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4. Limits and Derivatives of Functions of a Real Variable (continued)

4.3. Limits of Polynomial Functions

Proposition 4.2

Let p(x) be a polynomial and let s be a real number. Then

lim
x→s

p(x) = p(s).

Proof
It follows from the Remainder Theorem (Theorem 2.6) that

p(x) = (x − s)qs(x) + p(s),

where qs(x) is the polynomial obtained by dividing the polynomial
p(x) by the polynomial x − s, taking quotient qs(x) and remainder
p(s).
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Let n be the degree of the polynomial p, and let

qs(x) = b0 + b1x + b2x
2 + · · · bn−1xn−1

where the coefficients b0, b1, . . . , bn−1 are real numbers. Let R be
a real number chosen so that R ≥ 1 and −R < s < R, and let C
be a positive real number chosen large enough to ensure that

−C ≤ bj ≤ C

for j = 0, 1, . . . , n − 1. Then

−CRn ≤ −CR j ≤ bjx
j ≤ CR j ≤ CRn

for j = 0, 1, . . . , n − 1 and for all real numbers x satisfying
−R ≤ x ≤ R. It follows that

−nCRn ≤ qs(x) ≤ nCRn

for all real numbers x satisfying −R ≤ x ≤ R.
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Let some strictly positive real number ε be given. Then some
positive real number δ can be chosen so as to ensure that

−R ≤ s − δ < s + δ ≤ R

and nCRnδ ≤ ε. If a real real number x satisfies s − δ < x < s + δ
then −nCRn ≤ qs(x) ≤ nCRn and therefore

−ε ≤ −nCRnδ < (x − s)qs(x) < nCRnδ ≤ ε.

But (x − s)qs(x) = p(x)− p(s). We have thus shown that

p(s)− ε < p(x) < p(s) + ε

for all real numbers x satisfying s − δ < x < s + δ. It follows that

lim
x→s

p(x) = p(s),

as required.
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4.4. Sums of Geometric Sequences

We prove some well-known formulae concerning finite sums of
geometric sequences.

Proposition 4.3

Let x be a real number, where x 6= 1. Then

n−1∑
j=0

x j = 1 + x + x2 + · · ·+ xn−1 =
xn − 1

x − 1

for all natural numbers n.
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Proof
The identity

n−1∑
j=0

x j =
xn − 1

x − 1

is satisfied when n = 1. Indeed both sides of the identity have the
value 1 when n = 1.
Let k be a natural number for which

k−1∑
j=0

x j =
xk − 1

x − 1
.
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Then

k∑
j=0

x j =
k−1∑
j=0

x j + xk =
xk − 1

x − 1
+ xk

=
xk − 1

x − 1
+

xk(x − 1)

x − 1
=

xk − 1

x − 1
+

xk+1 − xk

x − 1

=
xk+1 − 1

x − 1
.

Thus if the identity
n−1∑
j=0

x j =
xn − 1

x − 1

holds when n = k , where k is some natural number, then this
identity holds when n = k + 1. It follows from the Principle of
Mathematical Induction that this identity follows for all natural
numbers n, as required.
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Corollary 4.4

Let n be a positive integer, and let u and v be distinct real
numbers. Then

vn − un

v − u
= un−1 + un−2v + un−2v2 + · · ·+ uvn−2 + vn−1

=
n−1∑
j=0

un−1−jv j .
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Proof
Let x =

v

u
. Then x 6= 1, because u 6= v , and v j = ujx j for all

non-negative integers j . In particularly, v − u = ux − u = u(x − 1)
and vn − un = un(xn − 1). It follows from Proposition 4.3 that

vn − un

v − u
=

un−1(xn − 1)

x − 1
= un−1

n−1∑
j=0

x j

 =
n−1∑
j=0

un−1−jv j ,

as required.
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4.5. Derivatives of Polynomial Functions

Proposition 4.5

Let n be a positive integer, and let s be a real number. Then

lim
x→s

xn − sn

x − s
= nsn−1.

Proof
Let

qs(x) =
n−1∑
j=0

sn−1−jx j .

for all real numbers x . Then qs(x) is a polynomial function of x .
Moreover

xn − sn

x − s
= qs(x)

for all real numbers x distinct from s (see Corollary 4.4).
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Now
lim
x→s

qs(x) = qs(s) = nsn−1,

because qs(x) is a polynomial function of x (see Proposition 4.2).
It follows that

lim
x→s

xn − sn

x − s
= nsn−1,

as required.
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The result and proof strategy of Proposition 4.5 can be generalized
to obtain the derivative

lim
x→s

p(x)− p(s)

x − s

of a polynomial function p(x) at a particular value s of the real
variable x .

