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2. Polynomials (continued)

2.4. Polynomial Division

Example
Let p(x) be the polynomial in x defined so that

p(x) = x3 − 8x2 + 17x − 10.

Now p(1) = 0. (Indeed the coefficients 1, −8, 17 and −10 add up
to zero.) The problem is to find the other roots.

A standard procedure for discovering the other roots is to divide
the polynomial p(x) by the polynomial x − 1 using a calculation
scheme modelled on a standard scheme for performing long
division in arithmetic. The calculation goes as follows:—



2. Polynomials (continued)

x2 − 7x + 10

x − 1
)
x3 − 8x2 + 17x − 10

x3 − x2

−7x2 + 17x

−7x2 + 7x

10x − 10

10x − 10

0

This calculation yields the result that

x3 − 8x2 + 17x − 10 = (x − 1)(x2 − 7x + 10).
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Now the polynomial x2 − 7x + 10 can be factored using the
standard formula for the roots of a quadratic polynomial.
Alternatively, because the leading term is equal to one, it follows
from Lemma 2.2 that the sum of the roots of the polynomial
x2−7x + 10 is equal to 7 and the product of those roots is equal to
10. From this we can deduce that the roots are 2 and 5, and thus

x2 − 7x + 10 = (x − 2)(x − 5),

and thus

p(x) = x3 − 8x2 + 17x − 10 = (x − 1)(x − 2)(x − 5).

We now divide the polynomial x3 − 8x2 + 17x − 10 by x − 1 using
standard algebraic notation, to see how the individual steps are
justified.
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Let
p(x) = x3 − 8x2 + 17x − 10.

First we note that we can obtain a polynomial whose leading term
matches the leading term x3 of p(x) by multiplying the polynomial
x − 1 by x2. Now x3 = (x − 1)x2 + x2. It follows that

p(x) = (x − 1)x2 + x2 − 8x2 + 17x − 10

= (x − 1)x2 − 7x2 + 17x − 10.

Next we note that we can obtain a polynomial whose leading term
is −7x2 by multiplying the polynomial x − 1 by −7x . Now
−7x2 = −7(x − 1)x − 7x . It follows that
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p(x) = x3 − 8x2 + 17x − 10

= (x − 1)x2 − 7x2 + 17x − 10

= (x − 1)x2 − 7(x − 1)x − 7x + 17x − 10

= (x − 1)(x2 − 7x) + 10x − 10.

But 10x − 10 = 10(x − 1). It follows that

p(x) = (x − 1)(x2 − 7x + 10).

Moreover x2 − 7x + 10 = (x − 2)(x − 5). It follows that

p(x) = (x − 1)(x − 2)(x − 5).
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Example
We now divide the polynomial

ax3 + bx2 + cx + d

by the polynomial
x − r ,

where the coefficients a, b, c, d and r of these polynomials are
numbers (which may be real or complex).
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The calculation may be set out as a division calculation as follows:

ax2 + (ar + b)x + (ar2 + br + c)

x − r
)
ax3 + bx2 + cx + d

ax3 − arx2

(ar + b)x2 + cx

(ar + b)x2 − (ar2 + br)x

(ar2 + br + c)x + d

(ar2 + br + c)x − (ar3 + br2 + cr)

ar3 + br2 + cr + d
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This calculation scheme yields the result that

ax3 + bx2 + cx + d

= q(x)(x − r) + ar3 + br2 + cr + d ,

where
q(x) = ax2 + (ar + b)x + (ar2 + br + c).

The following lemma establishes the result more formally, using
standard algebraic notation.
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Lemma 2.5

Let p(x) be a polynomial of degree at most 3, given by the formula

p(x) = ax3 + bx2 + cx + d ,

where the coefficients of this polynomial are numbers (which may
be real or complex), and let r be a number (which also may be real
or complex). Then

p(x) = (x − r)q(x) + p(r),

where
q(x) = ax2 + (ar + b)x + ar2 + br + c .
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Proof

p(x) = ax3 + bx2 + cx + d

= a(x − r)x2 + arx2 + bx2 + cx + d

= a(x − r)x2 + (ar + b)x2 + cx + d

= a(x − r)x2 + (ar + b)(x − r)x + (ar2 + br)x + cx + d

= (x − r)(ax2 + (ar + b)x) + (ar2 + br + c)x + d

= (x − r)(ax2 + (ar + b)x) + (ar2 + br + c)(x − r)

+ ar3 + br2 + cr + d

= (x − r)(ax2 + (ar + b)x + ar2 + br + c) + p(r)

= (x − r)q(x) + p(r),

as required.
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Theorem 2.6 (Remainder Theorem)

Let p(x) be a polynomial of any degree, and let r be a number.
Suppose that q(x) is a polynomial and k is a number determined
so that

p(x) = q(x)(x − r) + k.

