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1. Sets and Number Systems (continued)

1.7. The System of Integers

The whole numbers are referred to as integers. An integer may be
positive negative or zero. The positive integers are the natural
numbers. The negative integers are the numbers that take the
form −n for some natural number n. And of course 0 is the unique
integer that is zero. The set consisting of all integers is denoted by
Z.



1. Sets and Number Systems (continued)

1.8. The System of Rational Numbers

A rational number is a number that can be expressed in the form
p/q where both p and q are integers and q 6= 0. The set consisting
of all rational numbers is denoted by Q.



1. Sets and Number Systems (continued)

1.9. The System of Real Numbers

The rational numbers are not sufficient for the purposes of
representing lengths in Euclidean geometry. Additional numbers
such as

√
2 and π are required in order that lengths, angles and

other physical magnitudes can be represented as “numbers”. Such
numbers are referred to as irrational numbers. The union of the
sets of rational and irrational numbers is the set of real numbers.
The set of real numbers is denoted by R. If x and y are real
numbers then so are x + y , x − y and xy . Also x/y is a real
number, provided that y 6= 0. Each positive real number x has a
positive nth root n

√
x that is a positive real number with the

property that ( n
√
x)n = x .



1. Sets and Number Systems (continued)

1.10. The System of Complex Numbers

The system of real numbers can be embedded within a larger
number system whose elements are referred to as complex
numbers. Any complex number may be represented in the form
a + bi where a and b are real numbers and i is a particular
complex number that satisfies the equation i2 = −1.

The set consisting of all complex numbers is denoted by C.
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Remark
We have briefly described the sets N, Z, Q, R and C that
represent the elements of the corresponding number systems, i.e.,
the systems of natural numbers, integers, rational numbers, real
numbers and complex numbers. These sets are of particular
importance in mathematics. Accordingly, once the basic concepts
of set theory had taken root in the mathematical literature, it
become commonplace for printers to represent these sets with
letters N, Z, Q, R and C printed in boldface, to emphasize the fact
that these letters are being used to denote the sets representing
the basic number systems of mathematics. Of course mathematics
lecturers, writing with chalk on blackboards, were not in a position
to “print in boldface”. Accordingly they distinguished the letters
denoting these sets by adding extra strokes. The resulting glyphs
accordingly were said to be written in “blackboard bold”.
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But once this notation became commonplace amongst
mathematicians, when writing on blackboards or in handwritten
manuscripts, they came to expect to see these special sets of
numbers represented in the same fashion in print. Accordingly
fonts were developed containing uppercase versions of the letters
N, Z, Q, R and C, in the “blackboard bold” or “openface” style
that had become commonplace amongst mathematicians.



1. Sets and Number Systems (continued)

1.11. The Laws of Indices for Integer Powers of Real Numbers

Let a be a real number. The positive integer powers an of a are
defined such that a1 = a and an = an−1a for all natural numbers n
satisfying n > 1. This definition of positive integer powers of a real
number a is an example of a recursive definition in which, for
example, a8 is defined in terms of a7, which in turn is defined in
terms of a6, and so on.

Lemma 1.2

Let a be a real number and let p and q be natural numbers. Then
ap+q = apaq.
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Proof
The identity ap+q = apaq can be proved by induction on q. The
recursive definition of ap+1 ensures that, for fixed p, ap+q = apaq

when q = 1. Suppose that am+k = amak for some natural
number k . Then

am+k+1 = am+ka = (amak)a = am(aka) = amak+1.

Thus if the identity am+n = aman holds when q = k for some
natural number k , then it also holds for q = k + 1. It follows from
the Principle of Mathematical Induction that the identity
ap+q = apaq holds for all real numbers a and for all natural
numbers p and q, as required.
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Remark
As an alternative to the reasonably elaborate induction argument,
one can simply note that the product of p copies of the real
number a and q copies of that same real number a will be the
product of p + q copies of that number.

The strategy of proof by induction comes into its own in areas of
mathematics like group theory and linear algebra (especially in
considering powers of square matrices), where is is appropriate to
present a formal argument that demonstrates the role of the
Associative Law for multiplication (of group elements, or of square
matrices) in establishing the result.
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Lemma 1.3

Let a be a real number and let p and q be natural numbers. Then
apq = (ap)q.

