MA1S11—Calculus Portion School of Mathematics, Trinity College Michaelmas Term 2016 Lecture 16 (November 3, 2016)

David R. Wilkins

4.9. Limits of Functions of a Real Variable

The following definition is the standard definition of limits of real-valued functions defined over subsets of the set \mathbb{R} of real numbers.

Definition

Let *D* be a subset of the set \mathbb{R} of real numbers, let $f: D \to \mathbb{R}$ be a real-valued function on *D*, let *s* be a limit point belonging to *D*, and let *L* be a real number. The real number *L* is said to be the *limit* of f(x), as *x* tends to *s* in *D*, if and only if the following criterion is satisfied:—

given any strictly positive real number ε , there exists some strictly positive real number δ such that $|f(x) - L| < \varepsilon$ for all real numbers x in D that satisfy $0 < |x - s| < \delta$. Let *D* be a subset of the set \mathbb{R} of real numbers, let $f: D \to \mathbb{R}$ be a real-valued function on *D*, let *s* be a limit point belonging to *D*, and let *L* be a real number. If *L* is the limit of f(x) as *x* tends to *s* in *D* then we can denote this fact by writing $\lim_{x\to s} f(x) = L$.

Note that the inequality $|f(x) - L| < \varepsilon$ is satisfied at x, where $x \in D$, if and only if

$$L-\varepsilon < f(x) < L+\varepsilon.$$

Also the inequality $0 < |x - s| < \delta$ is satisfied if and only if both

$$s - \delta < x < s + \delta$$
 and $x \neq s$.

Let $f: D \to \mathbb{R}$ be a real-valued function defined on a subset \mathbb{D} of \mathbb{R} , let s be a limit point of D, and let L be a real number. Suppose that $\lim_{x\to s} f(x) = L$. Then $\lim_{x\to s} (-f(x)) = -L$.

Proof

Let some positive real number ε be given. Then there exists some positive real number δ such that

$$L - \varepsilon < f(x) < L + \varepsilon$$

whenever $0 < |x - s| < \delta$. Taking the negatives of the quantities satisfying the above inequalities we see that

$$-L-\varepsilon < -f(x) < -L+\varepsilon$$

whenever $0 < |x - s| < \delta$. We conclude that $\lim_{x \to s} (-f(x)) = -L$, as required.

Let $f: D \to \mathbb{R}$ be a real-valued function defined on a subset \mathbb{D} of \mathbb{R} , let s be a limit point of D, and let L and c be real numbers. Suppose that $\lim_{x\to s} f(x) = L$. Then $\lim_{x\to s} (f(x) + c) = L + c$.

Proof

Let some positive real number ε be given. Then there exists some positive real number δ such that

$$L - \varepsilon < f(x) < L + \varepsilon$$

whenever $0 < |x - s| < \delta$. Adding the constant *c* to all terms in these inequalities, we see that

$$L + c - \varepsilon < f(x) + c < L + c + \varepsilon$$

whenever $0 < |x - s| < \delta$. We conclude that $\lim_{x \to s} (f(x) + c) = L + c$, as required.

Let $f: D \to \mathbb{R}$ be a real-valued function defined on a subset \mathbb{D} of \mathbb{R} , let s be a limit point of D, and let L and M be real numbers where $M \neq 0$. Suppose that $\lim_{x \to s} f(x) = L$. Then $\lim_{x \to s} (Mf(x)) = ML$.

In view of Lemma 4.10 we need only consider the case when M > 0. Let some positive real number ε be given. Then some positive real number ε_0 can be chosen small enough to ensure that $M\varepsilon_0 < \varepsilon$. Then there exists some positive real number δ such that

$$L - \varepsilon_0 < f(x) < L + \varepsilon_0$$

whenever $0 < |x - s| < \delta$. But then

$$ML - \varepsilon < ML - M\varepsilon_0 < Mf(x) < ML + M\varepsilon_0 < ML + \varepsilon$$

whenever $0 < |x - s| < \delta$. We conclude that $\lim_{x \to s} (Mf(x)) = ML$, as required.

