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5. Differential Calculus (continued)

5.8. Rolle’s Theorem

Let f : [a, b]→ R be a continuous real-valued function defined on
a closed interval [a, b], where a and b are real numbers satisfying
a ≤ b and

[a, b] = {x ∈ R | a ≤ x ≤ b}.

It then follows from the Extreme Value Theorem (Theorem 4.29)
that there exist real numbers u and v in the interval [a, b] such that

f (u) ≤ f (x) ≤ f (v)

for all real numbers x belonging to the interval [a, b]. The Extreme
Value Theorem was stated without proof earlier in the course.

We now apply the Extreme Value Theorem, together with result
that derivatives of differentiable functions are zero at local maxima
and minima in the interior of the domain of the function
(Proposition 5.7) in order to prove Rolle’s Theorem



5. Differential Calculus (continued)

Theorem 5.8 (Rolle’s Theorem)

Let f : [a, b]→ R be a real-valued function defined on some
interval [a, b]. Suppose that f is continuous on [a, b] and is
differentiable on (a, b). Suppose also that f (a) = f (b). Then there
exists some real number s satisfying a < s < b which has the
property that f ′(s) = 0.
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Proof
The function f is continuous on the closed bounded interval [a, b].
It therefore follows from the Extreme Value Theorem that there
must exist real numbers u and v in the interval [a, b] with the
property that f (u) ≤ f (x) ≤ f (v) for all real numbers x satisfying
a ≤ x ≤ b (see Theorem 4.29).
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Suppose that f (v) > f (a). Then f (v) > f (b), because
f (a) = f (b). It follows that v 6= a and v 6= b. But a ≤ v ≤ b. It
must therefore be the case that a < v < b. Moreover f (x) ≤ f (v)
for all real numbers x satisfying a ≤ x ≤ b. The function f thus
attains a local maximum at v , where v is in the interior of the
interval [a, b], and therefore f ′(v) = 0 (see Proposition 5.7). In
this case therefore we can take s = v .
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Next suppose that f (u) < f (a). Then f (u) < f (b), because
f (a) = f (b). It follows that u 6= a and u 6= b. But a ≤ u ≤ b. It
must therefore be the case that a < u < b. Moreover f (x) ≤ f (u)
for all real numbers x satisfying a ≤ x ≤ b. The function f thus
attains a local minimum at u, where u is in the interior of the
interval [a, b], and therefore f ′(u) = 0 (see Proposition 5.7). In
this case therefore we can take s = u.
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The only remaining case to consider is the case when both u and v
are endpoints of the interval [a, b]. In that case the function f is
constant on [a, b], since f (a) = f (b), and we can choose s to be
any real number satisfying a < s < b.
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5.9. The Mean Value Theorem

Rolle’s Theorem can be generalized to yield the following
important theorem.

Theorem 5.9 (The Mean Value Theorem)

Let f : [a, b]→ R be a real-valued function defined on some
interval [a, b]. Suppose that f is continuous on [a, b] and is
differentiable on (a, b). Then there exists some real number s
satisfying a < s < b which has the property that

f (b)− f (a) = f ′(s)(b − a).
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Proof
Let p : [a, b]→ R be the function defined so that

p(x) =
b − x

b − a
f (a) +

x − a

b − a
f (b) = mx + k ,

where

m =
f (b)− f (a)

b − a
and k =

bf (a)− af (b)

b − a

Then p(a) = f (a), p(b) = f (b) and p′(x) = m for all real
numbers x satisfying a ≤ x ≤ b. (The equation y = p(x) is then
the equation of the line segment that joins the points (a, f (a)) and
(b, f (b)) on the graph of f at x = a and x = b.)



5. Differential Calculus (continued)

Next let g : [a, b]→ R be the function defined such that
g(x) = f (x)− p(x) for all real numbers x satisfying a ≤ x ≤ b.
Then g(a) = g(b) = 0, because f (a) = p(a) and f (b) = p(b), and
g ′(x) = f ′(x)−m for all real numbers x satisfying a ≤ x ≤ b. It
follows from Rolle’s Theorem (Theorem 5.8) that there exists some
real number s satisfying a < s < b for which g ′(s) = 0. But then

f ′(s) = g ′(s) + m = m =
f (b)− f (a)

b − a
,

and thus f (b)− f (a) = f ′(s)(b − a), as required.
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5.10. Twice-Differentiable Functions

Definition

Let f : D → R be a real-valued function defined on a subset D of
the set of real numbers, and let s be a real number in the interior
of D. The function f is said to be twice-differentiable at s if the
derivative f ′ is defined and differentiable around s. The second
derivative f ′′(s) of a twice-differentiable function f at s is the
value of the derivative of the derivative of f at s.
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Let x be a real variable that ranges over a subset D of the set of
real numbers, and let the dependent variable y be defined so that
y = f (x) for all values of x that belong to D, where f : D → R is a

twice-differentiable function on D. The first derivative
dy

dx
of y

with respect to x then satisfies

dy

dx
= f ′(x)

throughout D, and the second derivative
d2y

dx2
of y with respect to

x satisfies
d2y

dx2
=

d

dx

(
dy

dx

)
= f ′′(x)

throughout D.
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5.11. The Second Derivative Test for Local Minima and Maxima

Proposition 5.10 (Second Derivative Test for Local
Minimum)

Let f : D → R be a twice-differentiable real-valued function defined
on a subset D of the set of real numbers, and let s be a real
number belonging to the interior of D. Suppose that f ′(s) = 0 and
f ′′(s) > 0. Then the function f has a local minimum at s.
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Proof
The first derivative f ′ of f satisfies

lim
x→s

f ′(x)− f ′(s)

x − s
= f ′′(s) > 0.

