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1 Investigation of the Regular Pentagon us-

ing Complex Numbers

1.1 Basic Properties of the Complex Numbers

Sir William Rowan Hamilton, in a presentation delivered to the British As-
sociation for the Advancement of Science, at its meeting at Trinity College
Dublin in 1835, expounded his approach to the understanding of the basic
principles underlying the system of complex numbers. He argued that “com-
plex numbers” should be identified with algebraic couples of the form (x, y),
where x and y are real numbers, and where addition and multiplication of
algebraic couples are defined by the identities:

(x, y) + (u, v) = (x+ u, y + v), (x, y)× (u, v) = (xu− yv, xv + yu).

The resulting algebraic system has the properties that result from these def-
initions, when the normal “rules of algebra”, such as the Commutative and
Distributive Laws, are applied. Consequently

(x, y)− (u, v) = (x− u, y − v), (x, y)÷ (u, v) =

(
xu+ yv

u2 + v2
,
yu− xv
u2 + v2

)
,

where division of algebraic couples is defined in cases, and only in cases,
where the real and imaginary parts, u and v of the denominator are not both
equal to zero.

In this system of “algebraic couples” we identify each real number x with
the algebraic couple (x, 0), and we set i = (0, 1). The rules for multiplying
algebraic couples then ensure that

i2 = (0, 1)2 = (0, 1)× (0, 1) = (−1, 0) = −1.
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Moreover

x+ iy = (x, 0) + ((0, 1)× (y, 0)) = (x, 0) + (0, y) = (x, y).

We thus obtain the standard representation of complex numbers, in which
complex numbers are expressed in the from x + iy, where x and y are real
numbers and i2 = −1.

The complex conjugate of a complex number represented as an algebraic
couple (x, y) is that represented as (x,−y). The complex conjugate of a
complex number z is denoted by z.

Let z and w be complex numbers represented in Hamilton’s scheme by
algebraic couples (x, y) and (u, v) respectively. Then

z + w = (x,−y) + (u,−v) = (x+ u,−(y + v)) = z + w

and
z w = (x,−y)× (u,−v) = (xu− yv,−(xv + yu)) = zw.

Also
zz = (x, y)× (x,−y) = (x2 + y2, 0) = |z|2,

where |x + iy| =
√
x2 + y2 for all real numbers x and y. It follows, on

substituting −y for y, that zz = |z|2.
Now let complex numbers z and w satisfy |z| = 1 and |w| = 1, and let

z = x + iy and w = u + iv, where x, y, u and v are real numbers. Then
x2 + y2 = 1 and u2 + v2 = 1, and consequently real numbers θ and ψ can be
found so that

z = cos θ + i sin θ, w = cosψ + i sinψ.

Then

zw = cos θ cosψ − sin θ sinψ + (sin θ cosψ + cos θ sinψ)

= cos(θ + ψ) + i sin(θ + ψ).

Applying this identity with ψ = (m− 1)θ for m = 1, 2, 3, . . ., we find that

(cos θ + i sin θ)m = cosmθ + i sinmθ

for all positive integers m. Moreover

(cos θ + i sin θ)−1 = cos θ − i sin θ.

Consequently

(cos θ + i sin θ)−m = (cos θ − i sin θ)m = cosmθ − i sinmθ

= cos(−mθ) + i sin(−mθ)
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for all positive integers m. Combining the results obtained above, and using
the identities sin 0 = 0 and cos 0 = 1, we find that

(cos θ + i sin θ)n = cosnθ + i sinnθ

for all integers n, be those integers positive, negative or zero. This result is
De Moivre’s Theorem.

1.2 The Fifth Roots of Unity in the Complex Plane

The complex numbers z that satisfy the equation z5 = 1 constitute the
vertices of a regular pentagon inscribed in the unit circle in the complex
plane. Indeed if z5 = 1 then |z|5 = |z5| = 1, and therefore |z| = 1. It follows
that the solutions of the equation z5 = 1 in the complex plane all lie on the
unit circle {z ∈ C : |z| = 1} in the complex plane. It follows that if the
complex number z satisfies the equation z5 = 1 and if z = x + iy, where x
and y are real numbers and i2 = −1, then x2+y2 = 1, and therefore x = cos θ
and y = sin θ for some real number θ, and consequently

z = cos θ + i sin θ.

It then follows from De Moivre’s Theorem that

1 = z5 = cos 5θ + i sin 5θ,

and therefore 5θ = 2πn for some integer n. Consequently the complex num-
bers satisfying the equation z5 = 1 are the complex numbers

1, ω, ω2, ω3 and ω4,

where

ω = cos
2π

5
+ i sin

2π

5
.

