MA1S11—Calculus Portion School of Mathematics, Trinity College Michaelmas Term 2016 Lecture 18 (November 15, 2016)

David R. Wilkins

4.11. The Intermediate Value Theorem

The following theorem is stated without proof.

Theorem 4.28 (The Intermediate Value Theorem)

Let $f: [a, b] \to \mathbb{R}$ be a continuous real-valued function defined on a closed interval [a, b], and let c be a real number that is between f(a) and f(b) (so that either $f(a) \le c \le f(b)$ or else $f(a) \ge c \ge f(b)$). Then there exists a real number s satisfying $a \le s \le b$ for which f(s) = c.

4.12. The Extreme Value Theorem

The following theorem is also stated without proof.

Theorem 4.29 (The Extreme Value Theorem)

Let $f: [a, b] \to \mathbb{R}$ be a continuous real-valued function defined on a closed interval [a, b]. Then there exist real numbers u and v in the interval [a, b] such that

 $f(u) \leq f(x) \leq f(v)$

for all real numbers x belonging to the interval [a, b].

4.13. One-Sided Limits

Let $f: D \to \mathbb{R}$ be a real-valued function defined on a subset D of the set of real numbers, and let s be a real number. We say that f(x) is defined for all real numbers x satisfying x > s that lie sufficiently close to s if there exists some real number u satisfying u > s such that $x \in D$ and thus f(x) is defined for all real numbers x satisfying s < x < u. Similarly we say that f(x) is defined for all real numbers xsatisfying x < s that lie sufficiently close to s if there exists some real number u satisfying u < s such that $x \in D$ and thus f(x) is defined for all real numbers x satisfying u < s such that $x \in D$ and thus f(x) is

Definition

Let *D* be a subset of the set \mathbb{R} of real numbers, let $f: D \to \mathbb{R}$ be a real-valued function on *D*, and let *s* and *L* be a real numbers. Suppose that f(x) is defined for all real numbers *x* satisfying x > s that lie sufficiently close to *s*. The real number *L* is said to be the *limit* of f(x), as *x* tends to *s* from above if and only if the following criterion is satisfied:—

given any strictly positive real number ε , there exists some strictly positive real number δ such that

$$L - \varepsilon < f(x) < L + \varepsilon$$

for all real numbers x that satisfy $s < x < s + \delta$.

In a situation where $f: D \to \mathbb{R}$ is a real-valued function, where s and L are a real numbers, and where L is the limit of f(x) as x tends to s from above, then we can denote this fact by writing

$$\lim_{x\to s^+}f(x)=L.$$

Let $f: D \to \mathbb{R}$ be a real-valued function defined over a subset D of the set of real numbers, and let s and L be real numbers. We suppose that f(x) is defined for all real numbers x satisfying x > s that lie sufficiently close to s. Then the real number L is the limit of f(x) as x tends to s from above if and only if L is the limit of f(x) as x tends to s in $D \cap [s, +\infty)$. Therefore all general results concerning limits can be applied to limits from above.

Thus let $f: D \to \mathbb{R}$ and $g: D \to \mathbb{R}$ be real-valued functions defined over a subset D of the set of real numbers, and let s be a real number. Suppose that f(x) and g(x) are defined for all real numbers x satisfying x < s that lie sufficiently close to s. Suppose also that the limits

$$\lim_{x \to s^+} f(x)$$
 and $\lim_{x \to s^+} g(x)$

exist. It then follows from Proposition 4.17 that

$$\begin{split} &\lim_{x\to s^+}(f(x)+g(x)) &= \lim_{x\to s^+}f(x)+\lim_{x\to s^+}g(x),\\ &\lim_{x\to s^+}(f(x)-g(x)) &= \lim_{x\to s^+}f(x)-\lim_{x\to s^+}g(x),\\ &\lim_{x\to s^+}(f(x)g(x)) &= \lim_{x\to s^+}f(x)\times\lim_{x\to s^+}g(x), \end{split}$$

