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3. Functions (continued)

3.8. Increase and Decrease of Functions of a Real Variable

Definition

A function is said to be real-valued if its codomain is the set R of
real numbers, or if its codomain is some subset of R.

We consider the increase and decrease of real-valued functions
whose domain is a subset of the set R of the real numbers,
discussing intervals in the domain where such functions increase
and decrease, and points in the domain at which such functions
attain local minima and maxima.



3. Functions (continued)

Definition

Let f : D → R be a real-valued function defined over a subset D of
the set R of real numbers. Then:

the function f : D → R is said to be non-decreasing if
f (u) ≤ f (v) for all elements u and v of D satisfying u ≤ v ;

the function f : D → R is said to be (strictly) increasing if
f (u) < f (v) for all elements u and v of D satisfying u < v ;

the function f : D → R is said to be non-increasing if
f (u) ≥ f (v) for all elements u and v of D satisfying u ≤ v ;

the function f : D → R is said to be (strictly) decreasing if
f (u) > f (v) for all elements u and v of D satisfying u < v .



3. Functions (continued)

Definition

A real-valued function f : D → R defined over a subset D of the
set R of real numbers is said to be monotonic if it is
non-decreasing or non-increasing on D.

Lemma 3.4

Let f : D → R be a (strictly) increasing function defined over a
subset D of the set R of real numbers. Then the function
f : D → R is injective.

Proof
Let u and v be distinct elements of the set D. Then either u < v
or v < u. If u < v then f (u) < f (v), because the function f is
increasing, and therefore f (u) 6= f (v). If v < u then f (v) < f (u)
and therefore f (u) 6= f (v). The result follows.



3. Functions (continued)

Lemma 3.5

Let f : D → R be a (strictly) decreasing function defined over a
subset D of the set R of real numbers. Then the function
f : D → R is injective.

Proof
Let u and v be distinct elements of the set D. Then either u < v
or v < u. If u < v then f (u) > f (v), because the function f is
decreasing, and therefore f (u) 6= f (v). If v < u then f (v) > f (u)
and therefore f (u) 6= f (v). The result follows.



3. Functions (continued)

Example
Let f : R→ R be the function from the set R of real numbers to
itself defined such that f (x) = x3 + x for all real numbers x .
Let u and v be real numbers satisfying u < v . If u ≥ 0 and v ≥ 0
then u3 < v3. If u < 0 is negative and v ≥ 0 is non-negative then
u3 < 0 and v3 ≥ 0 and therefore u3 < v3. If u < 0 and v < 0 then
u = −|u|, v = −|v |. Moreover |u| > |v |, because u < v . It follows
that

u3 = (−|u|)3 = −|u|3 < −|v |3 = (−|v)3 = v3.

The case when v < 0 and u ≥ 0 does not arise, because u < v .
We have therefore investigated all relevant cases determined by the
signs of the real numbers u and v , and, in all cases, we have shown
that u3 < v3. Thus u3 < v3 for all real numbers u and v satisfying
u < v .



3. Functions (continued)
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Graph of the curve y = x3 + x .



3. Functions (continued)

Adding the inequalities u3 < v3 and u < v we find that
u3 + u < v3 + v whenever u < v . Thus f (u) < f (v) for all real
numbers u and v satisfying u < v . It follows that the function
f : R→ R is increasing, where f (x) = x3 + x for all real
numbers x . It follows from Lemma 3.4 that this function is
injective.

Example
Let g : R→ R be the function from the set R of real numbers to
itself defined such that g(x) = x3 − x for all real numbers x . Then
g(−1) = g(0) = g(1). It follows that the function g is not
injective.



3. Functions (continued)

Example

Let a =
1√
3

, let h : [a,+∞)→ R be the function from [a,+∞) to

R defined such that h(x) = x3 − x for all real numbers x satisfying
x ≥ a, and let k : [−a, a]→ R be the function defined such that
k(x) = x3 − x for all real numbers x satisfying −a ≤ x ≤ a.



3. Functions (continued)

Let u and v be real numbers satisfying a ≤ u < v . Then

v3 − u3 = (v − u)(v2 + uv + u2),

and therefore

h(v)− h(u) = (v − u)(v2 + uv + u2 − 1).

But a ≤ u < v , and therefore

v2 + uv + u2 − 1 ≥ 3a2 − 1 = 0.

It follows that h(v) > h(u) for all real numbers u and v satisfying
a ≤ u < v . Thus the function h : [a,+∞)→ R is increasing on
[a,+∞), where a = 1√

3
, and therefore this function h is injective.



3. Functions (continued)

Next let u and v be real numbers satisfying −a ≤ u < v ≤ a. Then

k(v)− k(u) = (v − u)(v2 + uv + u2 − 1).

