MA1S11—Calculus Portion School of Mathematics, Trinity College Michaelmas Term 2016 Lecture 19 (November 17, 2016)

David R. Wilkins

4.14. Limits as the Variable Tends to Infinity

We now give the formal definition of the limit

 $\lim_{x\to+\infty}f(x)$

of a real-valued function as the variable x "tends to $+\infty$ ".

Let $f: D \to \mathbb{R}$ be a real-valued function defined on a subset D of R. We say that f(x) is defined for all sufficiently large values of x if there exists a real number A with the property that $x \in D$ and thus f(x) is defined for all real numbers x that satisfy x > A.

Note that, in the definitions and proofs that follow, all "positive" real numbers are strictly greater than zero. (The terms "positive" and "strictly positive" are synonymous: the word "strictly" may occasionally precede the word "positive" on occasion to emphasize the requirement that the quantity in question be strictly greater than zero.)

Let *D* be a subset of the set \mathbb{R} of real numbers let $f: D \to \mathbb{R}$ be a real-valued function on *D* that is defined for all sufficiently large values of the real variable *x*. The real number *L* is said to be the *limit* of f(x), as *x* tends to $+\infty$ if and only if the following criterion is satisfied:—

given any positive real number ε , there exists some positive real number N such that

$$L - \varepsilon < f(x) < L + \varepsilon$$

for all real numbers x that satisfy x > N.

In a situation where $f: D \to \mathbb{R}$ is a real-valued function, where s and L are a real numbers, and where L is the limit of f(x) as x tends to $+\infty$, then we can denote this fact by writing

$$\lim_{x\to+\infty}f(x)=L.$$

The following proposition is useful in enabling us to deduce immediately standard properties of limits of functions as the variable tends to infinity.

Proposition 4.32

Let $f: D \to \mathbb{R}$ be a real-valued function defined on a subset D of the set of real numbers, and let L be a real number. Suppose that there exists a real number A large enough to ensure that $x \in D$ for all real numbers x satisfying x > A. Then

$$\lim_{x \to +\infty} f(x) = L \quad \text{if and only if} \quad \lim_{u \to 0^+} f\left(\frac{1}{u}\right) = L.$$

Proof

Suppose that $\lim_{x \to +\infty} f(x) = L$. Let some positive real number ε be given. Let N be a positive real number, and let $\delta = \frac{1}{N}$. Then

$$L - \varepsilon < f(x) < L + \varepsilon$$

for all real numbers x satisfying x > N if and only if

$$L - \varepsilon < f\left(\frac{1}{u}\right) < L + \varepsilon$$

for all real numbers u satisfying $0 < u < \delta$. The result follows.

The following proposition follows on combining the results of Proposition 4.32, Proposition 4.17 and Proposition 4.27.

Proposition 4.33

Let $f: D \to \mathbb{R}$ and $g: D \to \mathbb{R}$ be continuous functions defined over a subset D of the set of real numbers, and let s be a real number. Suppose that f(x) and g(x) are defined for all sufficiently large values of the real variable x. Suppose also that the limits

$$\lim_{x \to +\infty} f(x)$$
 and $\lim_{x \to +\infty} g(x)$

exist. Then

$$\lim_{x \to +\infty} (f(x) + g(x)) = \lim_{x \to +\infty} f(x) + \lim_{x \to +\infty} g(x),$$

$$\lim_{x \to +\infty} (f(x) - g(x)) = \lim_{x \to +\infty} f(x) - \lim_{x \to +\infty} g(x),$$

$$\lim_{x \to +\infty} (f(x)g(x)) = \lim_{x \to +\infty} f(x) \times \lim_{x \to +\infty} g(x).$$

Also

$$\lim_{x\to+\infty}h(f(x))=h\left(\lim_{x\to+\infty}f(x)\right)$$

for all real-valued functions $h: E \to \mathbb{R}$ that are defined and continuous throughout some neighbourhood of $\lim_{x \to +\infty} f(x)$. If moreover $g(x) \neq 0$ for all real numbers x satisfying x > s that lie sufficiently close to s, and if $\lim_{x \to +\infty} g(x) \neq 0$ then

$$\lim_{x \to +\infty} \frac{f(x)}{g(x)} = \frac{\lim_{x \to +\infty} f(x)}{\lim_{x \to +\infty} g(x)}.$$

Remark

We have indicated how to apply the result of Proposition 4.32 in order to deduce the results stated in Proposition 4.33 from standard theorems that apply when a real variable approaches a limit point of its domain. The results of Proposition 4.33 can also be proved directly.