Also it follows from Proposition 4.27 that

$$\lim_{x\to s^+} h(f(x)) = h\left(\lim_{x\to s^+} f(x)\right)$$

for all real-valued functions $h: E \to \mathbb{R}$ that are defined and continuous throughout some neighbourhood of $\lim_{x \to s^+} f(x)$. If moreover $g(x) \neq 0$ for all real numbers x satisfying x > s that lie sufficiently close to s, and if $\lim_{x \to s^+} g(x) \neq 0$ then

$$\lim_{x \to s^+} \frac{f(x)}{g(x)} = \frac{\lim_{x \to s^+} f(x)}{\lim_{x \to s^+} g(x)}$$

Definition

Let *D* be a subset of the set \mathbb{R} of real numbers, let $f: D \to \mathbb{R}$ be a real-valued function on *D*, and let *s* and *L* be a real numbers. Suppose that f(x) is defined for all real numbers *x* satisfying x < s that lie sufficiently close to *s*. The real number *L* is said to be the *limit* of f(x), as *x* tends to *s* from below if and only if the following criterion is satisfied:—

given any strictly positive real number ε , there exists some strictly positive real number δ such that

$$L - \varepsilon < f(x) < L + \varepsilon$$

for all real numbers x that satisfy $s - \delta < x < s$.

In a situation where $f: D \to \mathbb{R}$ is a real-valued function, where s and L are a real numbers, and where L is the limit of f(x) as x tends to s from below, then we can denote this fact by writing

$$\lim_{x\to s^-}f(x)=L.$$

Let $f: D \to \mathbb{R}$ be a real-valued function defined over a subset D of the set of real numbers, and let s and L be real numbers. We suppose that f(x) is defined for all real numbers x satisfying x < s that lie sufficiently close to s. Then the real number L is the limit of f(x) as x tends to s from below if and only if L is the limit of f(x) as x tends to s in $D \cap (-\infty, s]$. Therefore all general results concerning limits can be applied to limits from below.

Thus let $f: D \to \mathbb{R}$ and $g: D \to \mathbb{R}$ be real-valued functions defined over a subset D of the set of real numbers, and let s be a real number. Suppose that f(x) and g(x) are defined for all real numbers x satisfying x < s that lie sufficiently close to s. Suppose also that the limits

$$\lim_{x\to s^-} f(x) \quad \text{and} \quad \lim_{x\to s^-} g(x)$$

exist. It then follows from Proposition 4.17 that

$$\lim_{x \to s^{-}} (f(x) + g(x)) = \lim_{x \to s^{-}} f(x) + \lim_{x \to s^{-}} g(x), \\
\lim_{x \to s^{-}} (f(x) - g(x)) = \lim_{x \to s^{-}} f(x) - \lim_{x \to s^{-}} g(x), \\
\lim_{x \to s^{-}} (f(x)g(x)) = \lim_{x \to s^{-}} f(x) \times \lim_{x \to s^{-}} g(x),$$

Also it follows from Proposition 4.27 that

$$\lim_{x\to s^-} h(f(x)) = h\left(\lim_{x\to s^-} f(x)\right)$$

for all real-valued functions $h: E \to \mathbb{R}$ that are defined and continuous throughout some neighbourhood of $\lim_{x \to s^-} f(x)$. If moreover $g(x) \neq 0$ for all real numbers x satisfying x > s that lie sufficiently close to s, and if $\lim_{x \to s^-} g(x) \neq 0$ then

$$\lim_{x \to s^-} \frac{f(x)}{g(x)} = \frac{\lim_{x \to s^-} f(x)}{\lim_{x \to s^-} g(x)}$$

