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4. Limits and Derivatives of Functions of a Real Variable (continued)

4.14. Limits as the Variable Tends to Infinity

We now give the formal definition of the limit

lim
x→+∞

f (x)

of a real-valued function as the variable x “tends to +∞”.

Let f : D → R be a real-valued function defined on a subset D of
R. We say that f (x) is defined for all sufficiently large values of x
if there exists a real number A with the property that x ∈ D and
thus f (x) is defined for all real numbers x that satisfy x > A.

Note that, in the definitions and proofs that follow, all “positive”
real numbers are strictly greater than zero. (The terms “positive”
and “strictly positive” are synonymous: the word “strictly” may
occasionally precede the word “positive” on occasion to emphasize
the requirement that the quantity in question be strictly greater
than zero.)
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Definition

Let D be a subset of the set R of real numbers let f : D → R be a
real-valued function on D that is defined for all sufficiently large
values of the real variable x . The real number L is said to be the
limit of f (x), as x tends to +∞ if and only if the following
criterion is satisfied:—

given any positive real number ε, there exists some
positive real number N such that

L− ε < f (x) < L + ε

for all real numbers x that satisfy x > N.
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In a situation where f : D → R is a real-valued function, where s
and L are a real numbers, and where L is the limit of f (x) as x
tends to +∞, then we can denote this fact by writing

lim
x→+∞

f (x) = L.
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The following proposition is useful in enabling us to deduce
immediately standard properties of limits of functions as the
variable tends to infinity.

Proposition 4.32

Let f : D → R be a real-valued function defined on a subset D of
the set of real numbers, and let L be a real number. Suppose that
there exists a real number A large enough to ensure that x ∈ D for
all real numbers x satisfying x > A. Then

lim
x→+∞

f (x) = L if and only if lim
u→0+

f

(
1

u

)
= L.
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Proof
Suppose that lim

x→+∞
f (x) = L. Let some positive real number ε be

given. Let N be a positive real number, and let δ =
1

N
. Then

L− ε < f (x) < L + ε

for all real numbers x satisfying x > N if and only if

L− ε < f

(
1

u

)
< L + ε

for all real numbers u satisfying 0 < u < δ. The result follows.

The following proposition follows on combining the results of
Proposition 4.32, Proposition 4.17 and Proposition 4.27.
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Proposition 4.33

Let f : D → R and g : D → R be continuous functions defined
over a subset D of the set of real numbers, and let s be a real
number. Suppose that f (x) and g(x) are defined for all sufficiently
large values of the real variable x . Suppose also that the limits

lim
x→+∞

f (x) and lim
x→+∞

g(x)

exist. Then

lim
x→+∞

(f (x) + g(x)) = lim
x→+∞

f (x) + lim
x→+∞

g(x),

lim
x→+∞

(f (x)− g(x)) = lim
x→+∞

f (x)− lim
x→+∞

g(x),

lim
x→+∞

(f (x)g(x)) = lim
x→+∞

f (x)× lim
x→+∞

g(x).
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Also

lim
x→+∞

h(f (x)) = h

(
lim

x→+∞
f (x)

)
for all real-valued functions h : E → R that are defined and
continuous throughout some neighbourhood of lim

x→+∞
f (x).

If moreover g(x) 6= 0 for all real numbers x satisfying x > s that
lie sufficiently close to s, and if lim

x→+∞
g(x) 6= 0 then

lim
x→+∞

f (x)

g(x)
=

lim
x→+∞

f (x)

lim
x→+∞

g(x)
.
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Remark
We have indicated how to apply the result of Proposition 4.32 in
order to deduce the results stated in Proposition 4.33 from
standard theorems that apply when a real variable approaches a
limit point of its domain. The results of Proposition 4.33 can also
be proved directly.
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For example, suppose that

lim
x→+∞

f (x) = L1 and lim
x→+∞

g(x) = L2.

