
Course 421 - Trinity Term 2003: Worked
Solutions
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April 24, 2007

Many of the questions represent bookwork (and the worked solutions
presented here tend to follow the printed lecture notes). The exceptions are
the following questions or parts of questions:—

Question 1 (b) Not bookwork.

Question 1 (d) Not stated in lecture notes in this particular form, but
this, or related, results form part of the proof of theorems like the Path
Lifting Theorem.

Question 2 (b) Not bookwork. There was a question on a 421 examination
paper some years ago, which was equivalent to asking candidates to
show that the function ν is constant, provided that X is connected.

Question 2 (c) Not bookwork. There are questions like this on previous
examination papers, and in problem sets.

Question 6 This is not bookwork. However similar (but not identical) ques-
tions have regularly appeared on previous 421 papers which I have set;
and I have gone through a similar problem (involving the homology
groups of the octohedron) in class.

Question 8 (b) Not bookwork. An exercise on finding the homology groups
of the real projective plane using the Mayer-Vietoris sequence is to
be found on a problem set, but not phrased as in this examination
question.

Each question will be marked out of 20. The final result may well be the
sum of the results of the best six questions, converted to a percentage; but
a piecewise linear re-scaling may be applied if this is felt to be appropriate.
The parameters of such a rescaling would be determined after the individual
questions on the scripts have been marked.
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1. (a) [Quoted from printed lecture notes.] Let X be a topological space,
and let A be a subset of X. A collection of subsets of X in X
is said to cover A if and only if every point of A belongs to at
least one of these subsets. In particular, an open cover of X is
collection of open sets in X that covers X.

If U and V are open covers of some topological space X then V is
said to be a subcover of U if and only if every open set belonging
to V also belongs to U .

A topological space X is said to be compact if and only if every
open cover of X possesses a finite subcover.

(b) Let V be an open cover of R with the Zariski topology. Choose
x0 ∈ R. Then x0 ∈ V0 for some open set V0 belonging to the
open cover V . Now V is non-empty. It follows from the definition
of the Zariski topology that R \ V0 is a finite set. Let R \ V0 =
{x1, x2, . . . , xk}. Now there exist open sets V1, . . . , Vk belonging
to the open cover V such that xi ∈ Vi for i = 1, 2, . . . , k. Then the
open sets V0, V1, . . . , Vk constitute a finite subcover of the open
cover V .

(c) [Quoted from printed lecture notes.] (Lebesgue Lemma) Let
(X, d) be a compact metric space. Let U be an open cover of X.
Then there exists a positive real number δ such that every subset
of X whose diameter is less than δ is contained wholly within one
of the open sets belonging to the open cover U .

Every point of X is contained in at least one of the open sets
belonging to the open cover U . It follows from this that, for
each point x of X, there exists some δx > 0 such that the open
ball B(x, 2δx) of radius 2δx about the point x is contained wholly
within one of the open sets belonging to the open cover U . But
then the collection consisting of the open balls B(x, δx) of radius
δx about the points x of X forms an open cover of the compact
space X. Therefore there exists a finite set x1, x2, . . . , xr of points
of X such that

B(x1, δ1) ∪B(x2, δ2) ∪ · · · ∪B(xr, δr) = X,

where δi = δxi for i = 1, 2, . . . , r. Let δ > 0 be given by

δ = minimum(δ1, δ2, . . . , δr).

Suppose that A is a subset of X whose diameter is less than δ. Let
u be a point of A. Then u belongs to B(xi, δi) for some integer i
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between 1 and r. But then it follows that A ⊂ B(xi, 2δi), since,
for each point v of A,

d(v, xi) ≤ d(v, u) + d(u, xi) < δ + δi ≤ 2δi.

But B(xi, 2δi) is contained wholly within one of the open sets
belonging to the open cover U . Thus A is contained wholly within
one of the open sets belonging to U , as required.

(d) It follows from the continuity of f : [0, 1]→ X that the collectionW
of subsets of [0, 1] that are of the form f−1(V ) for some V ∈ V is an
open cover of [0, 1]. The topological space [0, 1] is a compact metric
space. It follows from the Lebesgue Lemma that there exists some
δ > 0 such that every subset of [0, 1] whose diameter is less than
δ is contained in some set belonging to the open coverW of [0, 1],
and is therefore contained in f−1(V ) for some open set V belonging
to V . We may then choose t0, t1, . . . , tm such that ti− ti−1 < δ for
i = 1, 2, . . . ,m.
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2. (a) [Quoted from lecture notes.] Let X and X̃ be topological spaces
and let p: X̃ → X be a continuous map. An open subset U of X
is said to be evenly covered by the map p if and only if p−1(U)
is a disjoint union of open sets of X̃ each of which is mapped
homeomorphically onto U by p. The map p: X̃ → X is said to be
a covering map if p: X̃ → X is surjective and in addition every
point of X is contained in some open set that is evenly covered by
the map p.

(b) Let U be an evenly covered open set in X. Then p−1(U) is a disjoint
union of open sets V1, . . . , Vk, where Vi is mapped homeomorphi-
cally onto U by p for i = 1, 2, . . . , k. If u ∈ U then p−1({u})
intersects Vi in a single point for i = 1, 2, . . . , k, and therefore
ν(u) = k for all u ∈ U . It follows that the function ν:X → Z is
constant on each evenly covered open set.