4. Limits and Derivatives of Functions of a Real Variable (continued)

For example, suppose that

$$\lim_{x \to +\infty} f(x) = L_1 \quad \text{and} \quad \lim_{x \to +\infty} g(x) = L_2.$$

Let some positive real number ε be given. Then there exist positive real numbers N_1 and N_2 such that

$$L_1 - \frac{1}{2}\varepsilon < f(x) < L_1 + \frac{1}{2}\varepsilon$$

whenever $x > N_1$ and

$$L_2 - \frac{1}{2}\varepsilon < g(x) < L_2 + \frac{1}{2}\varepsilon$$

whenever $x > N_2$. Let N be the maximum of N_1 and N_2 . If x > N then

$$L_1 + L_2 - \varepsilon < f(x) + g(x) < L_1 + L_2 + \varepsilon$$

It follows that

$$\lim_{x\to+\infty}(f(x)+g(x))=L_1+L_2=\lim_{x\to+\infty}f(x)+\lim_{x\to+\infty}g(x).$$

Example

We show that

$$\lim_{x \to +\infty} \sqrt{\frac{16x^6 - 8x^3 + 5}{x^6 - 6x^5 + 15x^4}}$$

exists and determine its value. Now

$$\frac{16x^6 - 8x^3 + 5}{x^6 - 6x^5 + 15} = \frac{16 - 8x^{-3} + 5x^{-5}}{1 - 6x^{-1} + 15x^{-2}}$$

for all positive real numbers x. Moreover $\lim_{x \to +\infty} x^{-1} = 0,$ and therefore

$$\lim_{x \to +\infty} (16 - 8x^{-3} + 5x^{-5}) = 16 \quad \text{and} \quad \lim_{x \to +\infty} (1 - 6x^{-1} + 15x^{-2}) = 1.$$

It follows that

4. Limits and Derivatives of Functions of a Real Variable (continued)

$$\lim_{x \to +\infty} \left(\frac{16x^6 - 8x^3 + 5}{x^6 - 6x^5 + 15} \right) = \lim_{x \to +\infty} \left(\frac{16 - 8x^{-3} + 5x^{-5}}{1 - 6x^{-1} + 15x^{-2}} \right)$$
$$= \frac{\lim_{x \to +\infty} (16 - 8x^{-3} + 5x^{-5})}{\lim_{x \to +\infty} (1 - 6x^{-1} + 15x^{-2})}$$
$$= \frac{16}{1} = 16,$$

and therefore

$$\lim_{x \to +\infty} \sqrt{\frac{16x^6 - 8x^3 + 5}{x^6 - 6x^5 + 15x^4}} = \sqrt{16} = 4.$$

We can define also the concept of the limit $\lim_{x\to-\infty} f(x)$ of a real-valued function $f: D \to \mathbb{R}$ as x "tends to $-\infty$ ".

Definition

Let *D* be a subset of the set \mathbb{R} of real numbers let $f: D \to \mathbb{R}$ be a real-valued function on *D* that is defined for all sufficiently large values of -x. The real number *L* is said to be the *limit* of f(x), as x tends to $-\infty$ if and only if the following criterion is satisfied:—

given any positive real number ε , there exists some positive real number N such that

$$L - \varepsilon < f(x) < L + \varepsilon$$

for all real numbers x that satisfy x < -N.

In a situation where $f: D \to \mathbb{R}$ is a real-valued function, where *s* and *L* are a real numbers, and where *L* is the limit of f(x) as *x* tends to $-\infty$, then we can denote this fact by writing

 $\lim_{x\to -\infty} f(x) = L.$

The relevant definitions ensure that

$$\lim_{x \to -\infty} f(x) = L \quad \text{if and only if} \quad \lim_{x \to +\infty} f(-x) = L.$$

Properties of limits as $x \to -\infty$ therefore follow directly from the properties of corresponding limits as $x \to +\infty$.