Proof
First we note that ap = (ap)1, and thus, for fixed p, the identity
apq = (ap)q holds when q = 1. Suppose that this identity holds
when q = k for some natural number k , so that apk = (ap)k .
Then, from Lemma 1.2,

ap(k+1) = apk+p = apkap = (ap)kap = (ap)k+1.

Thus if the identity apq = (ap)q holds for q = k , then it also holds
for q = k + 1. It follows from the Principle of Mathematical
Induction that the identity apk = (ap)k holds for all real numbers a
and for all natural numbers p and q.
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Given any real number a, we define a0 = 1. With this definition,
the identity ap = ap−1a that defines ap recursively for p > 1 is also
valid when p = 1.

Note that 00 = 1, according to the definition just adopted. (The
identity 00 = 1 is the standard definition of 00 that ensures that
many formulae valid for non-zero values of a remain true when
a = 0.)
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Lemma 1.4

Let a be a real number and let p and q be non-negative integers.
Then ap+q = apaq.

Proof
In the case when p and q are both positive, this follows from
Lemma 1.2. Otherwise at least one of the non-negative integers p
and q is zero, and the identity follows from the convention that
a0 = 1 for all real numbers a.
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Lemma 1.5

Let a be a real number and let p and q be non-negative integers.
Then apq = (ap)q.

Proof
In the case when p and q are both positive, this follows from
Lemma 1.3. Otherwise at least one of the non-negative integers p
and q is zero, and therefore apq = 1 = (ap)q.
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If the real number a is non-zero then an is defined for negative
integers n so as to ensure that if n = −q, where q is a natural
number, then an = (aq)−1.
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Lemma 1.6

Let a be a non-zero real number and let p and q be natural

numbers. Then ap−q =
ap

aq
.

Proof
The proof breaks down into three cases depending on whether
p − q is zero, positive or negative.

Suppose that p − q = 0. Then p = q and therefore

ap

aq
=

ap

ap
= 1 = a0 = ap−q.

Thus the result is true when p − q is zero.
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Next suppose that p − q > 0. It then follows from Lemma 1.2
ap = ap−qaq. Rearranging this inequality, we find that

ap−q =
ap

aq
.
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Finally suppose that p − q < 0. Then

ap−q =
1

aq−p
=

1
aq

ap

=
ap

aq
.

We have therefore verified the result in all three cases determined
by the sign of p − q.
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Proposition 1.7

Let a be a non-zero real number and let m and n be integers
(which may be positive, negative or zero). Then am+n = aman.

Proof
Let a be a non-zero real number, let m and n be integers. Choose
natural numbers p, q, r and s such that m = p − q and n = r − s.
Applying Lemma 1.6, we find that

aman = ap−qar−s =
ap

aq
× ar

as
=

apar

aqas
=

ap+r

aq+s
= ap+r−q−s = am+n,

as required.
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Proposition 1.8

Let a be a non-zero real number and let m and n be integers
(which may be positive, negative or zero). Then amn = (am)n.

Proof
In the cases where m = 0 and n = 0, both amn and (am)n are
equal to 1, and therefore amn = aman in these cases.

In the case where m > 0 and n > 0, the identity amn = aman

follows directly from Lemma 1.3.
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Now let p and q be positive integers. Then

a−pq =
1

apq
=

1

(ap)q
=

(
1

ap

)q

= (a−p)q.

and

a−pq =
1

apq
=

1

(ap)q
= (ap)−q.

Also

apq = (ap)q =

(
1

ap

)−q

= (a−p)−q.

Substituting in m = ±p and n = ±q therefore yields the required
identity in all cases where both m and n are non-zero. This
completes the proof.



1. Sets and Number Systems (continued)

Proposition 1.9

Let a and b be real numbers. Then (ab)n = anbn for all
non-negative integers n. Moreover if a and b are both non-zero
then (ab)n = anbn for all integers n.

Proof
Let a and b be real numbers. The identity (ab)n = anbn holds
when n = 0 because a0 = 1, b0 = 1 and (ab)0 = 1.