The angle here represented in radian measure as 2
5
π is the angle of 72◦. It is

the angle between lines joining two succesive vertices of a regular pentagon
to the centre of that pentagon.

Next we note that if the complex number z satisfies the equation z5 = 1,
and if z 6= 1, then

(1− z)(1 + z + z2 + z3 + z4)

= (1− z) + (z − z2) + (z2 − z3) + (z3 − z4) + (z4 − z5)
= 1− z5 = 0,
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and therefore
1 + z + z2 + z3 + z4 = 0.

Consequently the complex numbers ω, ω2, ω3 and ω4 are the four roots of
the polynomial

1 + z + z2 + z3 + z4.

1

ω

ω2

ω3

ω4

0

1.3 Some Calculations involving Fifth Roots of Unity

First we note that
ω . ω4 = ω5 = 1 = ω . ω.

Dividing by ω, we find that ω4 = ω. Thus if ω = u+ iv, where u = cos(2π/5)
and v = sin(2π/5), then ω4 = u− iv. Similarly

ω2 . ω3 = ω5 = 1 = ω2 . ω2.

Dividing by ω2, we find that ω3 = ω2. Thus if ω2 = −s+ it, where

s = − cos

(
4π

5

)
= cos

(
π − 4π

5

)
= cos

(π
5

)
and

t = sin

(
4π

5

)
= sin

(
π − 4π

5

)
= sin

(π
5

)
,

then ω3 = −s− it.
The results obtained above may therefore be summarized in the statement

that

ω = u+ iv, ω2 = −s+ it, ω3 = −s+ it and ω4 = u− iv,
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1

ω

ω2

ω3

ω4

0
−1

u

v

s

t

where

u = cos
2π

5
= cos 72◦, v = sin

2π

5
= sin 72◦,

s = cos
π

5
= cos 36◦, t = sin

π

5
= sin 36◦.

We now examine the squares of the complex numbers ω±ω4 and ω2±ω3.
We find that

(ω + ω4)2 = ω2 + 2ω5 + ω8 = ω2 + 2 + ω3,

(ω − ω4)2 = ω2 − 2ω5 + ω8 = ω2 − 2 + ω3,

(ω2 + ω3)2 = ω4 + 2ω5 + ω6 = ω4 + 2 + ω,

(ω2 − ω3)2 = ω4 − 2ω5 + ω6 = ω4 − 2 + ω.

Consequently

(ω + ω4)2 + ω + ω4 − 1 = 1 + ω + ω2 + ω3 + ω4 = 0

and
(ω2 + ω3)2 + ω2 + ω3 − 1 = 1 + ω + ω2 + ω3 + ω4 = 0,

and therefore

4u2 + 2u− 1 = 0 and 4s2 − 2s− 1 = 0.

Solving these quadratic equations by the usual methods, and taking note of
the inequalities u > 0 and s > 0, we find that

u =
−1 +

√
5

4
and s =

1 +
√

5

4
.
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Next let

ϕ =
ω − ω4

ω2 − ω3
.

Now ω−ω4 = 2iv and ω2−ω3 = 2it, where v and t have the values specified
above. It follows that ϕ is a positive real number, and ϕ = v/t. Moreover
ω = ω6, because ω5 = 1, and therefore

ϕ =
ω6 − ω4

ω2 − ω3
=

(ω3 − ω2)(ω3 + ω2)

ω2 − ω3
= −(ω2 + ω3) = 2s =

1 +
√

5

2
.

Now we have noted above that 4s2−2s−1 = 0. Consequently ϕ2−ϕ−1 = 0.
Thus ϕ2 = ϕ+ 1, and therefore

ϕ+ 1

ϕ
= ϕ.

1.4 The Golden Section

Consider a given straight line segment that is divided by a point in the interior
of the segment into a greater or lesser segment in such a way as to ensure that
the ratio of the length of the whole to that of the greater segment is equal to
the ratio of length of the greater segment of the lesser segment. Suppose that
the given straight line segment has length k and that the greater segment
has length g. Then

k

g
=

g

k − g
and therefore (

k

g
− 1

)
k

g
= 1.

k

g

Rearranging, we find that (
k

g

)2

=
k

g
+ 1.