Proposition 4.6

Let p(x) be a polynomial function of x , and let

p(x) = a0 + a1x + a2x
2 + a3x

3 + · · ·+ anx
n.

Let s be a real number. Then

lim
x→s

p(x)− p(s)

x − s
= a1 + 2a2s + 3a3s

2 + · · ·+ nans
n−1
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Proof
For each integer k between 1 and n, the kth power xk of the real
variable x satisfies the identity

xk − sk

x − s
= qs,k(x),

for all real numbers x distinct from x , where

qx ,k(x) =
k−1∑
j=0

sk−1−jx j

(see Corollary 4.4). Multiplying the identity satisfied by xk by ak
and summing for k = 1, 2, . . . , n, we find that

p(x)− p(s)

x − s
= qs(x),

where

qs(x) =
n∑

k=1

akqs,k(x).
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Now qs,k(x) is a polynomial function of x for k = 1, 2, . . . , n. It
follows that qs(x) is a polynomial function of x , and therefore

lim
x→s

qs(x) = qs(s) =
n∑

k=1

akqs,k(s)

=
n∑

k=1

kaks
k−1.

The result follows.
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Let p(x) be a polynomial function of a real variable x . The
derivative p′(x) of the polynomial p(x) is defined so that its value
at a real number s satisfies

p′(s) = lim
x→s

p(x)− p(s)

x − s
= lim

h→0

p(s + h)− p(s)

h
.

for all real numbers s. The derivative of p(x) may also be denoted
by the expressions

dp(x)

dx

d

dx
(p(x)) .
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Proposition 4.6 shows that if

p(x) = a0 + a1x + a2x
2 + a3x

3 + · · ·+ anx
n

then
p′(x) = a1 + 2a2s + 3a3s

2 + · · ·+ nans
n−1

Thus, for example, if

p(x) = ax3 + bx2 + cx + d ,

where a. b, c and d are real constants, then

p′(x) = 3ax2 + 2bx + c .



4. Limits and Derivatives of Functions of a Real Variable (continued)

4.6. Local Maxima and Minima of Polynomial Functions

Lemma 4.7

Let p(x) be a polynomial, let s be a real number, and let p′(s) be
the derivative of p at s. Suppose that p′(s) > 0. Then there exists
a positive real number δ such that p(x) > p(s) for all real
numbers x satisfying s < x < s + δ and p(x) < p(s) for all real
numbers x satisfying s − δ < x < s.
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Proof
It follows from the Remainder Theorem (Theorem 2.6) that a
polynomial q(x) can be determined so that

p(x) = (x − s)q(x) + p(s).

Now q(s) = p′(s) (see Proposition 4.6). Moreover q(s) = lim
x→s

q(x)

(see Proposition 4.2). Now q(s) = p′(s) > 0. It follows the
definition of limits that there exists some strictly positive real
number δ so that q(x) > 0 for all positive real numbers x
satisfying s − δ < x < s + δ. But then the equation

p(x) = (x − s)q(x) + p(s).

ensures that p(x) > p(s) for all real numbers x satisfying
s < x < s + δ, and p(x) < p(s) for all real numbers x satisfying
s − δ < x < s. The result follows.
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Proposition 4.8

Let p(x) be a polynomial, let s be a real number, and let p′(s) be
the derivative of p at s. Suppose that the function x 7→ p(x)
mapping each real number x to p(x) has a local maximum or local
minimum at x = s. Then p′(s) = 0.
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Proof
It follows from Lemma 4.7 that if p′(s) > 0 then the function
x 7→ p(x) cannot have a local maximum or local minimum at
x = s. Applying this result with p replaced by −p, we see that if
p′(s) < 0 then (−p)′(s) > 0, and therefore the function
x 7→ −p(x) cannot have a local maximum or local minimum at
x = s. It follows that if p′(s) < 0 then the function x 7→ p(x) itself
cannot have a local maximum or local minimum at x = s. Thus if
the function x 7→ p(x) does have a local maximum or local
minimum at x = s, then the only remaining possibility is that
p′(s) = 0. The result follows.
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Example
Let

p(x) = x3 − 9x2 + 24x − 16.

Then

p′(x) = 3x2 − 18x + 24 = 3(x2 − 6x + 8)

= 3(x − 2)(x − 4).

It follows that the local maxima and minima must be located at
x = 2 and x = 4, and indeed p(x) achieves a local minimum with
value 0 at x = 4 and a local maximum with value 4 at x = 2.
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