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4. Limits and Derivatives of Functions of a Real Variable (continued)

4.10. Continuity

The concept of continuity for functions of a real variable is defined
formally as follows.

Definition

Let f : D → R be a real-valued function defined over a subset D of
the set of real numbers, and let s be a real number belonging to
D. The function f is continuous at s if, given any strictly positive
real number ε, there exists some strictly positive real number δ
such that |f (x)− f (s)| < ε for all real numbers x belonging to D
that satisfy |x − s| < δ.

A real-valued function f : D → R is said to be continuous on D if
it is continuous at every real number belonging to D.
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The definition of continuity can be expressed as follows: a
real-valued function f : D → R defined on a subset D of the set of
real numbers is continuous at s, where s ∈ D, if and only if, given
any strictly positive real number ε, there exists some strictly
positive real number δ such that

f (s)− ε < f (x) < f (s) + ε

for all real numbers x belonging to D that satisfy

s − δ < x < s + δ.
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Example
The function f : R→ R defined such that f (x) = x3 for all real
numbers x is continuous. Indeed let s be a real number. Then

f (x)− f (s) = x3 − s3 = (x − s)(x2 + xs + s2).

Let B = |s|+ 1. If x is a real number satisfying s − 1 < x < s + 1
then −B ≤ x ≤ B and therefore

−3B2 ≤ x2 + xs + s2 ≤ 3B2.

It follows that
|f (x)− f (s)| ≤ 3B2|x − s|

for all real numbers x satisfying s − 1 < x < s + 1.
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Now let some positive real number ε be given. Then some positive
real number δ can be chosen small enough to ensure that both

0 < δ < 1 and δ ≤ ε

3B2
. It then follows that if x is any real

number satisfying |x − s| < δ then −B ≤ s − 1 < x < s + 1 ≤ B,
and therefore

|f (x)− f (s)| ≤ 3B2|x − s| < 3B2δ ≤ ε.

We have therefore verified that the formal definition of continuity
is satisfied by the function f .
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The definition of continuity is obviously closely related to the
definition of limits. Indeed, examining definitions, we see that if
f : D → R is a real-valued function defined on a subset D of the
set of real numbers, and if s is a real number belonging to D that
is also a limit point of D, then the function f is continuous at s if
and only if lim

x→s
f (x) = f (s).

The following proposition states a necessary and sufficient
condition for a function f : D → R to be continuous on D.
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Proposition 4.21

Let f : D → R be a real-valued function defined on a subset D of
the set of real numbers. Then f is continuous on D if and only if
lim
x→s

f (x) = f (s) for all real numbers s belonging to D that are

limit points of D.

Proof
It follows from the definitions of limits and continuity that the
function f is continuous at a real number s belonging to D that is
also a limit point of D if and only if lim

x→s
f (x) = f (s).
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If s is a real number belonging to D that is not a limit point of D
then it follows from the definition of limit points that there exists
some strictly positive real number δ for which

{x ∈ D | |x − s| < δ} = {s}.

It then follows that |f (x)− f (s)| = 0 for all real numbers x
belonging to D that satisfy |x − s| < δ, because the only real
number x satisfying this inequality is s itself. It follows that the
function f is continuous at any point of D that is not a limit point
of D. The result follows.
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The following result follows immediately from Proposition 4.21
Proposition 4.17.

Proposition 4.22

Let f : D → R and g : D → R be continuous functions defined over
a subset D of the set of real numbers. Suppose that the functions
f and g are continuous on D. Then the function f + g, f − g and
f · g are continuous on D, where (f + g)(x) = f (x) + g(x),
(f − g)(x) = f (x)− g(x) and (f · g)(x) = f (x)g(x) for all real
numbers x belonging to D. Moreover if the function g is non-zero
throughout D then the function f /g is continuous on D, where
(f /g)(x) = f (x)/g(x) for all real numbers x belonging to D.
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The following result follows immediately from Proposition 4.2 and
Proposition 4.21. It can also be deduced through a straightforward
application of Proposition 4.22

Proposition 4.23

All polynomial functions are continuous.