It follows that there exists some positive real number δ such that
x ∈ D and

f ′(x)− f ′(s)

x − s
> 1

2 f
′′(s) > 0

whenever s − δ < x < s + δ and x 6= s. But f ′(s) = 0. It follows
that

f ′(x)

x − s
> 0

whenever s − δ < x < s + δ and x 6= s, and therefore f ′(x) > 0
whenever s < x < s + δ, and f ′(x) < 0 whenever s − δ < x < s.
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Now it follows from the Mean Value Theorem (Theorem 5.9) that
if x is a real number satisfying s < x < s + δ then there exists
some real number v satisfying s < v < x for which
f (x)− f (s) = f ′(v)(x − s). But the derivative f ′(v) of f at v
must then satisfy f ′(v) > 0. It follows that f (x) > f (s) whenever
s < x < s + δ.

It also follows from the Mean Value Theorem (Theorem 5.9) that
if x is a real number satisfying s − δ < x < s then there exists
some real number u satisfying x < u < s for which
f (s)− f (x) = f ′(u)(s − x). But the derivative f ′(u) of f at u
must then satisfy f ′(v) < 0. It follows that f (x) > f (s) whenever
s − δ < x < s. We conclude from these results that the function f
attains a local minimum at s, as required.
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Corollary 5.11 (Second Derivative Test for Local Maximum)

Let f : D → R be a twice-differentiable real-valued function defined
on a subset D of the set of real numbers, and let s be a real
number belonging to the interior of D. Suppose that f ′(s) = 0 and
f ′′(s) < 0. Then the function f has a local maximum at s.

Proof
This result follows immediately on applying Proposition 5.10 to the
function −f .
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Let f : D → R be a twice-differentiable real-valued function defined
on a subset D of the set of real numbers, and let s be a real
number belonging to the interior of D. Suppose that f ′(s) = 0. If
f ′′(s) > 0 then the function f has a local minimum at s. If
f ′′(s) < 0 then the function f has a local maximum at s. But if
f ′′(s) = 0 then one is not in a position to draw any conclusion
about whether there is a local minimum or maximum at s.
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Example
Let f : R→ R be defined so that f (x) = x4 for all real numbers x .
Then f ′(0) = 0 and f ′′(0). The function f has a local minimum at
zero.

Example
Let g : R→ R be defined so that g(x) = −x4 for all real
numbers x . Then g ′(0) = 0 and g ′′(0). The function g has a local
maximum at zero.

Example
Let h : R→ R be defined so that h(x) = x3 for all real numbers x .
Then h′(0) = 0 and h′′(0). The function h has neither a local
minimum nor a local maximum at zero.
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5.12. Concavity and Points of Inflection

Let f : D → R be a twice-differentiable function defined on a
subset D of the set of real numbers, and let I be an interval
satisfying I ⊂ D. Suppose that f ′′(x) > 0 for all x ∈ I . If u and v
are real numbers belonging to the interval I that satisfy u < v then
from the Mean Value Theorem (Theorem 5.9) that there exists
some real number s satisfying u < s < v for which
f ′(v)− f ′(u) = f ′′(s)(v − u). But then s ∈ I , and therefore
f ′′(s) > 0. It follows that f ′(u) < f ′(v) for all real numbers u and
v in the interval I . The graph of the function f thus becomes ever
steeper as x increases through the interval I .
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Now let x1, x2 and x3 be real numbers belonging to the interval I
that satisfy x1 < x2 < x3. It follows from the Mean Value Theorem
that there exist real numbers u and v satisfying
x1 < u < x2 < v < x3 such that

f (x3)− f (x2)

x3 − x2
= f ′(v) and

f (x2)− f (x1)

x2 − x1
= f ′(u).

But f ′(u) < f ′(v) because the second derivative of f is positive
throughout the interval I . It follows that

f (x2)− f (x1)

x2 − x1
<

f (x3)− f (x2)

x3 − x2
.

