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1. Sets and Number Systems

1. Sets and Number Systems

1.1. Sets

A set is a collection. The objects that belong to a set are referred
to as the elements of the set. Those elements may for example be
numbers, other sets, or other objects studied in a mathematical
investigation.

We use the notation p ∈ X to specify that an object p is an
element of a set X .

We use the notation p 6∈ X to specify that an object p is not an
element of a set X .

When the number of elements in a set is sufficiently small, the set
can be specified by listing those elements in braces.
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Example
Let X denote the set consisting of the first five prime numbers.
This set can be specified as follows:

X = {2, 3, 5, 7, 11}.

Then 3 ∈ X and 11 ∈ X . But 42 6∈ X .

Let X and Y be sets. If the set X has the same elements as the
set Y then the sets X and Y are equal (and are indeed the same
set), and we may denote this by writing X = Y .
It follows that if sets X and Y satisfy X 6= Y , then either there
exists an element of one of the two sets that is not an element of
the other.

Example
Let X = {1, 2, 3, 4, 5} and Y = {5, 4, 3, 2, 1}. Then X = Y .
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Given sets X and Y , we denote by X ∪ Y the union of the sets X
and Y . This is the set consisting of those elements that belong
either to X or else to Y . (This includes those elements that belong
to both X and Y .)
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Given sets X and Y , we denote by X ∩ Y the intersection of the
sets X and Y . This is the set consisting of those elements that
belong to both X and Y .
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Given sets X and Y , we denote by X \ Y the difference of the sets
X and Y . This is the set consisting of those elements that belong
to the set X but not to the set Y .
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The symmetric difference X∆Y of sets X and Y is the union of
the sets X \ Y and Y \ X .
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The definition of the symmetric difference X∆Y of the sets X and
Y ensures that

X∆Y = (X \ Y ) ∪ (Y \ X ).

The symmetric difference X∆Y of sets X and Y consists of all
elements that belong to exactly one of the sets X and Y . One can
verify that

X∆Y = (X ∪ Y ) \ (X ∩ Y ).
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The set with no elements is referred to as the empty set, and is
denoted by ∅.

Let X and Y be sets, and let p be an object. Then

p ∈ X ∪ Y if and only if either p ∈ X or p ∈ Y ;

p ∈ X ∩ Y if and only if both p ∈ X and p ∈ Y ;

p ∈ X \ Y if and only if p ∈ X but p 6∈ Y .
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Example
Let

X = {2, 4, 6, 8, 10}

and
Y = {6, 7, 8, 9, 10}.

Then

X ∪ Y = {2, 4, 6, 7, 8, 9, 10},
X ∩ Y = {6, 8, 10},
X \ Y = {2, 4},
Y \ X = {7, 9}.
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Unions and intersections of three or more sets can be defined and
represented by notation analogous to that adopted for unions and
intersections of two sets. For example, if W , X , Y , and Z are sets
then the union

W ∪ X ∪ Y ∪ Z

of the sets W , X , Y and Z consists of everything that belongs to
at least one of the sets W , X , Y and Z , and the intersection

W ∩ X ∩ Y ∩ Z

of the sets W , X , Y and Z consists of everything that belongs to
every one of the sets W , X , Y and Z ,
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When constructing sets from others using the basic set operations
of union, intersection and set difference, it is often necessary to
specify the order of evaluation using parentheses

(
· · ·
)
.

Example
Let W , X , Y and Z be sets. The set

(W ∪ X ) ∩ (Y ∪ Z )

is formed by first forming the union W ∪ X of the sets X and W ,
forming also the union Y ∪ Z of the sets Y and Z , and then
forming the intersection of the resulting sets W ∪ X and Y ∩ Z .
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Let X and Y be sets. If every element of the set X is an element
of the set Y then we say that the set X is a subset of the set Y ,
and we denote this fact by writing X ⊂ Y .

If the set X is not a subset of the set Y , then we can denote this
fact by writing X 6⊂ Y .

Example
Let X = {1, 3, 5}, Y = {1, 2, 3, 4, 5} and Z = {2, 3, 4, 5}. Then
X ⊂ Y and Z ⊂ Y , but X 6⊂ Z .
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1.2. Determining Subsets by Conditionals

Let X be a set, and let P(x) represent some conditional that may
or may not be satisfied by elements x of the set X . The notation

{x ∈ X | P(x)}.

then specifies the subset of X consisting of those elements x of the
set X that satisfy the condition P(x).

Example
Let

X = {−5,−4,−3,−2,−1, 0, 1, 2, 3, 4, 5},

and let
W = {x ∈ X | x2 > 11}.

Then
W = {−5,−4, 4, 5}.
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Remark
In the mathematical literature, it is commonplace to find notation
of the form

{x ∈ X : P(x)}

in place of
{x ∈ X | P(x)}.