If u ≥ 0 and v ≥ 0 then

v2 + uv + u2 − 1 < 3a2 − 1 = 0

If u < 0 and v < 0 then

v2+uv+u2−1 = (−|v |)2+(−|u|)(−|v |)+(−|u|)2−1 < 3a2−1 = 0,

and if u < 0 and v ≥ 0 then v2 + uv + u2− 1 ≤ −1. It follows that

k(v)− k(u) = (v − u)(v2 + uv + u2 − 1) < 0

for all real numbers u and v satisfying −a ≤ u < v ≤ a. Thus the
function k : [−a, a]→ R is decreasing on [−a, a], where a = 1√

3
,

and therefore this function k is injective.



3. Functions (continued)
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3. Functions (continued)

We now resume discussion of the function g : R→ R, where

g(x) = x3 − x for all real numbers x . Let a =
1√
3

. We have

proved that the function h obtained by restricting the function g
to the interval [a,+∞) is an increasing function. It follows that
g(x) > g(a) whenever x > a. We have also proved that the
function k obtained by restricting the function g to the interval
[−a, a] is a decreasing function. It follows that g(x) > g(a)
whenever −a ≤ x < a. We conclude that g(x) ≥ g(a) for all real
numbers x satisfying x ≥ −a. This justifies the assertion that g(x)
attains a local minimum when x = 1√

3
.



3. Functions (continued)

We now obtain the corresponding result that g(x) attains a local
maximum when x = −a. Now the function g : R→ R is an odd
function. This means that g(−x) = −g(x) for all real numbers x .
It follows that g(x) = −h(|x |) for all real numbers x satisfying
x < −a, where h : [a,+∞)→ R is defined such that h(x) = x3− x
for all real numbers x satisfying x ≥ a. Now we have shown that
the function h is an increasing function on the interval [a,+∞). It
follows that if u and v are real numbers satisfying u < v ≤ −a
then a ≤ |v | < |u|. But then h(|u|) > h(|v |), because the
function h is increasing on [a,+∞). It follows that

g(u) = −h(|u|) < −h(|v |) = g(v).



3. Functions (continued)

We conclude from this that the function g is increasing on the
interval (−∞,−a], where a = 1√

3
. We have already shown that

the function g is decreasing on the interval [−a, a] (because it is
equal on this interval to the function k : [−a, a]→ R, and we have
shown that the function k is decreasing). It follows that
g(x) < g(−a) when x < −a and g(x) < g(−a) when −a < x < a.
We conclude from this that g(x) ≤ g(−a) for all real numbers x
satisfying x ≤ a. This justifies the assertion that g(x) attains a
local maximum when x = − 1√

3
.



3. Functions (continued)

Definition

Let f : D → R be a real-valued function defined on a subset D of
the set R of real numbers. We say that the function f attains a
local minimum at an element s of D if there exists some positive
real number δ such that f (x) ≥ f (s) for all real numbers x for
which both s − δ < x < s + δ and x ∈ D.

Definition

Let f : D → R be a real-valued function defined on a subset D of
the set R of real numbers. We say that the function f attains a
local maximum at an element s of D if there exists some positive
real number δ such that f (x) ≤ f (s) for all real numbers x for
which both s − δ < x < s + δ and x ∈ D.



3. Functions (continued)

We now introduce the concept of a neighbourhood of a real
number s in some subset D of R to which the real number s
belongs.

Definition

Let D be a subset of the set R of real numbers, and let the real
number s be an element of D. A subset N of D is said to be a
neighbourhood of s (in D) if there exists some positive real
number δ such that x ∈ N for all real numbers x for which both
s − δ < x < s + δ and x ∈ D.

The formal definition of neighbourhood captures the notion that a
subset N of D is a neighbourhood of the real number s if and only
if N contains all elements of D that lie “sufficiently close” to s.



3. Functions (continued)

Another perhaps useful way of thinking about neighbourhoods is to
observe that a subset N of a subset D of the set of real numbers is
a neighbourhood of some element s of D if and only if N
“completely surrounds” s in D, so that s cannot be “approached”
within D without entering into the neighbourhood of s. (In the
same way, one cannot approach the house of a friend without
passing through a neighbourhood within which the house is
located.)

The definitions of local maxima and minima may now be
reformulated in perhaps more attractive terms as presented in the
following lemmas, which follow directly from the relevant
definitions.



3. Functions (continued)

Lemma 3.6

Let f : D → R be a real-valued function defined on a subset D of
the set R of real numbers. The function f attains a local minimum
at an element s of D if and only if there exists some
neighbourhood N of s in D small enough to ensure that
f (x) ≥ f (s) for all x ∈ N.

Lemma 3.7

Let f : D → R be a real-valued function defined on a subset D of
the set R of real numbers. The function f attains a local
maximum at an element s of D if and only if there exists some
neighbourhood N of s in D small enough to ensure that
f (x) ≤ f (s) for all x ∈ N.