Then k = p(r), and thus

p(x) = q(x)(x − r) + p(r).

Proof
The result follows immediately on substituting x = r in the
equation p(x) = q(x)(x − r) + k .
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Theorem 2.7 (Factor Theorem)

Let p(x) be a polynomial of any degree, and let r be a number.
Then x − r is a factor of p(x) if and only if p(r) = 0.

Proof
If x − r is a factor of p(x) then it follows directly that p(r) = 0.

Conversely suppose that p(r) = 0. We must prove that x − r is a
factor of p(r). Now the Remainder Theorem ensures the existence
of a polynomial q(x) such that p(x) = (x − r)q(x) + p(r). But
p(r) = 0. It follows that p(x) = (x − r)q(x), and thus x − r is a
factor of p(x), as required.
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The following proposition is useful in limiting the number of cases
that need to be considered when given a cubic polynomial with
integer coefficients, and it is known that the polynomial already
has at least one integer root.

Proposition 2.8

Let p(x) be a polynomial of degree at most 3, given by the formula

p(x) = ax3 + bx2 + cx + d ,

where the coefficients of this polynomial are integers, and let r be
a root of this polynomial that is also an integer. Then r divides d.
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Proof
The integer r is a root of the polynomial p(x). It follows directly
from Lemma 2.5 that

p(x) = q(x)(x − r),

where
q(x) = ax2 + (ar + b)x + ar2 + br + c .

Equating coefficients, we find that

d = −(ar2 + br + c)r .

Now r , a, b, c and d are all integers. It follows that ar2 + br + c is
an integer, and therefore r divides d . The result follows.
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Example
Consider the polynomial p(x), where

4x3 − 44x2 + 127x − 105.

Now 105 = 3 × 5 × 7, and therefore the divisors of 105 are

±1, ±3, ±5, ±7, ±15, ±21, ±35 and ± 105.
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Calculating, we find that

p(1) = −18, p(−1) = −280,

p(3) = −12, p(−3) = −990,

p(5) = −70, p(−5) = −2340,

p(7) = 0, p(−7) = −4522,

p(15) = 5400, p(−15) = −25410,

p(21) = 20202, p(−21) = −59220,

p(35) = 121940, p(−35) = −229950,

p(105) = 4158630, p(−105) = −5129040.

It follows that 7 is the only root of the polynomial p(x) that is an
integer.



2. Polynomials (continued)

Polynomials can always be divided by polynomials of lower degree,
taking quotient and remainder. We now give an example of
polynomial division that involves dividing a polynomial of degree 4
by a quadratic polynomial.

Example
We divide the polynomial p(x) by x2 + 2x + 2, where

p(x) = x4 + 8x3 + 27x2 + 39x + 28.

The calculation can be undertaken using the following scheme:—
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x2 + 6x + 13

x2 + 2x + 2
)
x4 + 8x3 + 27x2 + 39x + 28

x4 + 2x3 + 2x2

6x3 + 25x2 + 39x

6x3 + 12x2 + 12x

13x2 + 27x + 28

13x2 + 26x + 26

x + 2
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This calculation scheme yields the result that

x4 + 8x3 + 27x2 + 39x + 28 = (x2 + 2x + 2)(x2 + 6x + 13) + x + 2.

We may establish this result using standard algebraic notation as
follows:—
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p(x) = x4 + 8x3 + 27x2 + 39x + 28

= (x2 + 2x + 2)x2 − 2x3 − 2x2 + 8x3 + 27x2 + 39x + 28

= (x2 + 2x + 2)x2 + 6x3 + 25x2 + 39x + 28

= (x2 + 2x + 2)x2 + 6(x2 + 2x + 2)x − 12x2 − 12x

+ 25x2 + 39x + 28

= (x2 + 2x + 2)(x2 + 6x) + 13x2 + 27x + 28

= (x2 + 2x + 2)(x2 + 6x) + 13(x2 + 2x + 2) − 26x − 26

+ 27x + 28

= (x2 + 2x + 2)(x2 + 6x + 13) + x + 2.

Thus
p(x) = (x2 + 2x + 2)(x2 + 6x + 13) + x + 2.
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The structure of calculation in the standard scheme can also be
clarified by adding redundant terms (coloured red) as follows:—

x2 + 6x + 13

x2 + 2x + 2
)
x4 + 8x3 + 27x2 + 39x + 28

x4 + 2x3 + 2x2 +0x +0

6x3 + 25x2 + 39x +28

6x3 + 12x2 + 12x +0

13x2 + 27x + 28

13x2 + 26x + 26

x + 2
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