that areas of planar regions are expected
to satisfy, then

area(X ) =
n∑

i=1

area(Xi ),

because, where subregions Xi for different values of i intersect one
another, they intersect only along their bounding edges.



7. Integration (continued)

Let i be an integer between 1 and n. Then 0 ≤ mi ≤ f (x) for all
real numbers x satisfying xi−1 ≤ x ≤ xi . It follows that the
rectangle with vertices (xi−1, 0), (xi , 0), (xi ,mi ) and (xi−1,mi ) is
contained in the region Xi . This rectangle has width xi − xi−1 and
height mi , and thus has area mi (xi − xi−1). It follows that

mi (xi − xi−1) ≤ area(Xi )

for all integers i between 1 and n. Summing these inequalities over
i , we find that

L(P, f ) =
n∑

i=1

mi (xi − xi−1) ≤
n∑

i=1

area(Xi ) = area(X ).



7. Integration (continued)

An analogous inequality holds for upper sums. For each integer i
between xi−1 and xi the region Xi of the plane R2 is contained
within the rectangle with vertices (xi−1, 0), (xi , 0), (xi ,Mi ) and
(xi−1,Mi ). This rectangle has width xi − xi−1 and height Mi , and
thus has area Mi (xi − xi−1). It follows that

Mi (xi − xi−1) ≥ area(Xi )

for all integers i between 1 and n. Summing these inequalities over
i , we find that

U(P, f ) =
n∑

i=1

Mi (xi − xi−1) ≥
n∑

i=1

area(Xi ) = area(X ).

We conclude therefore that if the function f is non-negative on the
interval a, b], and if the region X “under the graph of the
function” on the interval [a, b] has a well-defined area, then

L(P, f ) ≤ area(X ) ≤ U(P, f ).



7. Integration (continued)

y

xx0 x1 x2 x3 x4 x5 x6 x7 x8

The upper sum U(P, f )



7. Integration (continued)

y

xx0 x1 x2 x3 x4 x5 x6 x7 x8

The lower sum L(P, f )



7. Integration (continued)

7.2. Upper and Lower Integrals and Integrability

Definition

Let f be a bounded real-valued function on the interval [a, b],

where a < b. The upper Riemann integral U
∫ b
a f (x) dx (or upper

Darboux integral) and the lower Riemann integral L
∫ b
a f (x) dx (or

lower Darboux integral) of the function f on [a, b] are defined by

U
∫ b

a
f (x) dx = inf {U(P, f ) | P is a partition of [a, b]} ,

L
∫ b

a
f (x) dx = sup {L(P, f ) | P is a partition of [a, b]} .

The definition of upper and lower integrals thus requires that
U
∫ b
a f (x) dx be the infimum of the values of U(P, f ) and that

L
∫ b
a f (x) dx be the supremum of the values of L(P, f ) as P ranges

over all possible partitions of the interval [a, b].



7. Integration (continued)

Remark
Let us consider how the lower and upper Riemann integrals of a
bounded function f : [a, b]→ R on a closed bounded interval [a, b]
are related to the notion of the area “under the graph of the
function f ” on the interval a, in the case where the function f is
non-negative on the interval [a, b]. Thus suppose that the
region X has a well-defined area area(X ), where

X = {(x , y) ∈ R2 | a ≤ x ≤ b and 0 ≤ y ≤ f (x)}.

We have already shown that

L(P, f ) ≤ area(X ) ≤ U(P, f )

for all partitions P of the interval [a, b]. It follows that area(X ) is
an upper bound on all the lower sums determined by all the
partitions P of [a, b]. It is therefore not less than the least upper
bound on all these lower sums. Therefore



7. Integration (continued)

L
∫ b

a
f (x) dx ≤ area(X ),

An analogous argument shows that

U
∫ b

a
f (x) dx ≥ area(X ).

Thus if the region X has a well-defined area, then that area must
satisfy the inequalities

L
∫ b

a
f (x) dx ≤ area(X ) ≤ U

∫ b

a
f (x) dx .



7. Integration (continued)

Definition

A bounded function f : [a, b]→ R on a closed bounded interval
[a, b] is said to be Riemann-integrable (or Darboux-integrable) on
[a, b] if

U
∫ b

a
f (x) dx = L

∫ b

a
f (x) dx ,

in which case the Riemann integral
∫ b
a f (x) dx (or Darboux

integral) of f on [a, b] is defined to be the common value of

U
∫ b
a f (x) dx and L

∫ b
a f (x) dx .



7. Integration (continued)

When a > b we define∫ b

a
f (x) dx = −

∫ a

b
f (x) dx

for all Riemann-integrable functions f on [b, a]. We set∫ b
a f (x) dx = 0 when b = a.

If f and g are bounded Riemann-integrable functions on the
interval [a, b], and if f (x) ≤ g(x) for all x ∈ [a, b], then∫ b
a f (x) dx ≤

∫ b
a g(x) dx , since L(P, f ) ≤ L(P, g) and

U(P, f ) ≤ U(P, g) for all partitions P of [a, b].
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