Let some positive real number ε be given. Then there exist
positive real numbers N1 and N2 such that

L1 − 1
2ε < f (x) < L1 + 1

2ε

whenever x > N1 and

L2 − 1
2ε < g(x) < L2 + 1

2ε

whenever x > N2. Let N be the maximum of N1 and N2. If x > N
then

L1 + L2 − ε < f (x) + g(x) < L1 + L2 + ε

It follows that

lim
x→+∞

(f (x) + g(x)) = L1 + L2 = lim
x→+∞

f (x) + lim
x→+∞

g(x).
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Example
We show that

lim
x→+∞

√
16x6 − 8x3 + 5

x6 − 6x5 + 15x4

exists and determine its value. Now

16x6 − 8x3 + 5

x6 − 6x5 + 15
=

16− 8x−3 + 5x−5

1− 6x−1 + 15x−2

for all positive real numbers x . Moreover lim
x→+∞

x−1 = 0, and

therefore

lim
x→+∞

(16−8x−3+5x−5) = 16 and lim
x→+∞

(1−6x−1+15x−2) = 1.

It follows that
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lim
x→+∞

(
16x6 − 8x3 + 5

x6 − 6x5 + 15

)
= lim

x→+∞

(
16− 8x−3 + 5x−5

1− 6x−1 + 15x−2

)

=
lim

x→+∞
(16− 8x−3 + 5x−5)

lim
x→+∞

(1− 6x−1 + 15x−2)

=
16

1
= 16,

and therefore

lim
x→+∞

√
16x6 − 8x3 + 5

x6 − 6x5 + 15x4
=
√

16 = 4.
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We can define also the concept of the limit lim
x→−∞

f (x) of a

real-valued function f : D → R as x “tends to −∞”.

Definition

Let D be a subset of the set R of real numbers let f : D → R be a
real-valued function on D that is defined for all sufficiently large
values of −x . The real number L is said to be the limit of f (x), as
x tends to −∞ if and only if the following criterion is satisfied:—

given any positive real number ε, there exists some
positive real number N such that

L− ε < f (x) < L + ε

for all real numbers x that satisfy x < −N.
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In a situation where f : D → R is a real-valued function, where s
and L are a real numbers, and where L is the limit of f (x) as x
tends to −∞, then we can denote this fact by writing

lim
x→−∞

f (x) = L.

The relevant definitions ensure that

lim
x→−∞

f (x) = L if and only if lim
x→+∞

f (−x) = L.

Properties of limits as x → −∞ therefore follow directly from the
properties of corresponding limits as x → +∞.
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4.15. Functions Increasing and Decreasing without Bound

Definition

let f : D → R be a real-valued function defined on a subset D of
the set of real numbers, and let s be a limit point of D. We say
that f (x) increases without bound as x tends to s, and write
f (x)→ +∞ as x → s, if and only if the following criterion is
satisfied:—

given any positive real number M, there exists some
positive real number δ such that

f (x) > M

for all real numbers x that satisfy 0 < |x − s| < δ.
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Lemma 4.34

let f : D → R be a real-valued function defined on a subset D of
the set of real numbers, and let s be a limit point of D. Suppose
that f (x) > 0 for all x ∈ D. Then f (x)→ +∞ as x → s if and
only if

lim
x→s

1

f (x)
= 0.
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Proof
Suppose that f (x) increases without bound as x → s. Let some
positive real number ε be given. Then there exists some positive
real number δ such that

f (x) >
1

ε

for all real numbers x in D that satisfy 0 < |x − s| < δ. But then

0 <
1

f (x)
< ε

for all real numbers x in D that satisfy 0 < |x − s| < δ, and
therefore

lim
x→s

1

f (x)
= 0.
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Conversely suppose that

lim
x→s

1

f (x)
= 0,

where f (x) > 0 for all x ∈ D. Let some positive real number M be
given. The formal definition of limits then ensures the existence of
a positive real number δ such that

0 <
1

f (x)
<

1

M

for all real numbers x in D that satisfy 0 < |x − s| < δ. But then
f (x) > M for all real numbers x in D that satisfy 0 < |x − s| < δ,
and thus f (x) increases without bound as x → s.
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Definition

let f : D → R be a real-valued function defined on a subset D of
the set of real numbers, and let s be a limit point of D. We say
that f (x) decreases without bound as x tends to s, and write
f (x)→ −∞ as x → s, if and only if the following criterion is
satisfied:—

given any positive real number M, there exists some
positive real number δ such that

f (x) < −M

for all real numbers x that satisfy 0 < |x − s| < δ.
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The following lemma follows immediately from the formal
definitions of what is meant by saying that f (x)→ +∞ as x → s
and −f (x)→ −∞ as x → s.