Thus the ratio k/g is a root of the same quadratic polynomial as the num-
ber ϕ. That polynomial has a unique positive root. It follows that

k

g
= ϕ.
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In situations where the given straight line segment is divided into a greater
and lesser segment in the manner described above, the ancient Greeks would
say that the straight line segment has been cut in extreme and mean ra-
tio. (See Euclid’s Elements of Geometry, Book VI, Definition 3.) From the
early nineteenth century onwards, it has become customary to refer to this
particular ratio represented by the real number ϕ as the Golden Section (
(The introduction of this name, goldener Schnitt, in the German language,
is attributed to the mathematician Martin Ohm.) But, although the name
Golden Section only dates from the early nineteenth century, the properties
of this ratio had been much studied in preceding centuries, and indeed plays
an important role in several books of Euclid’s Elements of Geometry.

1.5 Cartesian Coordinates of the Vertices of the Reg-
ular Pentagon

We resume our investigation of the geometry of the regular pentagon, deter-
mining expressions for the Cartesian coordinates of the vertices of the regular
pentagon in inscribed in the unit circle, expressing those coordinates in terms
of the number ϕ that represents the ratio that is named the Golden Section.

Now ω2 = −s+it, where s = 1
2
ϕ, where ϕ2 = ϕ+1. Moreover s2+t2 = 1.

It follows that

t2 = 1
4
(4− ϕ2) = 1

4
(3− ϕ) = 1

8
(5−

√
5).

Now we also showed above that ϕ = v/t. Consequently

v2 = ϕ2t2 = (ϕ+ 1)t2 = 1
4
(ϕ+ 1)(3− ϕ) = 1

4
(3 + 2ϕ− ϕ2) = 1

4
(2 + ϕ)

= 1
8
(5 +

√
5).

Also
1 + ω + ω2 + ω3 + ω4 = 0,

where ω + ω4 = 2u and ω2 + ω3 = −2s. It follows that 1 + 2u− 2s = 0, and
therefore

u = s− 1

2
= 1

2
(ϕ− 1).

If we use to correspondence between complex numbers and points of the
plane R2, using the standard Argand diagram, we find that, given a regular
pentagon inscribed in the unit circle x2 + y2 = 1 in the plane R2, where one
vertex of that pentagon is located at the point P0, where P0 = (1, 0), then
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the other vertices are located at points P1, P2, P3 and P4, where

P1 =
(

1
2
(ϕ− 1), 1

2

√
2 + ϕ

)
=

√5− 1

4
,

√
5 +
√

5

8

 ,

P2 =
(

1
2
ϕ, 1

2

√
3− ϕ

)
=

√5 + 1

4
,

√
5−
√

5

8

 ,

P3 =
(

1
2
ϕ,−1

2

√
3− ϕ

)
=

√5 + 1

4
, −

√
5−
√

5

8

 ,

P4 =
(

1
2
(ϕ− 1),−1

2

√
2 + ϕ

)
=

√5− 1

4
, −

√
5 +
√

5

8

 .

P0(1)

P1(ω)

P2(ω
2)

P3(ω
3)

P4(ω
4)

0
−1

u

v

s

t

Next we note that the length p of a side of this regular pentagon is the
distance between the vertices P2 and P3, and consequently

p = 2t =

√
5−
√

5

2
.

Next we determine the length of a side d of a regular decagon inscribed in
the unit circle. Note that P2 and (−1, 0) are two successive vertices of this
regular decagon, where P2 = (−s, t). Applying Pythagoras’ Theorem, and
using the identity s2 + t2 = 1, we find that

d2 = (1− s)2 + t2 = 1− 2s+ s2 + t2 = 2− 2s = 2− ϕ.
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Consequently
d2 + 1 = 3− ϕ = 4t2 = p2.

Now the length h of the side of a regular hexagon inscribed in the unit circle
satisfies h = 1. Consequently d2 +h2 = p2. The corresponding equality holds
in circles of any size. This establishes the following proposition:

If an equilateral pentagon be inscribed in a circle, the square on
the side of the pentagon is equal to the squares on the side of the
hexagon and on that of the decagon inscribed in the same circle.

This proposition is Proposition 10 in Book XIII of Euclid’s Elements of
Geometry.

There are other propositions in Books II, IV and XIII of Euclid’s elements
that state results that are geometrical analogues of many of the identities
established algebraically above.

1.6 Investigations concerning the Pentagon in Euclid’s
Elements of Geometry

In particular Proposition 11 in Book IV of Euclid’s Elements describes and
justififies the construction of a regular pentagon inscribed in a circle that
can be achieved using straightedge and compass. The preceding proposition
describes and justifies the construction of an isosceles triangle in which the
angles at the base are double the angle at the vertex. The angle at the vertex
of this triangle is 36◦ (i.e., the angle between successive vertices of a regular
decagon inscribed in a circle, when viewed from the centre of that circle.
The ratio of the length of the sides of this particular isosceles triangle is the
Golden Section ratio ϕ discussed above.