The required identity can be established for positive values of n,
and for all real numbers a and b using the Principle of
Mathematical Induction. Indeed the identity (ab)n = anbn is true
when n = 1.
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Suppose that this identity is true when n = k , so that
(ab)k = akbk . Then

(ab)k+1 = (ab)k(ab) = akbkab = ak+1bk+1.

Thus if the identity (ab)n = anbn is true when n = k then it is also
true when n = k + 1. It follows from the Principle of Mathematical
Induction that (ab)n = anbn for all positive integers n.
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Now suppose that n is negative and that both a and b are
non-zero. Let p = −n. Then (ab)p = apbp. Taking the reciprocal
of both sides, we find that

(ab)n =
1

(ab)p
=

1

ap
× 1

bp
= a−pb−p = anbn.

This completes the proof that the identity (ab)n = anbn holds for
all non-zero real numbers a and b and for all integer values of n,
whether they be positive, negative or zero.
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1.12. Factorials and Binomial Coefficients

Definition

The factorial n! of a positive integer n is defined by the formula

n! = 1× 2× 3× · · · × n.

It is thus the product of the positive integers from 1 to n. The
factorial 0! of zero is defined so that 0! = 1.

The definition of factorials ensures that n! = (n − 1)!n for all
positive integers n.
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Given non-negative integers n and r , where 0 ≤ r ≤ n, the

binomial coefficient

(
n
r

)
is defined by the formula

(
n
r

)
=

n!

r !(n − r)!
.

This definition ensures that(
n
0

)
=

(
n
n

)
= 1.

for all non-negative integers n.
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Lemma 1.10

Let n and r be positive integers, where 1 ≤ r ≤ n. Then(
n
r

)
=

(
n − 1
r − 1

)
+

(
n − 1
r

)

Proof
Evaluating the right hand side, we see that(

n − 1
r − 1

)
+

(
n − 1
r

)
=

(n − 1)!

(r − 1)!(n − r)!
+

(n − 1)!

r !(n − r − 1)!
.

Now the definition of factorials ensures that

1

(r − 1)!
=

r

r !
and

1

(n − r − 1)!
=

n − r

(n − r)!
.
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It follows that(
n − 1
r − 1

)
+

(
n − 1
r

)
=

(n − 1)!r

r !(n − r)!
+

(n − 1)!(n − r)

r !(n − r)!

=
(n − 1)!n

r !(n − r)!
=

n!

r !(n − r)!

=

(
n
r

)
The result follows.
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1.13. The Binomial Theorem

Theorem 1.11 (Binomial Theorem)

Let x and y be real numbers. Then

(x + y)n =
n∑

r=0

(
n
r

)
xn−ry r

for all natural numbers n.

Proof
The definition of binomial coefficients ensures that the theorem is
true when n = 1.
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Suppose that the result holds for n = k, where k is some natural
number, so that

(x + y)k =
k∑

r=0

(
k
r

)
xk−ry r .

Then

(x + y)k+1 = (x + y)k(x + y) =
k∑

r=0

(
k
r

)
xk−ry r (x + y)

=
k∑

r=0

(
k
r

)
xk+1−ry r +

k∑
r=0

(
k
r

)
xk−ry r+1
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Now, substituting in r = j − 1, where j ranges over integers from 1
to k + 1, and then relabelling j as r , we find that

k∑
r=0

(
k
r

)
xk−ry r+1 =

k+1∑
j=1

(
k

j − 1

)
xk+1−jy j

=
k+1∑
r=1

(
k

r − 1

)
xk+1−ry r

Therefore

(x + y)k+1

=
k∑

r=0

(
k
r

)
xk+1−ry r +

k+1∑
r=1

(
k

r − 1

)
xk+1−ry r

= xk+1 + yk+1 +
k∑

r=1

((
k
r

)
+

(
k

r − 1

))
xk+1−ry r .
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Now (
k
r

)
+

(
k

r − 1

)
=

(
k + 1
r

)
for all non-negative integers k and positive integers r (see
Lemma 1.10). It follows that

