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1. Sets and Number Systems (continued)

1.20. Roots of Positive Real Numbers

Proposition 1.12

Given any positive real number c , and given any natural number n,
there exists a unique positive real number r with the property that
rn = c.

We do not prove Proposition 1.12 formally here. A very formal and
rigorous treatment of the real number system might establish the
existence of the real number r by proving that if

r = sup{x ∈ R | x > 0 and xn < c},

(so that r is defined as the least upper bound of the specified set),
then rn = c. Alternatively, such a formal treatment might deduce
Proposition 1.12 of a general theorem known as the Intermediate
Value Theorem.
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On the other hand, it is easy to prove that the positive real
number r , assuming that it exists, is the only positive real number
satisfying rn = c . Indeed suppose that r and s are positive real
numbers and that rn = c = sn. Were it the case that r 6= s, then
either r < s or r > s. If it were the case that r < s then rn < sn

and therefore rn 6= sn, contradicting the requirement that
rn = c = sn. If it were the case that r > s then rn > sn and
therefore rn 6= sn, again contradicting the requirement that
rn = c = sn. Thus the possibilities that u < v and u > v are ruled
out, and the only remaining possibility is that u = v .
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Given any positive real number c , and given any natural number n,
the decimal expansion of a positive real number r satisfying rn = c
may be found as follows. For each natural number k , let rk be the
largest multiple of 10−k for which rnk < c . Then the number rk is
representable as a terminating decimal, with at most k decimal
digits after the decimal point, and this number rk is the unique
number of this type for which both rnk < c and (rk + 10−k)n ≥ c .
We obtain in this fashion an infinite sequence

r1, r2, r3, r4, . . .

of terminating decimal approximations to the nth root of c .
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Moreover if natural numbers k and m satisfy k < m, then the
decimal expansions of rk and rm agree up to the kth decimal place.
We can therefore determine the successive decimal digits of the
decimal expansion of a real number r whose decimal expansion
terminated after k decimal places is equal to rk . This real
number r satisfies rn = c .
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Example
For example, if c = 3 and n = 2 then the procedure described
above yields successive decimal approximations

1.7, 1.73, 1.732, 1.7320, 1.73205, . . .

to a real number r satisfying r2 = 3. This number r is the square
root

√
3 of 3.

Example
Also if c = 4 and n = 2 then the procedure yields successive
decimal approximations

1.9, 1.99, 1.999, 1.9999, 1.99999, . . .

to a real number r satisfying r2 = 4. Of course r = 2.
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1.21. Laws of Indices with Fractional Exponents

Let a be a positive real number, and let q be a positive integer.

We define a
1
q = q
√
a, where q

√
a denotes the unique positive real

number with the property that ( q
√
a)q = a.

Note that positive real numbers a and b satisfy a
1
q = b if and only

if a = bq.

Note also that (apq)
1
q = ap for all integers p and positive

integers q. Indeed the definition of (apq)
1
q requires that

(apq)
1
q = c , where r is the unique positive real number satisfying

cq = apq. But (ap)q = apq (see Proposition 1.8). (apq)
1
q = ap.
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Lemma 1.13

Let a be a positive real number, and let p, q, r and s be positive
integers. Suppose that

p

q
=

r

s
.

Then
( q
√
a)p = ( s

√
a)r .

Proof
Basic algebra ensures that ps = rq. Let

u = ( q
√
a)p and v = ( s

√
a)r .

It then follows from Lemma 1.3 that
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urq = (( q
√
a)p)rq = (( q

√
a))prq = (( q

√
a)q)pr = apr ,

vps = (( s
√
a)r )ps = (( s

√
a)rps = (( s

√
a)s)pr = apr .

Therefore urq = apr = vps . But rq = ps, and there exists only one
positive real number x satisfying the equation x rq = apr (see
Proposition 1.12 and the remarks that follow it). Therefore u = v ,
and thus

( q
√
a)p = ( s

√
a)r ,

as required.
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Definition

Let a be a positive real number, and let t be a rational number.
We define

at = ( q
√
a)p,

where p and q are integers for which q > 0 and p/q = t.

In the case where t > 0 it follows from Lemma 1.13 that the value
of ( q
√
a)p does not depend on the choice of p and q, provided that

p/q = t. Therefore at is well-defined in this case.
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In the case where t < 0, we can write t = −p/q, where p and q
are positive integers and, in that case

at =
1

( q
√
a)p

.