Proposition 10 in Book XIII of Euclid’s Elements is used in the proof the
result of Proposition 16 in the same book. Suppose we are given 20 equilateral
triangles of the same size. Five of those triangles can be attached together
along edges to form a cap at whose vertex all the triangles meet. Five more
of those triangles can be attached together to form a corresponding base of
the same shape. The remaining ten equilateral triangles can be attached
together to form a belt. The cap and base can then be attached to the belt
so constructed to form an isosahedron. Now Proposition 16 in Book XIII of
Euclid’s Elements establishes that the vertices of this isosahedron lie on a
sphere.

Sir Thomas L. Heath’s Historical Note that forms a preface to his trans-
lation of Book XIII of Euclid’s Elements commences as follows:
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I have already given, in the note to iv. 10, the evidence upon
which the construction of the five regular solids is attributed to
the Pythagoreans. Some of them, the cube, the tetrahedron
(which is nothing but a pyramid), and the octahedron (which
is only a double pyramid with a square base), cannot but have
been known to the Egyptians. And it appears that dodecahedra
have been found, of bronze or other material, which may belong
to periods earlier than Pythagoras’ time by some centuries (for
references see Cantor’s Geschichte der Mathematik, i3, pp. 175–
6).

It is true that the author of the scholium No. 1 to Eucl. xiii.
says that the Book is about “the five so-called Platonic figures,
which however do not belong to Plato, three of the aforesaid five
figures being due to the Pythagoreans, namely the cube, the pyra-
mid and the dodecahedron, while the octahedron and the icosa-
hedron are due to Theaetetus.” This statement (taken probably
from Geminus) may perhaps rest on the fact that Theaetetus
was the first to write at any length about the two last-mentioned
solids. We are told indeed by Suidas (s. v. Θεαίτητος) that
Theaetetus “first wrote on the ‘five solids’ as they are called.”
This no doubt means that Theaetetus was the first to write a
complete and systematic treatise on all the regular solids; it does
not exclude the possibility that Hippasus or others had already
written on the dodecahedron. The fact that Theaetetus wrote
upon the regular solids agrees very well with the evidence which
we possess of his contributions to the theory of irrationals, the
connexion between which and the regular solids is seen in Euclid’s
Book xiii.

Theaetetus flourished about 380 b.c, and his work on the
regular solids was soon followed by another, that of Aristaeus,
an elder contemporary of Euclid, who also wrote an important
book on Solid Loci, i.e. on conics treated as loci. This Aristaeus
(known as “the elder”) wrote in the period about 320 b.c. We
hear of his Comparison of the five regular solids from Hypsicles of
the Elements as Book xiv. Hypsicles gives in this Book some six
propositions supplementing Eucl. xiii.; and he introduces second
of the propositions (Heiberg’s Euclid, Vol. v. p. 6) as follows:

“The same circle circumscribes both the pentagon of the
dodecahedron and the triangle of the icosahedron when
both are inscribed in the same sphere. This is proved by
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Aristaeus in the book entitled Comparison of the five
figures.”

Hypsicles proceeds (pp. 7 sqq.) to give a proof of this theorem.
Allman pointed out (Greek Geometry from Thales to Euclid, 1889,
pp. 201–2) that this proof depends on eight theorems, six of which
appear in Euclid’s Book xiii. (in Propositions 8, 10, 12, 15, 16
with Por. 17); two other propositions not mentioned by Allman
are also used, namely xiii. 4 and 9. This seems, as Allman says, to
confirm the inference of Bretschneider (p. 171) that, as Aristaeus’
work was the newest and latest in which, before Euclid’s time,
this subject was treated, we have in Eucl. xiii. at least a partial
recapitulation of the contents of the treatise of Aristaeus.

After Euclid, Apollonius wrote on the comparison of the do-
decahedron and the icosahedron inscribed in one and the same
sphere. This we also learn from Hypsicles, who says in the next
words following those about Aristaeus above quoted: “But it is
proved by Apollonius in the second edition of his Comparison of
the dodecahedron with the icosahedron that, as the surface of the
dodecahedron is to the surface of the icosahedron [inscribed in
the same sphere], so is the dodecahedron itself [i.e., its volume]
to the isosahedron, because the perpendicular is the same from
the centre of the sphere to the pentagon of the dodecahedron and
to the triangle of the icosahedron.

Note, in the above historical note, the detailed metrical information con-
cerning the geometry of the pentagon, the icosahedron and the dodecahedron
that, on the evidence of the quoted texts, is to be attributed to the ancient
Greeks.
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