(x + y)k+1 = xk+1 + yk+1 +
k∑

r=1

(
k + 1
r

)
xk+1−ry r

=
k+1∑
r=0

(
k + 1
r

)
xk+1−ry r .
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Thus if the identity

(x + y)n =
n∑

r=0

(
n
r

)
xn−ry r

holds for n = k , where k is some natural number, then it also
holds for n = k + 1. It follows from the Principle of Mathematical
Induction that that this identity holds for all natural numbers n, as
required.
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Remark
The equation

(x + y)n =
n∑

r=0

(
n
r

)
x ryn−r

that encapsulates the Binomial Theorem is reproduced in the
booklet Formulae and Tables prepared for use in examinations in
Ireland (on page 20 of the 2016 edition). The validity of this
equation requires that x0 = 1 and y0 = 1, in order that the correct
terms appear in the sum for r = 0 and r = n. Thus if this equation
is to be true for all real values of x and y , be they positive,
negative or zero, one must adopt the definition that 00 = 1.
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1.14. Intervals

A subset I of the set R of real numbers is said to be an interval if
all real numbers that lie between two elements of the set I
themselves belong to I . This requires that if u, v and w are real
numbers satisfying u < v < w , and if u ∈ I and w ∈ I then also
v ∈ I .

It can be shown that, in addition to the empty set ∅ and the whole
set R of real numbers, there are eight types of integrals. Four
types of integrals are bounded and are determined by their
endpoints a and b.
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Given real numbers a and b satisfying a ≤ b, we denote by [a, b]
the set consisting of all real numbers x that satisfy a ≤ x ≤ b.

Given real numbers a and b satisfying a < b, we denote by [a, b)
the set consisting of all real numbers x that satisfy a ≤ x < b, we
denote by (a, b] the set consisting of all real numbers x that satisfy
a < x ≤ b, and we denote by (a, b) the set consisting of all real
numbers x that satisfy a < x < b.
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Thus

[a, b] = {x ∈ R | a ≤ x ≤ b} (a ≤ b),

[a, b) = {x ∈ R | a ≤ x < b} (a < b),

(a, b] = {x ∈ R | a < x ≤ b} (a < b),

(a, b) = {x ∈ R | a < x < b} (a < b).
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In addition to the four types of bounded intervals just described,
there are four types of unbounded intervals that do not include the
whole of the set R. An unbounded interval falling within one of
these types is determined by a real number c representing an upper
or lower endpoint:—

[c ,+∞) = {x ∈ R | x ≥ c},
(c ,+∞) = {x ∈ R | x > c},
(−∞, c] = {x ∈ R | x ≤ c},
(−∞, c) = {x ∈ R | x < c}.
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Example
Let I = [1, 7], J = (2, 9), K = [4, 6) and L = (5,+∞), so that

I = {x ∈ R | 1 ≤ x ≤ 7},
J = {x ∈ R | 2 < x < 9},
K = {x ∈ R | 2 ≤ x < 6},
L = {x ∈ R | x > 5}.

Examining the relevant definitions, we find that

I ∪ J = {x ∈ R | 1 ≤ x < 9} = [1, 9),

I ∩ J = {x ∈ R | 2 < x ≤ 7} = (2, 7],

I \ J = {x ∈ R | 1 ≤ x ≤ 2} = [1, 2],

J \ I = {x ∈ R | 7 < x < 9} = (7, 9),
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Also, with K = [4, 6) and L = (5,+∞), we find that

K ∪ L = {x ∈ R | x ≥ 4} = [4,∞),

K ∩ L = {x ∈ R | 5 < x < 6} = (5, 6),

K \ L = {x ∈ R | 4 ≤ x ≤ 5} = [4, 5],

L \ K = {x ∈ R | x ≥ 6} = [6,+∞).
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Also, with I = [1, 7], J = (2, 9) and K = [4, 6), we find that

I \ K = {x ∈ R | 1 ≤ x < 4 or 6 ≤ x ≤ 7}
= [1, 4) ∪ [6, 7],

J \ (I \ K ) = (2, 9) \ ([1, 4) ∪ [6, 7))

= [4, 6) ∪ [7, 9).
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