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4. Limits and Derivatives of Functions of a Real Variable (continued)

4.9. Limits of Functions of a Real Variable

The following definition is the standard definition of limits of
real-valued functions defined over subsets of the set R of real
numbers.

Definition

Let D be a subset of the set R of real numbers, let f: D — R be a
real-valued function on D, let s be a limit point belonging to D,
and let L be a real number. The real number L is said to be the

limit of f(x), as x tends to s in D, if and only if the following
criterion is satisfied:—

given any strictly positive real number ¢, there exists
some strictly positive real number § such that

|f(x) — L| < e for all real numbers x in D that satisfy
0<|x—s|<9.




4. Limits and Derivatives of Functions of a Real Variable (continued)

Let D be a subset of the set R of real numbers, let f: D — R be a
real-valued function on D, let s be a limit point belonging to D,
and let L be a real number. If L is the limit of f(x) as x tends to s
in D then we can denote this fact by writing ,lins f(x) = L.

Note that the inequality |f(x) — L| < ¢ is satisfied at x, where
x € D, if and only if

L—e<f(x)<L+e.
Also the inequality 0 < |x — s| < ¢ is satisfied if and only if both

s—0<x<s+0d and x#s.



4. Limits and Derivatives of Functions of a Real Variable (continued)

Lemma 4.10

Let f: D — R be a real-valued function defined on a subset D of
R, let s be a limit point of D, and let L be a real number. Suppose
that Iiip f(x)=L. Then Ii_n?(—f(x)) =—L.

X—S X—S

Proof
Let some positive real number £ be given. Then there exists some
positive real number ¢ such that

L—e<f(x)<L+e
whenever 0 < |x — s| < §. Taking the negatives of the quantities
satisfying the above inequalities we see that

—L—e<—f(x)<—-L+e¢

whenever 0 < |x — s| < 0. We conclude that lim(—f(x)) = —L, as

X—S

required. |}



4. Limits and Derivatives of Functions of a Real Variable (continued)

Let f: D — R be a real-valued function defined on a subset D of
R, let s be a limit point of D, and let L and c be real numbers.
Suppose that Ii_r)n f(x)=L. Then Ii_r)n (f(x)+c)=L+c.

X—S X—S

Proof
Let some positive real number € be given. Then there exists some
positive real number § such that

L—e<f(x)<Ll+e¢

whenever 0 < |x — s| < §. Adding the constant ¢ to all terms in
these inequalities, we see that

L+c—e<f(x)+c<L+c+e

whenever 0 < [x — s| < §. We conclude that
lim(f(x) +c)=L+c, as required. i
X—S



4. Limits and Derivatives of Functions of a Real Variable (continued)

Let f: D — R be a real-valued function defined on a subset D of
R, let s be a limit point of D, and let L and M be real numbers
where M # 0. Suppose that Iiﬂ1 f(x) = L. Then

X—S

lim (MF(x)) = ML.
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Proof

In view of Lemma 4.10 we need only consider the case when

M > 0. Let some positive real number € be given. Then some
positive real number g9 can be chosen small enough to ensure that
Meg < €. Then there exists some positive real number § such that

L—eg < f(x)<L+eg
whenever 0 < |x — s| < §. But then
ML — e < ML — Meg < Mf(x) < ML+ Meg < ML+ ¢

whenever 0 < |x — s| < §. We conclude that lim (Mf(x)) = ML,

X—S
as required. ||



4. Limits and Derivatives of Functions of a Real Variable (continued)

Proposition 4.13

Let D be a subset of R, let f: D — R and g: D — R be
real-valued functions on D, let s be a limit point of D, and let L
and M be real numbers. Suppose that

LYORY
and
LECORL
Then

lim(f(x) +g(x)) =L+ M.

X—S




4. Limits and Derivatives of Functions of a Real Variable (continued)

Proof
Let some strictly positive real number € be given. Then there exist
strictly positive real numbers §; and > such that

L—le<f(x)<L+ie
for all real numbers x in D that satisfy 0 < |x — s| < d; and
I\/I—%5<g(x)<l\/l+%5,

for all real numbers x in D that satisfy 0 < |x — s| < 2.
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Let 6 be the minimum of 4; and d>. Then § > 0, and if a real
number x in D satisfies 0 < |x —s| < d then

L—-le<f(x)<L+ie

and
M—1e<g(x) <M+ e,

and therefore

L+ M—-—e<f(x)+g(x)<L+M+e.