The set W is thus specified in this alternative notation as
follows:—

W = {x ∈ X : x2 > 11}.
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1.3. Cartesian Products of Sets

Let X and Y be sets. The Cartesian product X × Y of the sets X
and Y is the set consisting of all ordered pairs (x , y) for which
x ∈ X and y ∈ Y .

Example
Let X = {1, 2, 3} and Y = {8, 9}. Then

X × Y = {(1, 8), (2, 8), (3, 8), (1, 9), (2, 9), (3, 9)}.

One may define in an analogous fashion the Cartesian product of
three or more sets. Thus the Cartesian product X × Y × Z of
three sets X , Y and Z consists of all ordered triples (x , y , z) for
which x ∈ X , y ∈ Y and z ∈ Z .
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Remark
We have considered examples of sets whose elements are numbers.
Provided that the set itself is a well-defined collection of elements,
the definition of sets imposes no restriction on what those elements
might be. The elements of the set might be numbers, or characters
taken from some alphabet, or strings of characters, or colours, or
molecules, or students registered for a particular module. For
example, the following is a perfectly valid example of a set

{1, 2, 59.7, ‘Dog’, ‘Cat’}.
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1.4. The System of Natural Numbers

The positive whole numbers 1, 2, 3, 4, 5, . . . are referred to as
natural numbers. They are also known as the positive integers.

The set consisting of all natural numbers is denoted by N.
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1.5. Summation of Finite Sequences of Numbers

Let T1,T2,T3, . . . be an infinite seqeuence of real and complex
numbers, and let

S1 = T1,

S2 = T1 + T2,

S3 = T1 + T2 + T3,
...

Sn = T1 + T2 + T3 + · · ·+ Tn.

Then Sn is the sum of the first n members of the infinite sequence
T1,T2, . . . ,Tn.
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The identity
Sn = T1 + T2 + T3 + · · ·+ Tn

is expressed more concisely in standard mathematical notation by
writing

Sn =
n∑

j=1

Tj .

Similarly, we write

q∑
j=p

Tj = Tp + Tp+1 + · · ·+ Tq−1 + Tq.

We can read “
q∑

j=p
Tj” as specifying “the sum of the quantities Tj

as j ranges over all integers between p and q inclusive”.
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Note that any letter may be used as the “index of summation” in
place of index j of summation, other than those that are already in
use, or appear in formulae for the “limits of summation” above and
below the

∑
symbol. Thus

n∑
j=1

Tj =
n∑

k=1

Tk =
n∑

m=1

Tm, etc.
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Note that
n∑

j=1

Tj =
r+n∑

k=r+1

Tk−r

for all integers r , because both sums involve a summation of
quantities Tj with j = 1, 2, . . . , n. In particular,

n−1∑
j=0

Tj+1 =
n∑

j=1

Tj =
n+1∑
j=2

Tj−1.
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1.6. The Principle of Mathematical Induction

For each natural number n, let P(n) be some property, in general
dependent on the value of the natural number n, that must be
either true or false. The Principle of Mathematical Induction
asserts that the property P(n) must be true for all natural
numbers n provided that the following two conditions are
satisfied:—

(i) P(1) is true;

(ii) if P(k) is true for some natural number k , then so is P(k + 1).
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In order to illustrate the procedure for setting out a proof using the
Principle of Mathematical Induction, we establish the formula
stated in the following proposition, which establishes a formula for
the sum of the first n terms of an arithmetic sequence.

Proposition 1.1

For each natural number n, let

Tn = a + (n − 1)d ,

and let

Sn =
n∑

j=1

Tj = T1 + T2 + · · ·+ Tn.

Then
Sn =

n

2
(2a + (n − 1)d) .
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Proof using the Principle of Mathematical Induction
Let

Un =
n

2
(2a + (n − 1)d)

for all natural numbers n. We must prove that Sn = Un for all
natural numbers n.

Now S1 = T1 = a and

U1 =
1

2
(2a + 0× d) = a.

It follows that S1 = U1. Thus the identity Sn = Un we are seeking
to prove is valid when n = 1. (We have now accomplished the base
step of the induction proof.)
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Now let k denote some natural number for which Sk = Uk , so that

Sk =
k

2
(2a + (k − 1)d) .

The definition of Sn for all natural numbers n ensures that
Sk+1 = Sk + Tk+1, and thus

Sk+1 = Sk + a + kd .

The definition of Un for all natural numbers n ensures that

Uk+1 =
k + 1

2
(2a + ((k + 1)− 1)d)

=
k

2
(2a + kd) +

1

2
(2a + kd)

=
k

2
(2a + (k − 1)d) +

kd

2
+

1

2
(2a + kd)

= Uk +
kd

2
+

1

2
(2a + kd)

= Uk + a + kd .
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Now k has been chosen subject to the requirement that Sk = Uk .
It follows from the above calculations that

Sk+1 = Sk + a + kd = Uk + a + kd = Uk+1.