3. Functions (continued)

Example
Let a and c be real constants, where a > 0 and c > 0, and let
f : R \ {0} → R be the function defined on the set R \ {0} of
non-zero real numbers so that

f (x) = ax +
c

x

for all non-zero real numbers x . We shall investigate the
qualitative behaviour of this function, and will in particular
determine the range of the function f .



3. Functions (continued)

Let y be a real number belonging to the range of the function f ,
and let x be a non-zero real number satisfying f (x) = y . Then

y = ax +
c

x
.

If we multiply both sides of this identity by x , and then subtract the
left hand side from the right hand side, we arrive at the equation

ax2 − yx + c = 0.

The quadratic polynomial on the left hand side of this equation
must have real roots if y is to belong to the range of the
function f . It follows from the standard quadratic formula that y
must satisfy the inequality y2 ≥ 4ac.



3. Functions (continued)

Conversely if the real number y satisfies the inequality y2 ≥ 4ac
then the polynomial has real roots, and y therefore belongs to the
range of the function f . In particular, if y2 = 4ac then there is a
unique non-zero real number x for which f (x) = y . Moreover the
unique real number x0 for which f (x0) = 2

√
ac, is given by the

formula

x0 =
y

2a
=

2
√
ac

2a
=

√
c

a
,

and the unique real number x for which f (x) = −2
√
ac, is

x =
y

2a
= −2

√
ac

2a
= −

√
c

a
= −x0.



3. Functions (continued)

Next suppose that either y > 2
√
ac or y < −2

√
ac. Then there

exist two distinct non-zero real numbers x satisfying f (x) = y .
They are

x =
y ±

√
y2 − 4ac

2a
.

We see from this that the function f : R \ {0} → R is not injective.
The range of this function is the union

(−∞,−2
√
ac] ∪ [2

√
ac,+∞).

It is now clear that the function f : R \ {0} → R is is not surjective.
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3. Functions (continued)

Now it is clear that there exists a positive real number δ0 such that
f (x) ≥ f (x0) = 2

√
ac whenever x0 − δ0 < x < x0 + δ0, where

x0 =

√
c

a
.

Indeed it suffices to ensure that all non-zero real numbers satisfying
these inequalities are positive, and thus we may pick δ0 = x0, or
alternatively we may set δ0 equal to any positive real number not
exceeding x0. In these circumstances we say that f (x) ≥ f (x0)
throughout some neighbourhood of x0, and accordingly we say that
the function f has a local minimum at x0, where x0 =

√
c/a.

Similarly we say that the function f has a local maximum at −x0,
where x0 =

√
c/a.



3. Functions (continued)

We now show formally that the function f is increasing on the
interval [x0,+∞), where x0 =

√
c/a. Let u and v be real numbers

satisfying x0 ≤ u < v . Then

f (v)− f (u) = av +
c

v
− au − c

u

=
(
a− c

uv

)
(v − u).



3. Functions (continued)

Now

v > u ≥ x0 =

√
c

a
,

and therefore
c

uv
<

c

u2
≤ c

x20
= a.

It follows that
f (v)− f (u)

v − u
= a− c

uv
> 0

whenever x0 ≤ u < v , and therefore the function f is increasing on
the interval [x0,+∞).



3. Functions (continued)

Moreover, interchanging the roles of u and v , we find that the
identity

f (v)− f (u)

v − u
= a− c

uv

is valid for all real numbers u and v satisfying u ≥ x0, v ≥ x0 and
u 6= v , irrespective of whether u < v or v < u.
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We now consider the behaviour of the function f on the interval
(0, x0], where x0 =

√
c/a. Let u and v be real numbers satisfying

u < v ≤ x0. Then

f (v)− f (u) =
(
a− c

uv

)
(v − u).

But now
c

uv
>

c

v2
≥ c

x20
= c × a

c
= a,

and therefore
a− c

uv
< 0.

it follows that f (v) < f (u) for all real numbers u and v satisfying
u < v < x0, and thus the function f is decreasing on the interval
(0, x0], where x0 =

√
c/a.
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The behaviour of f (x) when x < 0 may be determined from the
results already obtained in view of the fact that the function f is
an odd function which satisfies the identity f (−x) = −f (x) for all
non-zero real numbers x . If u and v are real numbers satisfying
u < v ≤ −x0 < 0, where x0 =

√
c/a, then |u| > |v | ≥ x0, and

therefore
f (v)− f (u) = −f (|v |) + f (|u|) > 0.

Thus the function f is increasing on the interval (−∞,−x0].
Similarly if u and v are real numbers satisfying −x0 ≤ u < v < 0
then 0 ≤ |v | < |u| ≤ x0, and therefore

f (v)− f (u) = −f (|v |) + f (|u|) < 0.

Thus the function f is decreasing on the interval [−x0, 0), where
x0 =

√
c/a.
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