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4. Limits and Derivatives of Functions of a Real Variable (continued)

4.9. Limits of Functions of a Real Variable

The following definition is the standard definition of limits of
real-valued functions defined over subsets of the set R of real
numbers.

Definition

Let D be a subset of the set R of real numbers, let f : D → R be a
real-valued function on D, let s be a limit point belonging to D,
and let L be a real number. The real number L is said to be the
limit of f (x), as x tends to s in D, if and only if the following
criterion is satisfied:—

given any strictly positive real number ε, there exists
some strictly positive real number δ such that
|f (x)− L| < ε for all real numbers x in D that satisfy
0 < |x − s| < δ.
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Let D be a subset of the set R of real numbers, let f : D → R be a
real-valued function on D, let s be a limit point belonging to D,
and let L be a real number. If L is the limit of f (x) as x tends to s
in D then we can denote this fact by writing lim

x→s
f (x) = L.

Note that the inequality |f (x)− L| < ε is satisfied at x , where
x ∈ D, if and only if

L− ε < f (x) < L + ε.

Also the inequality 0 < |x − s| < δ is satisfied if and only if both

s − δ < x < s + δ and x 6= s.
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Lemma 4.10

Let f : D → R be a real-valued function defined on a subset D of
R, let s be a limit point of D, and let L be a real number. Suppose
that lim

x→s
f (x) = L. Then lim

x→s
(−f (x)) = −L.

Proof
Let some positive real number ε be given. Then there exists some
positive real number δ such that

L− ε < f (x) < L + ε

whenever 0 < |x − s| < δ. Taking the negatives of the quantities
satisfying the above inequalities we see that

−L− ε < −f (x) < −L + ε

whenever 0 < |x − s| < δ. We conclude that lim
x→s

(−f (x)) = −L, as

required.
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Lemma 4.11

Let f : D → R be a real-valued function defined on a subset D of
R, let s be a limit point of D, and let L and c be real numbers.
Suppose that lim

x→s
f (x) = L. Then lim

x→s
(f (x) + c) = L + c .

Proof
Let some positive real number ε be given. Then there exists some
positive real number δ such that

L− ε < f (x) < L + ε

whenever 0 < |x − s| < δ. Adding the constant c to all terms in
these inequalities, we see that

L + c − ε < f (x) + c < L + c + ε

whenever 0 < |x − s| < δ. We conclude that
lim
x→s

(f (x) + c) = L + c , as required.
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Lemma 4.12

Let f : D → R be a real-valued function defined on a subset D of
R, let s be a limit point of D, and let L and M be real numbers
where M 6= 0. Suppose that lim

x→s
f (x) = L. Then

lim
x→s

(Mf (x)) = ML.
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Proof
In view of Lemma 4.10 we need only consider the case when
M > 0. Let some positive real number ε be given. Then some
positive real number ε0 can be chosen small enough to ensure that
Mε0 < ε. Then there exists some positive real number δ such that

L− ε0 < f (x) < L + ε0

whenever 0 < |x − s| < δ. But then

ML− ε < ML−Mε0 < Mf (x) < ML + Mε0 < ML + ε

whenever 0 < |x − s| < δ. We conclude that lim
x→s

(Mf (x)) = ML,

as required.
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Proposition 4.13

Let D be a subset of R, let f : D → R and g : D → R be
real-valued functions on D, let s be a limit point of D, and let L
and M be real numbers. Suppose that

lim
x→s

f (x) = L

and
lim
x→s

g(x) = M.

Then
lim
x→s

(f (x) + g(x)) = L + M.
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Proof
Let some strictly positive real number ε be given. Then there exist
strictly positive real numbers δ1 and δ2 such that

L− 1
2ε < f (x) < L + 1

2ε

for all real numbers x in D that satisfy 0 < |x − s| < δ1 and

M − 1
2ε < g(x) < M + 1

2ε,

for all real numbers x in D that satisfy 0 < |x − s| < δ2.
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Let δ be the minimum of δ1 and δ2. Then δ > 0, and if a real
number x in D satisfies 0 < |x − s| < δ then

L− 1
2ε < f (x) < L + 1

2ε

and
M − 1

2ε < g(x) < M + 1
2ε,

and therefore

L + M − ε < f (x) + g(x) < L + M + ε.

It follows that
lim
x→s

(f (x) + g(x)) = L + M,

as required.
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Definition

Let D be a subset of the set R of real numbers, and let s be a
limit point of D. Let f : D → R be a real-valued function on D.
We say that f (x) remains bounded as x tends to s in D if there
exist strictly positive constants C and δ such that −C ≤ f (x) ≤ C
for all real numbers x in D that satisfy 0 < |x − s| < δ.

