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5. Differential Calculus

5. Differential Calculus

5.1. Continuity of Differentiable Functions

Differentiable functions are continuous, as the following lemma
shows.

Lemma 5.1

Let s be some real number, and let f be a differentiable real-valued
functions defined throughout some neighbourhood of s. Then the
function f is continuous at s, and thus lim

x→s
f (x) = f (s).



5. Differential Calculus (continued)

Proof
The function f satisfies the identity

f (x) =
f (x)− f (s)

x − s
× (x − s) + f (s)

for all real numbers x satisfying x 6= s that lie sufficiently close to
s. Now limits of sums and products of functions are the sums and
products of the respective limits where those limits are defined (see
Proposition 4.17). It follows that

lim
x→s

f (x) = lim
x→s

(
f (x)− f (s)

x − s

)
× lim

x→s
(x − s) + f (s)

= f ′(s)× 0 + f (s) = f (s).

This ensures that the function f is continuous at s.
(Proposition 4.21). The result follows.
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5.2. Derivatives of Sums and Differences of Functions

Proposition 5.2

Let s be some real number, and let f and g be real-valued
functions defined throughout some neighbourhood of s. Suppose
that the functions f and g are differentiable at s. Then f + g and
f − g are differentiable at s, and

(f + g)′(s) = f ′(s) + g ′(s), (f − g)′(s) = f ′(s)− g ′(s).
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Proof
Let x be a real number satisfying x 6= s that is close enough to s
to ensure that both f (x) and g(x) are defined at x . Now limits of
sums and products of functions are the sums and products of the
respective limits where those limits are defined (see
Proposition 4.17). It follows that

lim
x→s

(f + g)(x)− (f + g)(s)

x − s

= lim
x→s

f (x)− f (s)

x − s
+ lim

x→s

g(x)− g(s)

x − s

= f ′(s) + g ′(s).

Thus the function f + g is differentiable at s, and
(f + g)′(s) = f ′(s) + g ′(s). An analogous proof shows that the
function f − g is also differentiable at s and
(f − g)′(s) = f ′(s)− g ′(s).
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5.3. The Product Rule

Proposition 5.3 (Product Rule)

Let s be some real number, and let f and g be differentiable
real-valued functions defined throughout some neighbourhood of s.
Let f · g denote the product function, defined so that
(f · g)(x) = f (x)g(x) for all real numbers x for which both f (x)
and g(x) are defined. Then the product function f · g is also
differentiable at s, and

(f · g)′(s) = f ′(s)g(s) + f (s)g ′(s).
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Proof
Let x be a real number satisfying x 6= s that is close enough to s
to ensure that both f (x) and g(x) are defined at x . Then

f (x)g(x)− f (s)g(s)

x − s

=
f (x)− f (s)

x − s
g(x) + f (s)

g(x)− g(s)

x − s
.

Now lim
x→s

g(x) = g(s) because the differentiable function g is

necessarily continuous at s (see Lemma 5.1). Also limits of sums
and products of functions are the sums and products of the
respective limits where those limits are defined (see
Proposition 4.17). It follows that
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lim
x→s

f (x)g(x)− f (s)g(s)

x − s

= lim
x→s

f (x)− f (s)

x − s
lim
x→s

g(x) + f (s) lim
x→s

g(x)− g(s)

x − s

= f ′(s)g(s) + f (s)g ′(s).

Thus the function f · g is differentiable at s, and

(f · g)′(s) = f ′(s)g(s) + f (s)g ′(s),

as required.



5. Differential Calculus (continued)

5.4. The Quotient Rule

Proposition 5.4 (Quotient Rule)

Let s be some real number, and let f and g be differentiable
real-valued functions defined throughout some neighbourhood of s,
where g(s) 6= 0. Let f /g denote the product function, defined so
that (f /g)(x) = f (x)/g(x) for all real numbers x for which f (x)
and g(x) are defined and g(x) 6= 0. Then the quotient function
f /g is differentiable at s, and

(f /g)′(s) =
f ′(s)g(s)− f (s)g ′(s)

g(s)2
.
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Proof
Let x be a real number satisfying x 6= s that is close enough to s
to ensure that both f (x) and g(x) are defined at x and that
g(x) 6= 0. Then

f (x)

g(x)
− f (s)

g(s)
=

f (x)g(s)− f (s)g(x)

g(x)g(s)

=
(f (x)− f (s)) g(s)− f (s) (g(x)− g(s))

g(s)g(x)
.