Proposition 4.13

Let D be a subset of \mathbb{R} , let $f: D \to \mathbb{R}$ and $g: D \to \mathbb{R}$ be real-valued functions on D, let s be a limit point of D, and let L and M be real numbers. Suppose that

$$\lim_{x\to s}f(x)=L$$

and

$$\lim_{x\to s}g(x)=M.$$

Then

$$\lim_{x\to s}(f(x)+g(x))=L+M.$$

Let some strictly positive real number ε be given. Then there exist strictly positive real numbers δ_1 and δ_2 such that

$$L - \frac{1}{2}\varepsilon < f(x) < L + \frac{1}{2}\varepsilon$$

for all real numbers x in D that satisfy 0 $<|x-s|<\delta_1$ and

$$M - \frac{1}{2}\varepsilon < g(x) < M + \frac{1}{2}\varepsilon,$$

for all real numbers x in D that satisfy $0 < |x - s| < \delta_2$.

Let δ be the minimum of δ_1 and δ_2 . Then $\delta > 0$, and if a real number x in D satisfies $0 < |x - s| < \delta$ then

$$L - \frac{1}{2}\varepsilon < f(x) < L + \frac{1}{2}\varepsilon$$

and

$$M - \frac{1}{2}\varepsilon < g(x) < M + \frac{1}{2}\varepsilon,$$

and therefore

$$L + M - \varepsilon < f(x) + g(x) < L + M + \varepsilon.$$

It follows that

$$\lim_{x\to s}(f(x)+g(x))=L+M,$$

as required.

Definition

Let *D* be a subset of the set \mathbb{R} of real numbers, and let *s* be a limit point of *D*. Let $f: D \to \mathbb{R}$ be a real-valued function on *D*. We say that f(x) remains bounded as *x* tends to *s* in *D* if there exist strictly positive constants *C* and δ such that $-C \leq f(x) \leq C$ for all real numbers *x* in *D* that satisfy $0 < |x - s| < \delta$.

Proposition 4.14

Let $f: D \to \mathbb{R}$ and $g: D \to \mathbb{R}$ be real-valued function on some subset D of \mathbb{R} , and let s be a limit point of D. Suppose that $\lim_{x \to s} f(x) = 0$. Suppose also that g(x) remains bounded as x tends to s in D. Then

 $\lim_{x\to s} \Big(f(x)g(x)\Big) = 0.$

Let some strictly positive real number ε be given. Then g(x) remains bounded as x tends to s in D, and therefore positive constants C and δ_0 can be determined so that $-C \leq g(x) \leq C$ for all $x \in D$ satisfying $0 < |x - s| < \delta_0$. A strictly positive real number ε_0 can then be chosen small enough to ensure that $C\varepsilon_0 < \varepsilon$. There then exists a strictly positive real number δ_1 that is small enough to ensure that $|f(x)| < \varepsilon_0$ whenever $0 < |x - s| < \delta_1$. Let δ be the minimum of δ_0 and δ_1 . Then $\delta > 0$, and if $0 < |x - s| < \delta$ then $|g(x)| \leq C$ and $|f(x)| < \varepsilon_0$, and therefore

 $|f(x)g(x)| < C\varepsilon_0 < \varepsilon.$

The result follows.

Proposition 4.15

Let D be a subset of \mathbb{R} , let $f: D \to \mathbb{R}$ be a function mapping D into \mathbb{R} , let $g: D \to \mathbb{R}$ be a real-valued function on D, let s be a limit point of D, let L and M be real numbers. Suppose that

$$\lim_{x\to s}f(x)=L$$

and

$$\lim_{x\to s}g(x)=M.$$

Then

 $\lim_{x\to s}f(x)g(x)=LM.$

The functions f and g satisfy the equation

$$f(x)g(x) = g(x)\Big(f(x) - L\Big) + (g(x) - M)L + LM,$$

where

$$\lim_{x\to s} \left(f(x) - L\right) = 0 \quad \text{and} \quad \lim_{x\to s} \left(g(x) - M\right) = 0.$$

Moreover there exists a strictly positive constant δ_0 such that

$$M-1 < g(x) < M+1$$

for all $x \in D$ satisfying $0 < |x - s| < \delta_0$. Thus the function g remains bounded as x tends to s in D. It now follows that

$$\lim_{x\to s} \left(g(x)(f(x)-L)\right) = 0$$

(see Proposition 4.14).

Similarly

$$\lim_{x\to s} \left(g(x) - M\right) L = 0.$$

It follows that

$$\lim_{x \to s} (f(x)g(x))$$

$$= \lim_{x \to s} (g(x)(f(x) - L)) + \lim_{x \to s} ((g(x) - M)L) + LM$$

$$= LM,$$

as required.