4.15. Functions Increasing and Decreasing without Bound

Definition

let $f: D \to \mathbb{R}$ be a real-valued function defined on a subset D of the set of real numbers, and let s be a limit point of D. We say that f(x) increases without bound as x tends to s, and write $f(x) \to +\infty$ as $x \to s$, if and only if the following criterion is satisfied:—

given any positive real number M, there exists some positive real number δ such that

f(x) > M

for all real numbers x that satisfy $0 < |x - s| < \delta$.

Lemma 4.34

let $f: D \to \mathbb{R}$ be a real-valued function defined on a subset D of the set of real numbers, and let s be a limit point of D. Suppose that f(x) > 0 for all $x \in D$. Then $f(x) \to +\infty$ as $x \to s$ if and only if

$$\lim_{x\to s}\frac{1}{f(x)}=0.$$

Proof

Suppose that f(x) increases without bound as $x \to s$. Let some positive real number ε be given. Then there exists some positive real number δ such that

$$f(x) > \frac{1}{\varepsilon}$$

for all real numbers x in D that satisfy $0 < |x - s| < \delta$. But then

$$0 < \frac{1}{f(x)} < \varepsilon$$

for all real numbers x in D that satisfy $0 < |x-s| < \delta,$ and therefore

$$\lim_{x\to s}\frac{1}{f(x)}=0.$$

Conversely suppose that

$$\lim_{x\to s}\frac{1}{f(x)}=0,$$

where f(x) > 0 for all $x \in D$. Let some positive real number M be given. The formal definition of limits then ensures the existence of a positive real number δ such that

$$0 < \frac{1}{f(x)} < \frac{1}{M}$$

for all real numbers x in D that satisfy $0 < |x - s| < \delta$. But then f(x) > M for all real numbers x in D that satisfy $0 < |x - s| < \delta$, and thus f(x) increases without bound as $x \to s$.

let $f: D \to \mathbb{R}$ be a real-valued function defined on a subset D of the set of real numbers, and let s be a limit point of D. We say that f(x) decreases without bound as x tends to s, and write $f(x) \to -\infty$ as $x \to s$, if and only if the following criterion is satisfied:—

given any positive real number M, there exists some positive real number δ such that

$$f(x) < -M$$

for all real numbers x that satisfy $0 < |x - s| < \delta$.

The following lemma follows immediately from the formal definitions of what is meant by saying that $f(x) \to +\infty$ as $x \to s$ and $-f(x) \to -\infty$ as $x \to s$.

Lemma 4.35

let $f: D \to \mathbb{R}$ be a real-valued function defined on a subset D of the set of real numbers, and let s be a limit point of D. Then $f(x) \to +\infty$ as $x \to s$ if and only if $-f(x) \to -\infty$ as $x \to s$.

Let *D* be a subset of the set \mathbb{R} of real numbers, let $f: D \to \mathbb{R}$ be a real-valued function on *D*, and let *s* be a real number. Suppose that f(x) is defined for all real numbers *x* satisfying x > s that lie sufficient close to *s*. We say that f(x) increases without bound as *x* tends to *s* from above, and write $f(x) \to +\infty$ as $x \to s^+$ if and only if the following criterion is satisfied:—

given any positive real number M, there exists some positive real number δ such that

f(x) > M

for all real numbers x that satisfy $s < x < s + \delta$.

Let *D* be a subset of the set \mathbb{R} of real numbers, let $f: D \to \mathbb{R}$ be a real-valued function on *D*, and let *s* be a real number. Suppose that f(x) is defined for all real numbers *x* satisfying x < s that lie sufficient close to *s*. We say that f(x) increases without bound as *x* tends to *s* from below, and write $f(x) \to +\infty$ as $x \to s^-$ if and only if the following criterion is satisfied:—

given any positive real number M, there exists some positive real number δ such that

f(x) > M

for all real numbers x that satisfy $s - \delta < x < s$.