It follows that
lim (£(x) + g(x)) = L+ M,

as required. |



4. Limits and Derivatives of Functions of a Real Variable (continued)

Definition

Let D be a subset of the set R of real numbers, and let s be a
limit point of D. Let f: D — R be a real-valued function on D.
We say that f(x) remains bounded as x tends to s in D if there
exist strictly positive constants C and § such that —C < f(x) < C
for all real numbers x in D that satisfy 0 < |x — s| < .

Proposition 4.14

| \

Let f: D — R and g: D — R be real-valued function on some
subset D of R, and let s be a limit point of D. Suppose that

Ii_r}n f(x) = 0. Suppose also that g(x) remains bounded as x tends
X—S

tos in D. Then

lim (f(x)g(x)) =0.

X—S




4. Limits and Derivatives of Functions of a Real Variable (continued)

Proof

Let some strictly positive real number € be given. Then g(x)
remains bounded as x tends to s in D, and therefore positive
constants C and dg can be determined so that —C < g(x) < C for
all x € D satisfying 0 < |x — s| < dp. A strictly positive real
number €g can then be chosen small enough to ensure that

Ceg < €. There then exists a strictly positive real number 41 that is
small enough to ensure that |f(x)| < €9 whenever 0 < |x — s| < J7.
Let  be the minimum of dg and d1. Then § > 0, and if

0 < |x —s| < 0 then |g(x)| < C and |f(x)| < €0, and therefore

If(x)g(x)] < Ceo < e.

The result follows. |



4. Limits and Derivatives of Functions of a Real Variable (continued)

Proposition 4.15

Let D be a subset of R, let f: D — R be a function mapping D
into R, let g: D — R be a real-valued function on D, let s be a
limit point of D, let L and M be real numbers. Suppose that

LYORY
and
LECORL
Then

lim f(x)g(x) = LM.

X—S




4. Limits and Derivatives of Functions of a Real Variable (continued)

Proof
The functions f and g satisfy the equation

F(x)g(x) = g(x) (F(x) = L) + (g(x) = M)L+ LM,
where

lim (f(x) - L) =0 and lim (g(x) - M) =0.

X—S X—S

Moreover there exists a strictly positive constant dp such that
M—-1<g(x)<M+1

for all x € D satisfying 0 < |x — s| < dp. Thus the function g
remains bounded as x tends to s in D. It now follows that

lim (g(x)(F(x) — L)) = 0

X—S

(see Proposition 4.14).
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Similarly
lim (g(x) = M)) L =0.
It follows that
lim (F(x)g(x))
= lim (g()(F(x) — 1)) + lim ((g(x) — M)L) + LM
= LM,

as required. ||
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Lemma 4.16

Let f: D — R be a real-valued function defined over a subset D of
the set R of real numbers, let s be a limit point of D, and let L be
a real number. Suppose that Ii_r)n f(x) =L, where L # 0.

X—S

lim = !
x—s f(x) L




4. Limits and Derivatives of Functions of a Real Variable (continued)

Proof

We first prove the result in the case when L > 0. In this case we
can choose a constant ¢ such that 0 < ¢ < L. (For example, we
could choose ¢ = 3L.) Now

1 1 L—f(x)

f(x) L Lf(x)

It follows that ) ) )
_— —|f(x)—-L

whenever f(x) > c.
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Now let some positive real number ¢ be given. Then a positive real
number €g can be found which is small enough to ensure that both
L—e9>cand0< gy < c?. (For example, we could take &g to
be the minimum of L — ¢ and £/c2.) Now l@s f(x)=L It
therefore follows that there exists some positive real number § that
is small enough to ensure that

If(x) — L| <

for all real numbers x in D that satisfy 0 < |x —s| < . It follows
that if x is a real number in D that satisfies 0 < |x — s| < § then

c<L—gg<f(x)

and ) ) )
€0

— — | < Sf(x) =L < = <e.

‘f(x) L‘< c2| () =L < 2=°



4. Limits and Derivatives of Functions of a Real Variable (continued)

We conclude from this that if f: D — R satisfies lim f(x) = L,
where L > 0, then e

lim L = 1

X—S f(X) L
Now suppose that satisfies )I(@s f(x) = L, where L <0, Then
satisfies )I(iLnS(—f(x)) = —L where —L > 0 (see Lemma 4.10) and

therefore

It follows that
) 1 1
lim — = —

xos f(x) L

in this case also. This completes the proof. |}



4. Limits and Derivatives of Functions of a Real Variable (continued)

Proposition 4.17

Let D be a subset of R, let f: D — R and g: D — R be
real-valued functions on D, and let s be a limit point of the set D.
Suppose that Ii_n)1 f(x) and IiLn g(x) both exist. Then so do

X—S X—S

lim (£ + £(x)), lim (F(x) = £(x)) and Jim(F()g(x)), and
moreover
Im(f0)+ () = Jim £) + fim g()
T el = iy 6= Mgl

im(F(:)g()) = lim £() x fim (),

X—S X—S




4. Limits and Derivatives of Functions of a Real Variable (continued)

If moreover g(x) # 0 for all x € D and IiLn g(x) # 0 then
X—S

_ x—s

Proof
It follows from Proposition 4.13 (applied in the case when the
target space is one-dimensional) that

lim (f(x) + g(x)) = )I(@S f(x)+ lim g(x).