Proposition 4.14

Let f : D → R and g : D → R be real-valued function on some
subset D of R, and let s be a limit point of D. Suppose that
lim
x→s

f (x) = 0. Suppose also that g(x) remains bounded as x tends

to s in D. Then
lim
x→s

(
f (x)g(x)

)
= 0.
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Proof
Let some strictly positive real number ε be given. Then g(x)
remains bounded as x tends to s in D, and therefore positive
constants C and δ0 can be determined so that −C ≤ g(x) ≤ C for
all x ∈ D satisfying 0 < |x − s| < δ0. A strictly positive real
number ε0 can then be chosen small enough to ensure that
Cε0 < ε. There then exists a strictly positive real number δ1 that is
small enough to ensure that |f (x)| < ε0 whenever 0 < |x − s| < δ1.
Let δ be the minimum of δ0 and δ1. Then δ > 0, and if
0 < |x − s| < δ then |g(x)| ≤ C and |f (x)| < ε0, and therefore

|f (x)g(x)| < Cε0 < ε.

The result follows.
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Proposition 4.15

Let D be a subset of R, let f : D → R be a function mapping D
into R, let g : D → R be a real-valued function on D, let s be a
limit point of D, let L and M be real numbers. Suppose that

lim
x→s

f (x) = L

and
lim
x→s

g(x) = M.

Then
lim
x→s

f (x)g(x) = LM.
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Proof
The functions f and g satisfy the equation

f (x)g(x) = g(x)
(
f (x)− L

)
+ (g(x)−M)L + LM,

where

lim
x→s

(
f (x)− L

)
= 0 and lim

x→s

(
g(x)−M

)
= 0.

Moreover there exists a strictly positive constant δ0 such that

M − 1 < g(x) < M + 1

for all x ∈ D satisfying 0 < |x − s| < δ0. Thus the function g
remains bounded as x tends to s in D. It now follows that

lim
x→s

(g(x)(f (x)− L)) = 0

(see Proposition 4.14).
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Similarly
lim
x→s

(g(x)−M)) L = 0.

It follows that

lim
x→s

(f (x)g(x))

= lim
x→s

(g(x)(f (x)− L)) + lim
x→s

((
g(x)−M

)
L
)

+ LM

= LM,

as required.
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Lemma 4.16

Let f : D → R be a real-valued function defined over a subset D of
the set R of real numbers, let s be a limit point of D, and let L be
a real number. Suppose that lim

x→s
f (x) = L, where L 6= 0.

lim
x→s

1

f (x)
=

1

L
.
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Proof
We first prove the result in the case when L > 0. In this case we
can choose a constant c such that 0 < c < L. (For example, we
could choose c = 1

2L.) Now

1

f (x)
− 1

L
=

L− f (x)

Lf (x)
.

It follows that ∣∣∣∣ 1

f (x)
− 1

L

∣∣∣∣ < 1

c2
|f (x)− L|

whenever f (x) ≥ c .
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Now let some positive real number ε be given. Then a positive real
number ε0 can be found which is small enough to ensure that both
L− ε0 ≥ c and 0 < ε0 ≤ c2ε. (For example, we could take ε0 to
be the minimum of L− c and ε/c2.) Now lim

x→s
f (x) = L. It

therefore follows that there exists some positive real number δ that
is small enough to ensure that

|f (x)− L| < ε0

for all real numbers x in D that satisfy 0 < |x − s| < δ. It follows
that if x is a real number in D that satisfies 0 < |x − s| < δ then

c ≤ L− ε0 < f (x)

and ∣∣∣∣ 1

f (x)
− 1

L

∣∣∣∣ < 1

c2
|f (x)− L| < ε0

c2
≤ ε.
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We conclude from this that if f : D → R satisfies lim
x→s

f (x) = L,

where L > 0, then

lim
x→s

1

f (x)
=

1

L
.

Now suppose that satisfies lim
x→s

f (x) = L, where L < 0, Then

satisfies lim
x→s

(−f (x)) = −L where −L > 0 (see Lemma 4.10) and

therefore

lim
x→s
− 1

f (x)
= −1

L
.

It follows that

lim
x→s

1

f (x)
=

1

L

in this case also. This completes the proof.
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Proposition 4.17

Let D be a subset of R, let f : D → R and g : D → R be
real-valued functions on D, and let s be a limit point of the set D.
Suppose that lim

x→s
f (x) and lim

x→s
g(x) both exist. Then so do

lim
x→s

(f (x) + g(x)), lim
x→s

(f (x)− g(x)) and lim
x→s

(f (x)g(x)), and
moreover

lim
x→s

(f (x) + g(x)) = lim
x→s

f (x) + lim
x→s

g(x),

lim
x→s

(f (x)− g(x)) = lim
x→s

f (x)− lim
x→s

g(x),

lim
x→s

(f (x)g(x)) = lim
x→s

f (x)× lim
x→s

g(x),
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If moreover g(x) 6= 0 for all x ∈ D and lim
x→s

g(x) 6= 0 then

lim
x→s

f (x)

g(x)
=

lim
x→s

f (x)

lim
x→s

g(x)
.