Let *D* be a subset of the set \mathbb{R} of real numbers, let $f: D \to \mathbb{R}$ be a real-valued function on *D*, and let *s* be a real number. Suppose that there exists a constant *A* such that f(x) is defined for all real numbers *x* satisfying x > A. We say that f(x) increases without bound as *x* increases without bound, and write $f(x) \to +\infty$ as $x \to +\infty$ if and only if the following criterion is satisfied:—

given any positive real number M, there exists a real number N such that f(x) > M for all real numbers x that satisfy x > N.

Let *D* be a subset of the set \mathbb{R} of real numbers, let $f: D \to \mathbb{R}$ be a real-valued function on *D*, and let *s* be a real number. Suppose that there exists a constant *A* such that f(x) is defined for all real numbers *x* satisfying x > A. We say that f(x) decreases without bound as *x* increases without bound, and write $f(x) \to -\infty$ as $x \to +\infty$ if and only if the following criterion is satisfied:—

given any positive real number M, there exists a positive real number N such that f(x) < M for all real numbers xthat satisfy x > N. The following result follows directly on comparing the relevant definitions.

Proposition 4.36

Let D be a subset of the set \mathbb{R} of real numbers, let $f : D \to \mathbb{R}$ be a real-valued function on D, and let s be a real number. Suppose that there exists a constant A such that f(x) is defined for all real numbers x satisfying x > A. Then the following statements are equivalent:—

(i)
$$f(x) \to +\infty \text{ as } x \to +\infty;$$

(ii) $-f(x) \to -\infty \text{ as } x \to +\infty;$
(iii) $f\left(\frac{1}{u}\right) \to +\infty \text{ as } u \to 0^+;$

(iv)
$$f(x) > 0$$
 for all sufficiently large real numbers x and

$$\lim_{x \to +\infty} \frac{1}{f(x)} = 0;$$
(v) $f\left(\frac{1}{u}\right) > 0$ for all sufficiently small positive real numbers u
and $\lim_{u \to 0^+} \frac{1}{f\left(\frac{1}{u}\right)} = 0.$

Example

Let

$$f(x) = \sqrt[3]{\frac{x^3 + x}{8x^2 - 32x + 64}}$$

for all positive real numbers x. We consider the behavour of f(x) as the variable x increases without bound. Now

$$f(x) = \sqrt[3]{x} \sqrt[3]{\frac{x^2 + 1}{8x^2 - 32x^2 + 64}}$$
$$= \sqrt[3]{x} \sqrt[3]{\frac{1 + x^{-2}}{8 - 32x^{-1} + 64x^{-2}}}.$$

Moreover

$$\lim_{x \to +\infty} (1 + x^{-2}) = \lim_{u \to 0^+} (1 + u) = 1$$

and

$$\lim_{x \to +\infty} (8 + 32x^{-1} + 64x^{-2}) = \lim_{u \to 0^+} (8 + 32u + 64u^2) = 8.$$

The limit of a quotient of functions is the quotient of the limits, where those limits exist and the denominator is everywhere non-zero and has non-zero limit (see Proposition 4.33). It follows that

$$\lim_{x \to +\infty} \left(\frac{1 + x^{-2}}{8 - 32x^{-1} + 64x^{-2}} \right) = \frac{1}{8}.$$

It then follows from the continuity of the cube root function that

$$\lim_{x \to +\infty} \sqrt[3]{\frac{1+x^{-2}}{1-4x^{-1}+8x^{-2}}} = \frac{1}{2}.$$

Now

$$\lim_{x \to +\infty} \frac{1}{\sqrt[3]{x}} = \lim_{u \to 0^+} \frac{1}{\sqrt[3]{u^{-1}}} = \lim_{u \to 0^+} \sqrt[3]{u} = 0.$$

It follows that

$$\lim_{x \to +\infty} \frac{1}{f(x)} = \lim_{x \to +\infty} \frac{1}{\sqrt[3]{x}} \times \lim_{x \to +\infty} \frac{1}{\sqrt[3]{\frac{1+x^{-2}}{8-32x^{-1}+64x^{-2}}}} = 0.$$

Moreover f(x) > 0 for all positive numbers x. On applying property (iv) listed in the statement of Proposition 4.36, we conclude that that $f(x) \to +\infty$ as $x \to +\infty$.