Now lim
x→s

g(x) = g(s) because the differentiable function g is

necessarily continuous at s (see Lemma 5.1). Also limits of sums,
products and quotients of functions are the sums, products and
quotients of the respective limits where those limits and quotients
are defined (see Proposition 4.17). It follows that
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(f /g)′(s)

= lim
x→s

1

x − s

(
f (x)

g(x)
− f (s)

g(s)

)
= lim

x→s

(
1

g(x)g(s)

)
×
(

lim
x→s

f (x)− f (s)

x − s
g(s)− f (s) lim

x→s

g(x)− g(s)

x − s

)
=

f ′(s)g(s)− f (s)g ′(s)

g(s)2
,

as required.
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5.5. The Chain Rule

Proposition 5.5 (Chain Rule)

Let s be some real number, let f be a real-valued function defined
throughout some neighbourhood of s, and let g be a real-valued
function defined throughout some neighbourhood of f (s). Suppose
that the function f is differentiable at s, and the function g is
differentiable at f (s). Then the composition function g ◦ f is
differentiable at s, and

(g ◦ f )′(s) = g ′(f (s))f ′(s).
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Proof
Let r = f (s), and let

Q(y) =


g(y)− g(r)

y − r
if y 6= r ;

g ′(r) if y = r .

for values of y around r . By considering separately the cases when
f (x) 6= f (s) and f (x) = f (s), we see that

g(f (x))− g(f (s)) = Q(f (x))
(
f (x)− f (s)

)
.

Now the function Q is continuous at r , where r = f (s), because

lim
y→r

Q(r) = lim
y→r

g(y)− g(r)

y − r
= g ′(r) = Q(r)

(see Proposition 4.21). Also the function f is continuous at s,
because it is differentiable at s (see Lemma 5.1).



5. Differential Calculus (continued)

It follows that the composition function Q ◦ f is continuous at s
(Proposition 4.26), and thus

lim
x→s

Q(f (x)) = Q(f (s)) = g ′(f (s))

(Proposition 4.21).

The limit of a product of functions is the product of the respective
limits (see Proposition 4.17). Applying this result, we see that

(g ◦ f )′(s) = lim
x→s

g(f (x))− g(f (s))

x − s

= lim
x→s

Q(f (x)) lim
x→s

f (x)− f (s)

x − s

= g ′(f (s))f ′(s).

The result follows.
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5.6. Rules for Differentiation

We summarize the basic rules for differentiation, expressed in the
traditional language of real variables.

We regard a real variable as a real number x whose value can vary
over some set D that is a subset of the set of real numbers. We
say that a real variable y is a dependent variable, that can be
represented as a function of a real variable x , where x takes values
in a subset D of the set of real numbers, if the dependence of y of
x can be represented by an equation of the form y = f (x), where
f : D → R is a real-valued function on the set D. We say that the
dependent variable y is differentiable with respect to x if the
function f that determines the dependence of y on x is a

differentiable function. The derivative
dy

dx
of y with respect to x is

then the function whose value is equal to the derivative f ′(s) of
the function f at x = s.
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Proposition 5.6

Let x be a real variable, taking values in a subset D of the real
numbers, and let y , u and v dependent variables, expressible as
functions of the independent variable x , that are differentiable with
respect to x . Then the following results are valid:—

(i) if y = c , where c is a real constant, then
dy

dx
= 0;

(ii) if y = cu, where c is a real constant, then
dy

dx
= c

du

dx
;

(iii) if y = u + v then
dy

dx
=

du

dx
+

dv

dx
;

(iv) if y = xq, where q is a rational number, then
dy

dx
= qxq−1;
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(v) (Product Rule) if y = uv then
dy

dx
= u

dv

dx
+ v

du

dx
;

(vi) (Quotient Rule) if y =
u

v
then

dy

dx
=

v
du

dx
− u

dv

dx
v2

;

(vii) (Chain Rule) if y is expressible as a differentiable function of
u, where u in turn is expressible as a differentiable function of

x , then
dy

dx
=

dy

du

du

dx
.



5. Differential Calculus (continued)

Proof
Properties (i), (ii), (iii) follow directly from the definition of the
derivative as a limit and from standard results concerning sums
and products of limits (see Proposition 4.17). Property (v) is a
restatement of Proposition 5.3. Property (vi) is a restatement of
Proposition 5.4 Property (vii) is a restatement of
Proposition 5.5.
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5.7. Local Maxima and Minima of Differentiable Functions

Definition

Let D be a subset of the set R of real numbers, and let s be a real
number. We say that s belongs to the interior of D if there exist
real numbers u and v satisfying u < s < v such that the set D
contains all real numbers x satisfying u < x < v .

We recall that, given real numbers u and v satisfying u < v , the
interval (u, v) is defined so that

(u, v) = {x ∈ R | u < x < b}.