Let $f: D \to \mathbb{R}$ be a real-valued function defined over a subset D of the set \mathbb{R} of real numbers, let s be a limit point of D, and let L be a real number. Suppose that $\lim_{x\to s} f(x) = L$, where $L \neq 0$.

$$\lim_{x\to s}\frac{1}{f(x)}=\frac{1}{L}.$$

We first prove the result in the case when L > 0. In this case we can choose a constant c such that 0 < c < L. (For example, we could choose $c = \frac{1}{2}L$.) Now

$$\frac{1}{f(x)}-\frac{1}{L}=\frac{L-f(x)}{Lf(x)}.$$

It follows that

$$\left|\frac{1}{f(x)}-\frac{1}{L}\right|<\frac{1}{c^2}|f(x)-L|$$

whenever $f(x) \ge c$.

Now let some positive real number ε be given. Then a positive real number ε_0 can be found which is small enough to ensure that both $L - \varepsilon_0 \ge c$ and $0 < \varepsilon_0 \le c^2 \varepsilon$. (For example, we could take ε_0 to be the minimum of L - c and ε/c^2 .) Now $\lim_{x \to s} f(x) = L$. It therefore follows that there exists some positive real number δ that is small enough to ensure that

$$|f(x)-L|<\varepsilon_0$$

for all real numbers x in D that satisfy $0 < |x - s| < \delta$. It follows that if x is a real number in D that satisfies $0 < |x - s| < \delta$ then

$$c \leq L - \varepsilon_0 < f(x)$$

and

$$\left|\frac{1}{f(x)}-\frac{1}{L}\right|<\frac{1}{c^2}|f(x)-L|<\frac{\varepsilon_0}{c^2}\leq \varepsilon.$$

We conclude from this that if $f: D \to \mathbb{R}$ satisfies $\lim_{x \to s} f(x) = L$, where L > 0, then

$$\lim_{x\to s}\frac{1}{f(x)}=\frac{1}{L}.$$

Now suppose that satisfies $\lim_{x\to s} f(x) = L$, where L < 0, Then satisfies $\lim_{x\to s} (-f(x)) = -L$ where -L > 0 (see Lemma 4.10) and therefore

$$\lim_{x\to s}-\frac{1}{f(x)}=-\frac{1}{L}.$$

It follows that

$$\lim_{x\to s}\frac{1}{f(x)}=\frac{1}{L}$$

in this case also. This completes the proof.

Proposition 4.17

Let D be a subset of \mathbb{R} , let $f: D \to \mathbb{R}$ and $g: D \to \mathbb{R}$ be real-valued functions on D, and let s be a limit point of the set D. Suppose that $\lim_{x\to s} f(x)$ and $\lim_{x\to s} g(x)$ both exist. Then so do $\lim_{x\to s} (f(x) + g(x)), \lim_{x\to s} (f(x) - g(x))$ and $\lim_{x\to s} (f(x)g(x))$, and moreover

$$\begin{split} &\lim_{x\to s}(f(x)+g(x)) &= \lim_{x\to s}f(x)+\lim_{x\to s}g(x),\\ &\lim_{x\to s}(f(x)-g(x)) &= \lim_{x\to s}f(x)-\lim_{x\to s}g(x),\\ &\lim_{x\to s}(f(x)g(x)) &= \lim_{x\to s}f(x)\times\lim_{x\to s}g(x), \end{split}$$

4. Limits and Derivatives of Functions of a Real Variable (continued)

If moreover
$$g(x) \neq 0$$
 for all $x \in D$ and $\lim_{x \to s} g(x) \neq 0$ then
$$\lim_{x \to s} \frac{f(x)}{g(x)} = \frac{\lim_{x \to s} f(x)}{\lim_{x \to s} g(x)}.$$

Proof

It follows from Proposition 4.13 (applied in the case when the target space is one-dimensional) that

$$\lim_{x\to s}(f(x)+g(x))=\lim_{x\to s}f(x)+\lim_{x\to s}g(x).$$

Replacing the function g by -g, we deduce that

$$\lim_{x\to s}(f(x)-g(x))=\lim_{x\to s}f(x)-\lim_{x\to s}g(x).$$

It follows from Proposition 4.15 that

$$\lim_{x\to s}(f(x)g(x))=\lim_{x\to s}f(x)\times\lim_{x\to s}g(x).$$

Now suppose that $g(x) \neq 0$ for all $x \in D$ and that $\lim_{x \to s} g(x) \neq 0$. It follows from Lemma 4.16 that

$$\lim_{x\to s}\frac{1}{g(x)}=\frac{1}{\lim_{x\to s}g(x)}.$$

It then follows from Proposition 4.15 that

$$\lim_{x \to s} \frac{f(x)}{g(x)} = \frac{\lim_{x \to s} f(x)}{\lim_{x \to s} g(x)}$$

This completes the proof.