We have thus shown that that if the identity Sn = Un holds when
n = k , then this identity also holds for n = k + 1. (We have thus
completed the inductive step of the induction proof.)
It now follows from the Principle of Mathematical Induction that
Sn = Un for all natural numbers n, as required.
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Second Proof of Proposition 1.1
Let

Un =
n

2
(2a + (n − 1)d)

for all natural numbers. Then there is always an infinite sequence

T1,T2,T3,T4, . . .

with the property that

T1 + T2 + T3 + · · ·+ Tn = Un

for all natural numbers n. We simply have to identify what the
sequence T1,T2,T3, . . . is whose sums satisfy the above formula.
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Now if
T1 + T2 + T3 + · · ·+ Tn = Un

for all natural numbers n then T1 = U1 and Tn = Un − Un−1

whenever n > 1. It follows that

T1 = U1 =
1

2
(2a− 0× d) = a.

Moreover if n > 1 then
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Tn = Un − Un−1

=
n

2
(2a + (n − 1)d)− n − 1

2
(2a + (n − 2)d)

=
n

2

(
(2a− (n − 1)d)− (2a− (n − 2)d

)
+

1

2
(2a + (n − 2)d)

=
nd

2
+

1

2
(2a + (n − 2)d) =

1

2
(2a + (2n − 2)d)

= a + (n − 1)d .



1. Sets and Number Systems (continued)

Thus if T1,T2,T3, . . . is the infinite sequence characterized by the
property that

T1 + T2 + T3 + · · ·+ Tn =
n

2
(2a + (n − 1)d)

for all natural numbers n then

Tn = a + (n − 1)d

for all natural numbers n. The result follows.
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It follows directly from Proposition 1.1 that

n∑
j=1

j = 1
2n(n + 1),

for all natural numbers n, where

n∑
j=1

j = 1 + 2 + 3 + · · ·+ n.



1. Sets and Number Systems (continued)

Third Proof of Proposition 1.1
Let n be a natural number. Consider the following table with two
rows and n columns:—

1 2 3 4 · · · n − 1 n

n n − 1 n − 2 n − 3 · · · 2 1
.

Each row of the table sums to Vn, where

Vn =
n∑

j=1

j = 1 + 2 + 3 + 4 + · · ·+ n.

Moreover there are n columns, and each column sums to n + 1. It
follows that 2Vn = n(n + 1). because each side of this equality is
equal to the sum of the numbers appearing as entries in the table.
Dividing by 2, we find that

n∑
j−1

j = 1
2n(n + 1).
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Now let Tn = a + (n− 1)d , where a and d are the initial value and
increment respectively of the arithmetic sequence, and let

Sn =
n∑

j=1

Tj = T1 + T2 + T3 + · · ·+ Tn

for all natural numbers n. Then

Sn =
n∑

j=1

(a + (j − 1)d) = (a− d)n + d ×
n∑

j−1

j

= (a− d)n +
d

2
n(n + 1)

=
n

2
(2(a− d) + (n + 1)d)

=
n

2
(2a + (n − 1)d) ,

as required.
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Remark
The formula proved in Proposition 1.1 appears on page 22 of the
booklet Formulae and Tables published by the State Examinations
Commission (Foirmĺı agus Tábláı, Coimisiún na Scrúduithe Stáit,
SEC/PO 100000555-V5-Jan2016, p.22).
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The Principle of Mathematical Induction had manifold applications
in mathematics. In particular its application is not restricted to
problems concerned with summation of sequences of numbers.

Example
We use the method of Proof by Mathematical Induction to prove
that 9n − 1 is divisible by 8 for all natural numbers n. Now if n = 1
then 9n − 1 = 8, and thus 9n − 1 is divisible by 8. Thus the
proposition that 9n − 1 is divisible by 8 holds for n = 1.
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Suppose that this proposition holds for n = k , so that k is some
natural number for which 9k − 1 is divisible by 8. Now

9k+1 − 1 = (9k+1 − 9k) + (9k − 1)

= (9− 1)× 9k + (9k − 1)

= 8× 9k + (9k − 1).

now both 8× 9k and 9k − 1 are divisible by 8, and the sum of two
integers divisible by 8 must itself be divisible by 8. It follows that
9k+1 − 1 is divisible by 8. Thus if the proposition that 9n − 1 is
divisible by 9 holds for n = k then it also holds for n = k + 1.
Thus the proposition that 9n − 1 is divisible by 8 is true for all
natural numbers n, as claimed.
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