X—S X—S

Replacing the function g by —g, we deduce that

lim (£(x) — g(x)) = Jim £(x) — lim g(x).

X—S



4. Limits and Derivatives of Functions of a Real Variable (continued)

It follows from Proposition 4.15 that

lim (f(x)g(x)) = lim f(x) x lim g(x).

X—S X—S X—S
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Now suppose that g(x) # 0 for all x € D and that Iign g(x) #0.
It follows from Lemma 4.16 that

i 1 1

im = — .
s g(x) - lim g(x)

It then follows from Proposition 4.15 that

i £ _ 00
s g(x)  lim g(x)’

This completes the proof. |}
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Proposition 4.18

Let f: D — R be a real-valued function defined over a subset D of
the set R of real numbers, let s be a limit point of D, and let L be
a real number. Suppose that f(x) > 0 for all real numbers x in D
that satisfy x # s. Suppose also that lll)ﬂs f(x)=L. Then L > 0.
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Proof
Suppose that it were the case that L < 0. Let e = —L. Then
€ > 0. Therefore there would exist some positive real number §
such that
L—e<f(x)<L+e

for all real numbers x belonging to D that satisfy 0 < |x — s| < .
But ¢ = —L. It would therefore follow that f(x) < 0 for all real
numbers x belonging to D that satisfy 0 < |[x — s| < §. Moreover
there exists at least elements of D that satisfy these inequalities
because s is a limit point of D. Thus the hypothesis that L < 0
results in a contradiction. It follows that )I(ans f(x) >0, as

required. |}



4. Limits and Derivatives of Functions of a Real Variable (continued)

Corollary 4.19

Let f: D — R and g: D — R be real-valued functions defined
over a subset D of the set R of real numbers, and let s be a limit
point of D. Suppose that f(x) < g(x) for all x € D, and that
)I(i_ngs f(x) and )I(igwsg(x) both exist. Then

. < i
>I<[>ns f(X) - >I<[>nsg(x)'

Proof
The inequality g(x) — f(x) > 0 is satisfied for all x € D. It follows
from Proposition 4.17 and Proposition 4.18 that

lim g(x) — lim f(x) = lim(g(x) — f(x)) >0,

X—S X—S X—S

and thus lim f(x) < lim g(x), as required. |}

X—S X—S
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Theorem 4.20 (Squeeze Theorem)

Let f, g and h be real-valued functions defined over a subset D of
the set R of real numbers, let s be a limit point of D, and let L be
a real number. Suppose that f(x) < g(x) < h(x) for all real
numbers x satisfying x # s that belong to D. Suppose also that

fim £0) = fim h(x) =L,
so that the real number L is the limit both of f(x) and of h(x) as
x tends to s in D. Then

lim g(x) = L.

X—S
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Proof
Let some positive real number ¢ be given. Then there exist
positive real numbers §; and &, such that

L—e<f(x)<L+e
whenever 0 < |x — s| < d; and
L—e<h(x)<L+e

whenever 0 < |x — s| < d2. Let § be the minimum of é; and d».
Then § > 0, and if a real number x belonging to D satisfies
0 < |x —s| <0 then

L—e<f(x)<g(x) <h(x)<L+e,

and therefore IiLn g(x) =L, as required. |}
X—S
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Example
Let g: R\ {0} — R be defined so that

g(x) = 3v/]x|sin (%)
for all non-zero real numbers x. Then
f(x) < g(x) < h(x)
for all non-zero real numbers x, where
f(x)==3|x| and h(x)=3/|x|

for all real numbers x.
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Now, given any positive real number ¢, a positive real number §
could be chosen such that 3v/8 < . For example, one could
choose § = §e2. Then —& < f(x) < h(x) < € for all real
numbers x satisfying 0 < |x| < 4. We have thus shown that

lim f(x) =0 and lim h(x)=0.

x—0

x—0

It follows from the Squeeze Theorem (Theorem 4.20) that
lim g(x) =0.
x—0
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