It follows that at is well-defined in this case also.
And a0 = 1, and thus at is well-defined when t = 0. Thus at is
well-defined for all rational numbers t.
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Let a be a positive real number and let p and q be integers, where

q > 0. The definition of a
p
q ensures that

a
p
q = ( q

√
a)p.

It then follows from Proposition 1.8 that

(a
p
q )q = (( q

√
a)p)q = ( q

√
a)pq = (( q

√
a)q)p = ap.

It then follows from the definition of q
√
ap that

q
√
ap = a

p
q = ( q

√
a)p.
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Proposition 1.14

Let a be a positive-zero real number and let t and u be rational
numbers (which may be positive, negative or zero). Then
at+u = atau.

Proof
Because t and u are rational numbers, and are thus representable
as fractions where the numerators and denominators are integers,
we can represent them as fractions over a common denominator.
Therefore there exist integers p, q and r , where q > 0, such that
t = p/q and u = r/q. Then t + u = (p + r)/q. It then follows
from Proposition 1.7 that

at+u = ( q
√
a)p+r = ( q

√
a)p( q
√
a)r = atau,

as required.



1. Sets and Number Systems (continued)

Proposition 1.15

Let a be a positive-zero real number and let t and u be rational
numbers (which may be positive, negative or zero). Then
atu = (at)u.

Proof
The exponents t and u are rational numbers, and therefore there
exist integers p, q, r and s, where q > 0 and s > 0, such that
t = p/q and u = r/s. Then

a = (a
1
qs )qs .
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It therefore follows from Proposition 1.8 that

at = (a
1
q )p = (((a

1
qs )qs)

1
q )p = ((a

1
qs )s)p = (a

1
qs )sp,

and therefore

(at)u = ((at)
1
s )r = (((a

1
qs )sp)

1
s )r = ((a

1
qs )p)r = (a

1
qs )pr = atu,

as required.
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Proposition 1.16

Let a and b be positive real numbers. Then (ab)t = atbt for all
rational numbers t.

Proof
Let a and b be positive real numbers, and let t be a rational
number. Then there exist integers p and q such that q > 0 and
t = p/q. Then it follows from Proposition 1.9 that

( q
√
a

q
√
b)q = ( q

√
a)q (

q
√
b)q = ab.

The definition of q
√
ab as the unique positive real number u

satisfying uq = ab then ensures that

q
√
a

q
√
b =

q
√
ab.
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It then follows from Proposition 1.9 and the definitions of at , bt

and (ab)t that

atbt = ( q
√
a)p(

q
√
b)p = ( q

√
a

q
√
b)p = (

q
√
ab)p = (ab)t ,

as required.
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Remark
Let a be a positive real number. At this stage we have defined and
discussed the basic properties of ax in all cases where x is a rational
number. But what about a

√
2 and aπ? How do we define ax when

x is an arbitrary real number that is not necessarily rational? This
will be discussed in more depth when we come to discuss
exponential and logarithm functions. We note here that, for all real
numbers x , the real number ax can be characterized as the unique
real number with the property that at ≤ ax ≤ au for all rational
numbers t and u satisfying t ≤ x ≤ u. It can then be shown that
ax+y = axay and (ax)y = axy for all real numbers x and y .
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1.22. Summary of Laws of Indices

We have established the following results from the basic
definitions:—

if a is a real number, and if p and q are non-negative integers
then ap+q = apaq and apq = (ap)q (see Lemma 1.4, and
Lemma 1.5);

if a is a non-zero real number, and if m and n are integers
then am+n = aman and amn = (am)n (see Proposition 1.7 and
Proposition 1.15);

if a is a positive real number, and if t and u are rational
numbers then at+u = atau and atu = (at)u (see
Proposition 1.7 and Proposition 1.15);
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if a and b are real numbers, and if n is a non-negative integer,
then (ab)n = anbn (see Proposition 1.9);

if a and b are non-zero real numbers, and if n is an integer,
then (ab)n = anbn (see Proposition 1.9);

if a and b are positive real numbers, and if t is a rational
number, then (ab)t = atbt (see Proposition 1.16).
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The following statement provides a summary of the laws of indices
proved above that are applicable to powers of real numbers.

The “laws of indices” encapsulated in the formulae
ap+q = apaq, apq = (ap)q and (ab)p = apbp are valid in
the following situations:—

when a and b are real numbers and p and q are
non-negative integers;
when a and b are non-zero real numbers and p and
q are integers;
when a and b are positive real numbers and p and q
are rational numbers.
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