Proposition 4.30

Let D be a subset of the set \mathbb{R} of real numbers, let $f: D \to \mathbb{R}$ be a real-valued function on D, and let s and L be a real numbers. Suppose that f(x) is defined for all real numbers x satisfying $x \neq s$ that lie sufficiently close to s. Then

$$\lim_{x\to s}f(x)=L$$

if and only if

$$\lim_{x \to s^+} f(x) = L \quad and \quad \lim_{x \to s^-} f(x) = L.$$

Proof Suppose that

$$\lim_{x\to s}f(x)=L.$$

Let some positive real number ε be given. Then there exists some positive number δ such that $|f(x) - l| < \varepsilon$ for all real numbers x satisfying $0 < |x - s| < \delta$. But then $|f(x) - l| < \varepsilon$ for all real numbers x satisfying $s < x < s + \delta$ and $|f(x) - l| < \varepsilon$ for all real numbers x satisfying $s - \delta < x < s$. It follows that

$$\lim_{x\to s^+} f(x) = L \quad \text{and} \quad \lim_{x\to s^-} f(x) = L.$$

Conversely suppose that

$$\lim_{x\to s^+} f(x) = L \quad \text{and} \quad \lim_{x\to s^-} f(x) = L.$$

Let some positive real number ε be given. Then there exist positive real numbers δ_1 and δ_2 such that $|f(x) - I| < \varepsilon$ for all real numbers x satisfying $s < x < s + \delta_1$ and $|f(x) - I| < \varepsilon$ for all real numbers x satisfying $s - \delta_2 < x < s$. Let δ be the minimum of δ_1 and δ_2 . Then $\delta > 0$, and $|f(x) - I| < \varepsilon$ for all real numbers x satisfying $0 < |x - s| < \delta$. Thus

$$\lim_{x\to s}f(x)=L.$$

This completes the proof.

Corollary 4.31

Let $f: D \to \mathbb{R}$ be a real-valued function defined on a subset D of the set of real numbers. and let s be a real number. Suppose that f(x) is defined for all real numbers x satisfying $x \neq s$ that lie sufficiently close to s. Then the function f is continuous at s if and only if

$$\lim_{x\to s^+} f(x) = \lim_{x\to s^-} f(x) = f(s).$$

Proof

The result follows immediately on combining the results of Proposition 4.21 Proposition 4.30.

Example

We determine the unique value of the constant c for which the function $f_c \colon \mathbb{R} \to \mathbb{R}$ is continuous, where

$$f_c(x) = \begin{cases} x^2 + x & \text{if } x \le 2; \\ 5x + c & \text{if } x > 2. \end{cases}$$

We also investigate whether the resulting function is differentiable at x = 2.

Now

$$\lim_{x \to 2^{-}} f_c(x) = \lim_{x \to 2} (x^2 + x) = 2^2 + 2 = 6 = f_c(2)$$

and

$$\lim_{x\to 2^+} f_c(x) = \lim_{x\to 2} (5x+c) = 5 \times 2 + c = 10 + c.$$

It follows that

$$\lim_{x\to s^-}f_c(x)=\lim_{x\to s^+}f_c(x)=f_c(2)$$

if and only if c = -4.

We now investigate the differentiability at 2 of $f : \mathbb{R} \to \mathbb{R}$, where

$$f(x) = f_{-4}(x) = \begin{cases} x^2 + x & \text{if } x \le 2; \\ 5x - 4 & \text{if } x > 2. \end{cases}$$

Now

$$\lim_{x \to 2^{-}} \frac{f(x) - f(2)}{x - 2} = \lim_{x \to 2^{-}} \frac{x^2 + x - 6}{x - 2} = \lim_{x \to 2^{-}} \frac{(x + 3)(x - 2)}{x - 2}$$
$$= \lim_{x \to 2^{-}} (x + 3) = 5,$$

and

$$\lim_{x \to 2^+} \frac{f(x) - f(2)}{x - 2} = \lim_{x \to 2^+} \frac{5x - 10}{x - 2} = 5.$$

Applying Proposition 4.30, we see that

$$\lim_{x \to 2} \frac{f(x) - f(2)}{x - 2} = 5.$$

Thus the function f is differentiable at 2, and f'(2) = 5.

Note that, in this example

$$\lim_{x \to 2^{-}} \frac{f(x) - f(2)}{x - 2} \text{ and } \lim_{x \to 2^{+}} \frac{f(x) - f(2)}{x - 2}$$

are equal to the values at x = 2 of the derivatives of the functions $x \mapsto x^2 + x$ and $x \mapsto 5x - 4$ respectively.