4. Limits and Derivatives of Functions of a Real Variable (continued)

Example
We determine whether or not

lim
x→0

6x2 + 8x3 + 7x5

3x2 + 8x4 + x7

exists, and, if so, what is the value of the limit. Now the value of
the limit of this expression at x = 0 is determined by the values of
the expression for non-zero values of x . And

6x2 + 8x3 + 7x5

3x2 + 8x4 + x7
=

6 + 8x + 7x3

3 + 8x2 + x5

when x 6= 0. Now the numerator and denominator of the fraction
on the right hand side of the above equation are both polynomial
functions. It follows that limit of these polynomial functions as x
tends to zero is the value of the polynomials at x = 0 (see
Proposition 4.2) Therefore

lim
x→0

(6 + 8x + 7x3) = 6 and lim
x→0

(3 + 8x2 + x5) = 3.
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It then follows from Proposition 4.22 that the limit of the given
expression exists, and

lim
x→0

6x2 + 8x3 + 7x5

3x2 + 8x4 + x7
= lim

x→0

6 + 8x + 7x3

3 + 8x2 + x5

=
lim
x→0

(6 + 8x + 7x3)

lim
x→0

(3 + 8x2 + x5)

=
6

3
= 2.
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Example
We now determine the value, if it exists, of

lim
x→3

x2 − 5x + 6

x2 + 2x − 15
.

In this case the numerator and denominator of the fraction are
zero when x = 3. But both are quadratic polynomials which can
be factored. Indeed

x2 − 5x + 6

x2 + 2x − 15
=

(x − 3)(x − 2)

(x − 3)(x + 5)
=

x − 2

x + 5

when x 6= 3. Moreover the numerator and denominator of the
expression on the extreme right above are continuous functions of
the variable x that are both non-zero when x = 3. It follows that

lim
x→3

x2 − 5x + 6

x2 + 2x − 15
= lim

x→3

(x − 3)(x − 2)

(x − 3)(x + 5)
= lim

x→3

x − 2

x + 5
=

3− 2

3 + 5
=

1

8
.
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Proposition 4.24

Let m and n be positive integers, and let s be a positive real
number. Then

lim
x→s

x
m
n = s

m
n

and

lim
x→s

x
m
n − s

m
n

x − s
=

m

n
s

m
n
−1.
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Proof
Let s and x be positive real numbers, and let u = s

1
n and v = x

1
n .

Then

x
m
n − s

m
n

x
1
n − s

1
n

=
vm − um

v − u
=

um − vm

u − v
=

m−1∑
j=0

um−1−jv j

=
m−1∑
j=0

s
m−1−j

n x
j
n

(see Corollary 4.4).
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The real number s is positive. We can therefore choose a positive
real number A small enough to ensure that 0 < An < s. If x

satisfies x > An, and if u = s
1
n and v = x

1
n then u > A and v > A.

It follows that

m−1∑
j=0

um−1−jv j ≥
m−1∑
j=0

Am−1−jAj ≥
m−1∑
j=0

Am−1 = mAm−1.

Thus
x

m
n − s

m
n

x
1
n − s

1
n

≥ mAm−1

whenever s > An and x > An.
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Applying this result in the case when m = n, we see that

x − s

x
1
n − s

1
n

≥ nAn−1,

and therefore
x

1
n − s

1
n

x − s
≤ 1

nAn−1

for all real numbers x and s satisfying s > An and x > An. It
follows that

|x 1
n − s

1
n |

|x − s| =
x

1
n − s

1
n

x − s
≤ 1

nAn−1 .

and thus

|x 1
n − s

1
n | ≤ |x − s|

nAn−1 ,

for all real numbers x and s satisfying s > An and x > An.
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We claim that lim
x→s

x
1
n = s

1
n . Indeed let some positive real

number ε be given, and δ be a positive real number chosen small
enough to ensure that both s − δ ≥ An and 0 < δ ≤ nAn−1ε. If x
is a real number satisfying 0 < |x − s| < δ then x > s − δ ≥ An

and therefore

|x 1
n − s

1
n | ≤ |x − s|

nAn−1 <
δ

nAn−1 ≤
nAn−1ε

nAn−1 = ε.