Lemma 4.35

let f : D → R be a real-valued function defined on a subset D of
the set of real numbers, and let s be a limit point of D. Then
f (x)→ +∞ as x → s if and only if −f (x)→ −∞ as x → s.
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Definition

Let D be a subset of the set R of real numbers, let f : D → R be a
real-valued function on D, and let s be a real number. Suppose
that f (x) is defined for all real numbers x satisfying x > s that lie
sufficient close to s. We say that f (x) increases without bound as
x tends to s from above, and write f (x)→ +∞ as x → s+ if and
only if the following criterion is satisfied:—

given any positive real number M, there exists some
positive real number δ such that

f (x) > M

for all real numbers x that satisfy s < x < s + δ.
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Definition

Let D be a subset of the set R of real numbers, let f : D → R be a
real-valued function on D, and let s be a real number. Suppose
that f (x) is defined for all real numbers x satisfying x < s that lie
sufficient close to s. We say that f (x) increases without bound as
x tends to s from below, and write f (x)→ +∞ as x → s− if and
only if the following criterion is satisfied:—

given any positive real number M, there exists some
positive real number δ such that

f (x) > M

for all real numbers x that satisfy s − δ < x < s.
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Definition

Let D be a subset of the set R of real numbers, let f : D → R be a
real-valued function on D, and let s be a real number. Suppose
that there exists a constant A such that f (x) is defined for all real
numbers x satisfying x > A. We say that f (x) increases without
bound as x increases without bound, and write f (x)→ +∞ as
x → +∞ if and only if the following criterion is satisfied:—

given any positive real number M, there exists a real
number N such that f (x) > M for all real numbers x
that satisfy x > N.



4. Limits and Derivatives of Functions of a Real Variable (continued)

Definition

Let D be a subset of the set R of real numbers, let f : D → R be a
real-valued function on D, and let s be a real number. Suppose
that there exists a constant A such that f (x) is defined for all real
numbers x satisfying x > A. We say that f (x) decreases without
bound as x increases without bound, and write f (x)→ −∞ as
x → +∞ if and only if the following criterion is satisfied:—

given any positive real number M, there exists a positive
real number N such that f (x) < M for all real numbers x
that satisfy x > N.
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The following result follows directly on comparing the relevant
definitions.

Proposition 4.36

Let D be a subset of the set R of real numbers, let f : D → R be a
real-valued function on D, and let s be a real number. Suppose
that there exists a constant A such that f (x) is defined for all real
numbers x satisfying x > A. Then the following statements are
equivalent:—

(i) f (x)→ +∞ as x → +∞;

(ii) −f (x)→ −∞ as x → +∞;

(iii) f

(
1

u

)
→ +∞ as u → 0+;
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(iv) f (x) > 0 for all sufficiently large real numbers x and

lim
x→+∞

1

f (x)
= 0;

(v) f

(
1

u

)
> 0 for all sufficiently small positive real numbers u

and lim
u→0+

1

f

(
1

u

) = 0.
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Example
Let

f (x) =
3

√
x3 + x

8x2 − 32x + 64

for all positive real numbers x . We consider the behavour of f (x)
as the variable x increases without bound. Now

f (x) = 3
√
x

3

√
x2 + 1

8x2 − 32x2 + 64

= 3
√
x

3

√
1 + x−2

8− 32x−1 + 64x−2
.
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Moreover
lim

x→+∞
(1 + x−2) = lim

u→0+
(1 + u) = 1

and

lim
x→+∞

(8 + 32x−1 + 64x−2) = lim
u→0+

(8 + 32u + 64u2) = 8.

The limit of a quotient of functions is the quotient of the limits,
where those limits exist and the denominator is everywhere
non-zero and has non-zero limit (see Proposition 4.33). It follows
that

lim
x→+∞

(
1 + x−2

8− 32x−1 + 64x−2

)
=

1

8
.

It then follows from the continuity of the cube root function that

lim
x→+∞

3

√
1 + x−2

1− 4x−1 + 8x−2
=

1

2
.
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Now

lim
x→+∞

1
3
√
x

= lim
u→0+

1
3
√
u−1

= lim
u→0+

3
√
u = 0.

It follows that

lim
x→+∞

1

f (x)
= lim

x→+∞

1
3
√
x
× lim

x→+∞

1

3

√
1 + x−2

8− 32x−1 + 64x−2

= 0.

Moreover f (x) > 0 for all positive numbers x . On applying
property (iv) listed in the statement of Proposition 4.36, we
conclude that that f (x)→ +∞ as x → +∞.
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