Proof
It follows from Proposition 4.13 (applied in the case when the
target space is one-dimensional) that

lim
x→s

(f (x) + g(x)) = lim
x→s

f (x) + lim
x→s

g(x).

Replacing the function g by −g , we deduce that

lim
x→s

(f (x)− g(x)) = lim
x→s

f (x)− lim
x→s

g(x).
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It follows from Proposition 4.15 that

lim
x→s

(f (x)g(x)) = lim
x→s

f (x)× lim
x→s

g(x).
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Now suppose that g(x) 6= 0 for all x ∈ D and that lim
x→s

g(x) 6= 0.

It follows from Lemma 4.16 that

lim
x→s

1

g(x)
=

1

lim
x→s

g(x)
.

It then follows from Proposition 4.15 that

lim
x→s

f (x)

g(x)
=

lim
x→s

f (x)

lim
x→s

g(x)
.

This completes the proof.
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Proposition 4.18

Let f : D → R be a real-valued function defined over a subset D of
the set R of real numbers, let s be a limit point of D, and let L be
a real number. Suppose that f (x) ≥ 0 for all real numbers x in D
that satisfy x 6= s. Suppose also that lim

x→s
f (x) = L. Then L ≥ 0.
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Proof
Suppose that it were the case that L < 0. Let ε = −L. Then
ε > 0. Therefore there would exist some positive real number δ
such that

L− ε < f (x) < L + ε

for all real numbers x belonging to D that satisfy 0 < |x − s| < δ.
But ε = −L. It would therefore follow that f (x) < 0 for all real
numbers x belonging to D that satisfy 0 < |x − s| < δ. Moreover
there exists at least elements of D that satisfy these inequalities
because s is a limit point of D. Thus the hypothesis that L < 0
results in a contradiction. It follows that lim

x→s
f (x) ≥ 0, as

required.
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Corollary 4.19

Let f : D → R and g : D → R be real-valued functions defined
over a subset D of the set R of real numbers, and let s be a limit
point of D. Suppose that f (x) ≤ g(x) for all x ∈ D, and that
lim
x→s

f (x) and lim
x→s

g(x) both exist. Then

lim
x→s

f (x) ≤ lim
x→s

g(x).

Proof
The inequality g(x)− f (x) ≥ 0 is satisfied for all x ∈ D. It follows
from Proposition 4.17 and Proposition 4.18 that

lim
x→s

g(x)− lim
x→s

f (x) = lim
x→s

(g(x)− f (x)) ≥ 0,

and thus lim
x→s

f (x) ≤ lim
x→s

g(x), as required.
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Theorem 4.20 (Squeeze Theorem)

Let f , g and h be real-valued functions defined over a subset D of
the set R of real numbers, let s be a limit point of D, and let L be
a real number. Suppose that f (x) ≤ g(x) ≤ h(x) for all real
numbers x satisfying x 6= s that belong to D. Suppose also that

lim
x→s

f (x) = lim
x→s

h(x) = L,

so that the real number L is the limit both of f (x) and of h(x) as
x tends to s in D. Then

lim
x→s

g(x) = L.
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Proof
Let some positive real number ε be given. Then there exist
positive real numbers δ1 and δ2 such that

L− ε < f (x) < L + ε

whenever 0 < |x − s| < δ1 and

L− ε < h(x) < L + ε

whenever 0 < |x − s| < δ2. Let δ be the minimum of δ1 and δ2.
Then δ > 0, and if a real number x belonging to D satisfies
0 < |x − s| < δ then

L− ε < f (x) ≤ g(x) ≤ h(x) < L + ε,

and therefore lim
x→s

g(x) = L, as required.
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Example
Let g : R \ {0} → R be defined so that

g(x) = 3
√
|x | sin

( π
2x

)
for all non-zero real numbers x . Then

f (x) ≤ g(x) ≤ h(x)

for all non-zero real numbers x , where

f (x) = −3
√
|x | and h(x) = 3

√
|x |

for all real numbers x .
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Now, given any positive real number ε, a positive real number δ
could be chosen such that 3

√
δ ≤ ε. For example, one could

choose δ = 1
9ε

2. Then −ε < f (x) ≤ h(x) < ε for all real
numbers x satisfying 0 < |x | < δ. We have thus shown that

lim
x→0

f (x) = 0 and lim
x→0

h(x) = 0.

It follows from the Squeeze Theorem (Theorem 4.20) that
lim
x→0

g(x) = 0.
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