Every real number s belonging to the interval (u, v) is then in the
interior of (u, v). And a real number s is in the interior of a
subset D of the set R of real numbers if and only if there exist real
numbers u and v for which u < s < v and (u, v) ⊂ D.
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Remark
It may be helpful to contemplate the definition of the interior of a
set D of real numbers as follows: a real number s belonging to D
is in the interior of D if and only if if it is completely surrounded by
real numbers belonging to D. The formal definition merely makes
precise what is meant by saying that s is “completely surrounded”
by real numbers belonging to D.

For example, consider the (important) case in which D = [a, b],
where a and b are real numbers satisfying a < b and

[a, b] = {x ∈ R | a ≤ x ≤ b}.
The endpoints a and b of this interval are not completely
surrounded by points of the interval. But those real numbers s
that satisfy a < s < b are completely surrounded by points of the
interval [a, b], and they belong to the interior of [a, b], where that
interior is defined in accordance with the formal definition given
above.
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Let f : D → R be a real-valued function defined on a subset D of
the set of real numbers. The function f has a local minimum at s,
where s ∈ D, if and only if there exists some positive real
number δ such that f (x) ≥ f (s) for all real numbers x for which
both s − δ < x < s + δ and x ∈ D. Similarly the function f has a
local maximum at s, where s ∈ D, if and only if there exists some
positive real number δ such that f (x) ≤ f (s) for all real numbers x
for which both s − δ < x < s + δ and x ∈ D.

(These definitions are to be found in Subsection 3.8 of the course
notes.)
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Proposition 5.7

Let f : D → R be a real-valued function defined on a subset D of
the set of real numbers, and let s be a real number belonging to
the interior of D. Suppose that the function f has a local
maximum or a local minimum at s, and that the function f is
differentiable at s. Then f ′(s) = 0.
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Proof
Suppose that the function f attains a local minimum at s, where
the real number s belongs to the interior of the set D. Suppose
also that the function f is differentiable at s with derivative f ′(s).
Then

f ′(s) = lim
x→s

f (x)− f (s)

x − s
= lim

x→s+

f (x)− f (s)

x − s
.

for all real numbers x greater than s that lie sufficiently close to s.
But f (x) ≥ f (s) for all real numbers x that lie sufficiently close to
s. It follows that

f (x)− f (s)

x − s
≥ 0

for all real numbers x satisfying x > s that lie sufficiently close to
s. It follows that

lim
x→s+

f (x)− f (s)

x − s
≥ 0

(see Proposition 4.18). It follows that f ′(s) ≥ 0.
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Similarly
f (x)− f (s)

x − s
≤ 0

for all real numbers x satisfying x < s that lie sufficiently close to
s. It follows that

f ′(s) = lim
x→s

f (x)− f (s)

x − s
= lim

x→s−

f (x)− f (s)

x − s
≤ 0.

Thus f ′(s) ≥ 0 and f ′(s) ≤ 0, and therefore f ′(s) = 0.

Next suppose that the function f attains a local maximum at s,
where s belongs to the interior of D and the function f is
differentiable at s. Then the function −f attains a local minumum
at s, and therefore the derivative −f ′(s) of the function −f at s is
equal to zero. Thus f ′(s) = 0. This completes the proof.
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Example
Let

f (x) = 20x
9
4 − 288x

5
4 + 2700x

1
4 .

for all real numbers x belonging to the interval [1, 6], where

[1, 6] = {x ∈ R | 1 ≤ x ≤ 6}.

Differentiating, we find that

f ′(x) = 45x
5
4 − 360x

1
4 + 675x−

3
4

for all real numbers x belonging to the interval [1, 6]. Now

f ′(x) = 45x−
3
4 (x2 − 8x + 15)

for all x ∈ [1, 6]. The derivative f ′(x) must be zero at any local
maxima or minima in the interior of the interval [1, 6]. Now if
1 ≤ x ≤ 6, and if f ′(x) = 0, then either x = 3 or else x = 5,
because 3 and 5 are the roots of the quadratic polynomial
x2 − 8x + 15.
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Moreover the behaviour of this quadratic polynomial shows that
f ′(x) > 0 when 1 ≤ x < 3 and when 5 < x ≤ 6, and f ′(x) < 0
when 3 < x < 5. It follows that the function f is increasing on the
intervals [1, 3] and [5, 6], but is decreasing on the interval [3, 5]. It
follows that the function f attains a local maximum when x = 3,
and attains a local minimum when x = 5. Calculating the values of
f (x) when x takes the values 1, 3, 5 and 6, we find that

f (1) = 2342, f (3) = 2653.2052 . . . ,

f (5) = 2631.8139 . . . , f (6) = 2648.1231

to four decimal places. Applying the Intermediate Value Theorem
(Theorem 4.28), we see that f (x) takes on all real values between
f (1) and f (3) as x increases from 1 to 3. It follows from the above
calculuations that the range of the function is the interval
[f (1), f (3)], where f (1) = 2342 and f (3) = 2653.2052 to four
decimal places.
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