Thus lim
x→s

x
1
n = s

1
n , as claimed.

Now the limit of a product of functions is the product of the limits
of those functions (see Proposition 4.17). It follows that
lim
x→s

x
m
n = s

m
n for all positive integers m and n.
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Now earlier in the proof we showed that if m and n are positive
integers, and if x and s are positive real numbers then

x
m
n − s

m
n

x
1
n − s

1
n

=
m−1∑
j=0

s
m−1−j

n x
j
n .

Now the limit of a product of functions is the product of the limits
of those functions, and the limit of a sum of functions is the sum of
the limits of those functions (see Proposition 4.17). Applying these
results, together with the Laws of Indices that apply to positive
numbers raised to fractional powers (Proposition 1.14), we see that
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lim
x→s

(
x

m
n − s

m
n

x
1
n − s

1
n

)
=

m−1∑
j=0

s
m−1−j

n lim
x→s

x
j
n

=
m−1∑
j=0

s
m−1−j

n

(
lim
x→s

x
1
n

)j
=

m−1∑
j=0

s
m−1−j

n s
j
n

= ms
m−1
n .
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Applying this result with m = n, we find that

lim
x→s

(
x

1
n − s

1
n

x − s

)
=

1

lim
x→s

(
x − s

x
1
n − s

1
n

) =
1

ns
n−1
n

.

It follows that

lim
x→s

(
x

m
n − s

m
n

x − s

)
= lim

x→s

(
x

m
n − s

m
n

x
1
n − s

1
n

)
× lim

x→s

(
x

1
n − s

1
n

x − s

)
= ms

m−1
n × 1

ns
n−1
n

=
m

n
s

m−n
n =

m

n
s

m
n
−1,

as required.
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Corollary 4.25

Let q be a rational number. Then the function defined on the set
of positive real numbers that maps each positive real number x to
xq is continuous and differentiable, and moreover

d

dx

(
xq
)

= qxq−1.

Proof
The result in the case q > 0 follows directly from Proposition 4.24.
If q = 0 then the function f is constant, and the result is
immediate.
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Now suppose that q < 0. Let p = −q. Then

xq − sq

x − s
=

x−p − s−p

x − s
=

sp − xp

xpsp(x − s)
= − xp − sp

xpsp(x − s)
.

It follows from Proposition 4.24 and Proposition 4.17 that

lim
x→s

f (x)− f (s)

x − s
= lim

x→s

xq − sq

x − s

= − lim
x→s

1

xpsp
× lim

x→s

xp − sp

x − s

= − 1

s2p
× psp−1 = −ps−p−1 = qsq−1.

The result follows.
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Remark
Let q be a rational number, and let f : (0,+∞)→ R be the
function defined so that f (x) = xq for all positive real numbers x .

Suppose that q > 0. Then the function f is increasing and its
range is the set (+,∞) of positive real numbers. The continuity of
f at a positive real number s can therefore be shown as follows.

Let ε be a positive real number, and let δ be the minimum of the

positive numbers (sq + ε)
1
q − s and s − (sq − ε)

1
q . If

s − δ < x < s + δ then sq − ε < xq < sq + ε. Thus the function f
is continuous.

A similar argument shows that the function f is continuous in the
case when q < 0. In this case the function is decreasing.
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Proposition 4.26