Proposition 4.18

Let $f: D \to \mathbb{R}$ be a real-valued function defined over a subset D of the set \mathbb{R} of real numbers, let s be a limit point of D, and let L be a real number. Suppose that $f(x) \ge 0$ for all real numbers x in D that satisfy $x \ne s$. Suppose also that $\lim_{x\to s} f(x) = L$. Then $L \ge 0$.

Suppose that it were the case that L < 0. Let $\varepsilon = -L$. Then $\varepsilon > 0$. Therefore there would exist some positive real number δ such that

$$L - \varepsilon < f(x) < L + \varepsilon$$

for all real numbers x belonging to D that satisfy $0 < |x - s| < \delta$. But $\varepsilon = -L$. It would therefore follow that f(x) < 0 for all real numbers x belonging to D that satisfy $0 < |x - s| < \delta$. Moreover there exists at least elements of D that satisfy these inequalities because s is a limit point of D. Thus the hypothesis that L < 0 results in a contradiction. It follows that $\lim_{x \to s} f(x) \ge 0$, as required.

Corollary 4.19

Let $f: D \to \mathbb{R}$ and $g: D \to \mathbb{R}$ be real-valued functions defined over a subset D of the set \mathbb{R} of real numbers, and let s be a limit point of D. Suppose that $f(x) \le g(x)$ for all $x \in D$, and that $\lim_{x \to s} f(x)$ and $\lim_{x \to s} g(x)$ both exist. Then

 $\lim_{x\to s} f(x) \leq \lim_{x\to s} g(x).$

Proof

The inequality $g(x) - f(x) \ge 0$ is satisfied for all $x \in D$. It follows from Proposition 4.17 and Proposition 4.18 that

$$\lim_{x\to s}g(x)-\lim_{x\to s}f(x)=\lim_{x\to s}(g(x)-f(x))\geq 0,$$

and thus $\lim_{x\to s} f(x) \leq \lim_{x\to s} g(x)$, as required.

Theorem 4.20 (Squeeze Theorem)

Let f, g and h be real-valued functions defined over a subset D of the set \mathbb{R} of real numbers, let s be a limit point of D, and let L be a real number. Suppose that $f(x) \le g(x) \le h(x)$ for all real numbers x satisfying $x \ne s$ that belong to D. Suppose also that

$$\lim_{x\to s} f(x) = \lim_{x\to s} h(x) = L,$$

so that the real number L is the limit both of f(x) and of h(x) as x tends to s in D. Then

$$\lim_{x\to s}g(x)=L.$$

Let some positive real number ε be given. Then there exist positive real numbers δ_1 and δ_2 such that

$$L - \varepsilon < f(x) < L + \varepsilon$$

whenever $0 < |x - s| < \delta_1$ and

$$L - \varepsilon < h(x) < L + \varepsilon$$

whenever $0 < |x - s| < \delta_2$. Let δ be the minimum of δ_1 and δ_2 . Then $\delta > 0$, and if a real number x belonging to D satisfies $0 < |x - s| < \delta$ then

$$L - \varepsilon < f(x) \le g(x) \le h(x) < L + \varepsilon$$

and therefore $\lim_{x \to s} g(x) = L$, as required.

Example Let $g: \mathbb{R} \setminus \{0\} \to \mathbb{R}$ be defined so that

$$g(x) = 3\sqrt{|x|}\sin\left(\frac{\pi}{2x}\right)$$

for all non-zero real numbers x. Then

$$f(x) \leq g(x) \leq h(x)$$

for all non-zero real numbers x, where

$$f(x) = -3\sqrt{|x|}$$
 and $h(x) = 3\sqrt{|x|}$

for all real numbers x.

Now, given any positive real number ε , a positive real number δ could be chosen such that $3\sqrt{\delta} \le \varepsilon$. For example, one could choose $\delta = \frac{1}{9}\varepsilon^2$. Then $-\varepsilon < f(x) \le h(x) < \varepsilon$ for all real numbers x satisfying $0 < |x| < \delta$. We have thus shown that

$$\lim_{x\to 0} f(x) = 0 \quad \text{and} \quad \lim_{x\to 0} h(x) = 0.$$

It follows from the Squeeze Theorem (Theorem 4.20) that $\lim_{x\to 0} g(x) = 0.$