Thus the slope of the line segment joining the points (x2, f (x2))
and (x3, f (x3)) is greater than the slope of the line segment joining
the points (x1, f (x1)) and (x2, f (x2)).
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It follows from this that the point (x3, f (x3)) lies above the line
passing through the points (x1, f (x1)) and (x2, f (x2)), and
therefore the point (x2, f (x2)) lies below the line joining the points
(x1, f (x1)) and (x3, f (x3)). Moreover this argument applies for all
values of x2 that lie between x1 and x3. It follows that the graph of
the function lies under the line segment joining the points
(x1, f (x1)) and (x3, f (x3)).

y
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Definition

Let f : D → R be a real-valued function defined on a subset D of
the set of real numbers, and let I be an interval satisfying I ⊂ D.
Suppose that, given real numbers u and v belonging to I that
satisfy u < v , the line segment joining the point (u, f (u)) to the
point (v , f (v)) lies above the graph of the function. Then the
graph of the function is said to be concave upwards on the
interval I .
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The following result follows immediately from the preceding
discussion.

Proposition 5.12

Let f : D → R be a twice-differentiable function defined on a
subset D of the set of real numbers, and let I be an interval
satisfying I ⊂ D. Suppose that f ′′(x) > 0 for all x ∈ I . Then the
graph of the function is concave upwards on I .
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Definition

Let f : D → R be a real-valued function defined on a subset D of
the set of real numbers, and let I be an interval satisfying I ⊂ D.
Suppose that, given real numbers u and v belonging to I that
satisfy u < v , the line segment joining the point (u, f (u)) to the
point (v , f (v)) lies below the graph of the function. Then the
graph of the function is said to be concave downwards on the
interval I .

Corollary 5.13

Let f : D → R be a twice-differentiable function defined on a
subset D of the set of real numbers, and let I be an interval
satisfying I ⊂ D. Suppose that f ′′(x) < 0 for all x ∈ I . Then the
graph of the function is concave downwards on I .
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Proof
The result follows immediately on applying Proposition 5.12 to the
function −f .

Definition

Let f : D → R be a real-valued function defined on a subset D of
the set of real numbers, and let s be a real number belonging to
the interior of D. The point (s, f (s)) is said to be a point of
inflexion of the graph of the function if s is common endpoint of
an interval where the graph of the function is concave upwards and
an interval where the graph of the function is concave downwards
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Proposition 5.14

Let f : D → R be a twice-differentiable function defined on a
subset D of the set of real numbers, where the second derivative
f ′′ is continuous on D, and let s be a point in the interior of D.
Suppose that s determines a point of inflexion on the graph of the
function f . Then f ′′(s) = 0.

Proof
If it were the case that f ′′(s) > 0 then the second derivative would
be positive around s, and therefore the real number s would be in
the interior of an interval on which the graph of the function is
concave upwards (see Proposition 5.12). This is not possible.
Therefore it cannot be the case that f ′′(s) > 0. An analogous
argument shows that it cannot be the case that f ′′(s) < 0. (Indeed
if the second derivative of f were negative at s then the second
derivative of −f would be positive at s, and we have shown that
this is impossible.) Therefore f ′′(s) = 0, as required.
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5.13. The Newton-Raphson Method

Let f : D → R be a differentiable function defined on a subset D of
the set of real numbers. A zero (or root) of the function f is a real
number x belonging to the domain of the function that satisfies
the equation f (x) = 0.

Suppose we wish to locate zeros of the function f . There is an
iterative method for locating zeros by successive approximations,
generally known as the Newton-Raphson Method, which may in
the appropriate circumstances determine the value of a zero of the
function to a high degree of precision.
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Let xn be a real number in the domain D of the differentiable
function f : D → R. Then the tangent line to the graph of the
function f at (xn, f (xn)) satisfies the equation

y = f (xn) + f ′(xn)(x − xn),

where f ′(xn) denotes the derivative of the function f at xn. This
tangent line crosses the x-axis at the point (xn+1, 0), where

0 = f (xn) + f ′(xn)(xn+1 − xn).

Solving this equation for xn+1, we find that

xn+1 − xn = − f (xn)

f ′(xn)
.

It follows that

xn+1 = xn −
f (xn)

f ′(xn)
.
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The Newton-Raphson method for locating zeros of a differentiable
function involves choosing an approximation x1 to the zero, and
then computing the sequence x1, x2, x3, x4, . . . of successive
approximations to the zero so that

xn+1 = xn −
f (xn)

f ′(xn)
.

for all positive integers n.
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Example
Let f (x) = x3 − 2x for all real numbers x . Then f ′(x) = 3x2 − 2.
We take x1 = 2 as our initial approximation to a root of f (x).
Successive approximations are then determined by the
Newton-Raphson method, so that

xn+1 = xn −
f (xn)

f ′(xn)
= xn −

x3 − 2x

3x2 − 2

for all natural numbers n. A computer-assisted calculation yields
the following values for the successive approximations obtained:—
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x1 = 2.0,

x2 = 1.6,

x3 = 1.4422535211267606 . . . ,

x4 = 1.415010636743953 . . . ,

x5 = 1.4142142353546963 . . . ,

x6 = 1.4142135623735754 . . . ,

x7 = 1.4142135623730951 . . . ,

x8 = 1.4142135623730951 . . . ,
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