Let D and E be subsets of the set R of real numbers, let f : R and
g : E → R be continuous functions defined on D and E
respectively, where f (D) ⊂ E, and let g ◦ f : D → R denote the
composition of these functions, defined so that
(g ◦ f )(x) = g(f (x)) for all real numbers x belonging to D. Let s
be a real number belonging to D. Suppose that the function f is
continuous at s and that the function g is continuous at f (s).
Then the composition function g ◦ f is continuous at s.
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Proof
Let some strictly positive real number ε be given. Then there
exists some strictly positive real number η such that
|g(y)− g(f (s))| < ε for all real numbers y belonging to E that
satisfy |y − f (s)| < η, because the function g is continuous at
f (x). But then there exists some strictly positive real number δ
such that |f (x)− f (s)| < η for all real numbers x belonging to D
that satisfy |x − s| < δ. It follows that |g(f (x))− g(f (s))| < ε for
all real numbers x belonging to D that satisfy |x − s| < δ, and
thus the function g ◦ f is continuous at s, as required.
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Example
Let f : R→ R be defined so that f (x) =

√
1 + 3x2 for all real

numbers x . The function x 7→ 1 + 3x2 is a polynomial function. It
is therefore continuous on R. (see Proposition 4.23). Also the
function u 7→ √u is continuous on the set of positive real numbers
(see Corollary 4.25). The function f is the composition of these
two continuous functions. Therefore it is itself continuous. It then
follows, for example, that

lim
x→1

√
1 + 3x2 = lim

x→1
f (x) = f (1) = 2.
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Example
Let f : R→ R be defined such that

f (x) =
1 + 5
√

1 + x2

3
√
x2 − 6x + 25

for all real numbers x . We show that this function is continuous.
Now x2 − 6x + 25 > 0 for all real numbers x . Polynomial functions
are continuous (see Proposition 4.23). It follows that the function
x 7→ x2 − 6x + 25 is continuous on R. The function u 7→ 3

√
u is

continuous on the set of positive real numbers (see Corollary 4.25).
Thus the function

x 7→ 3
√

x2 − 6x + 25

is a composition of two continuous functions, and is thus itself a
continuous function on R (see Proposition 4.26).
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Similarly the function x 7→ 5
√

1 + x2 is a continuous function on R,
and therefore the function

x 7→ 1 +
5
√

1 + x2

is a continuous function on R. It follows that the function f is a
quotient of two continuous functions. It is therefore itself a
continuous function (see Proposition 4.22).
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Proposition 4.27

Let D and E be subsets of the set R of real numbers, let s be a
limit point of D, let u be a point of E , let f : D → E be function
satisfying f (D) ⊂ E, and let g : E → R be a real-valued function
on E. Suppose that

lim
x→s

f (x) = u

and that the function g is continuous at u. Then

lim
x→s

g(f (x)) = g(u).
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Proof
Let some strictly positive real number ε be given. Then there
exists some strictly positive real number η such that
|g(y)− g(u)| < ε for all real numbers y belonging to E that
satisfy |y − u| < η, because the function g is continuous at u. But
then there exists some positive real number δ such that
|f (x)− u| < η for all real numbers x belonging to D that satisfy
0 < |x − s| < δ. It follows that |g(f (x))− g(u)| < ε for all real
numbers x belonging to D that satisfy 0 < |x − s| < δ, and thus

lim
x→s

g(x) = g(u),

as required.
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Example
We now show that the limit

lim
x→0

3

√
54x4 − 108x5 + 60x6

2x4 − 12x6 + 24x8
,

exists, and determine the value of this limit. Now if x 6= 0 then

54x4 − 108x5 + 60x6

2x4 + 12x6 + 3x10
=

54− 108x + 60x2

2 + 12x2 + 3x6
.

Moreover

lim
x→0

(54− 108x + 60x2) = 54 and lim
x→0

(2 + 12x2 + 3x6) = 2.
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It follows that

lim
x→0

54x4 − 108x5 + 60x6

2x4 + 12x6 + 3x10
= lim

x→0

54− 108x + 60x2

2 + 12x2 + 3x6

=
lim
x→0

(54− 108x + 60x2)

lim
x→0

(2 + 12x2 + 3x6)

=
54

2
= 27.

The function defined on the set of positive real numbers that sends
each positive real number u to 3

√
u is continuous. On applying

Proposition 4.27, we see that

lim
x→0

3

√
54x4 − 108x5 + 60x6

2x4 − 12x6 + 24x8
=

3
√

27 = 3.
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