Now each point of X belongs to some evenly covered open set.
Therefore, given any point in X, the function ν is constant over
a neighbourhood of that point. Such a function is continuous.
[For each k ∈ Z, ν−1(k) can be expressed as a union of (evenly
covered) open sets, and is therefore itself an open sets. It follows
that ν−1(W ) is an open set in X for any subset W of Z, since it
is a union of open sets of the form ν−1(k).]

(c) (i) The map f :A1 → A2 is a covering map. Indeed let W1 and W2

be the open subsets of A2 defined by

W1 = A2 \ P, W2 = A2 \ (−P ),

where P is the set of positive real numbers, and −P is the set
of negative real numbers. Then Then f−1(W1) = V1+ ∪ V1−, and
f−1(W2) = V2+ ∪ V2−, where V1± and V2± are the open subsets of
A1 defined by

V1+ = {z ∈ A1 : Im z > 0}, V1− = {z ∈ A1 : Im z < 0},

V2+ = {z ∈ A1 : Re z > 0}, V2− = {z ∈ A1 : Re z < 0}.

Moreover V1+ and V1− are each mapped homeomorphically onto
W1 under f , and similarly V2+ and V2− are each mapped home-
omorphically onto W2 under f . Therefore W1 and W2 are both
evenly covered by f . Moreover f :A1 → A2 is surjective, and every
point of A2 belongs to one or other of the evenly covered open sets
W1 and W2. Thus f :A1 → A2 is a covering map.
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(ii) The map g:A1 \ P → A2 is not a covering map. Indeed, if
ν:A2 → Z is defined as described in (b) then ν(z) = 1 if z ∈ A2∩P ,
whereas ν(2) = 2 if z ∈ A2 \ P , where P is the set of positive real
numbers. Therefore the function ν is not continuous on A2, which
it would have to be were the map g a covering map.
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3. [Quoted from lecture notes.] We regard S1 as the unit circle in R2.
Without loss of generality, we can take b = (1, 0). Now the map p:R→
S1 which sends t ∈ R to (cos 2πt, sin 2πt) is a covering map, and b =
p(0). Moreover p(t1) = p(t2) if and only if t1 − t2 is an integer; in
particular p(t) = b if and only if t is an integer.

Let α and β be loops in S1 based at b, and let α̃ and β̃ be paths
in R that satisfy p ◦ α̃ = α and p ◦ β̃ = β. Suppose that α and β
represent the same element of π1(S1, b). Then there exists a homotopy
F : [0, 1] × [0, 1] → S1 such that F (t, 0) = α(t) and F (t, 1) = β(t)
for all t ∈ [0, 1], and F (0, τ) = F (1, τ) = b for all τ ∈ [0, 1]. It follows
from the Monodromy Theorem that this homotopy lifts to a continuous
map G: [0, 1] × [0, 1] → R satisfying p ◦ G = F . Moreover G(0, τ) and
G(1, τ) are integers for all τ ∈ [0, 1], since p(G(0, τ)) = b = p(G(1, τ)).
Also G(t, 0) − α̃(t) and G(t, 1) − β̃(t) are integers for all t ∈ [0, 1],
since p(G(t, 0)) = α(t) = p(α̃(t)) and p(G(t, 1)) = β(t) = p(β̃(t)).
Now any continuous integer-valued function on [0, 1] is constant, by
the Intermediate Value Theorem. In particular the functions sending
τ ∈ [0, 1] to G(0, τ) and G(1, τ) are constant, as are the functions
sending t ∈ [0, 1] to G(t, 0)− α̃(t) and G(t, 1)− β̃(t). Thus

G(0, 0) = G(0, 1), G(1, 0) = G(1, 1),

G(1, 0)− α̃(1) = G(0, 0)− α̃(0), G(1, 1)− β̃(1) = G(0, 1)− β̃(0).

On combining these results, we see that

α̃(1)− α̃(0) = G(1, 0)−G(0, 0) = G(1, 1)−G(0, 1) = β̃(1)− β̃(0).

We conclude from this that there exists a well-defined function λ: π1(S1, b)→
Z characterized by the property that λ([α]) = α̃(1)− α̃(0) for all loops
α based at b, where α̃: [0, 1]→ R is any path in R satisfying p ◦ α̃ = α.

Next we show that λ is a homomorphism. Let α and β be any loops
based at b, and let α̃ and β̃ be lifts of α and β. The element [α][β] of
π1(S1, b) is represented by the product path α.β, where

(α.β)(t) =

{
α(2t) if 0 ≤ t ≤ 1

2
;

β(2t− 1) if 1
2
≤ t ≤ 1.

Define a continuous path σ: [0, 1]→ R by

σ(t) =

{
α̃(2t) if 0 ≤ t ≤ 1

2
;

β̃(2t− 1) + α̃(1)− β̃(0) if 1
2
≤ t ≤ 1.
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(Note that σ(t) is well-defined when t = 1
2
.) Then p◦σ = α.β and thus

λ([α][β]) = λ([α.β]) = σ(1)− σ(0) = α̃(1)− α̃(0) + β̃(1)− β̃(0)

= λ([α]) + λ([β]).

Thus λ: π1(S1, b)→ Z is a homomorphism.

Now suppose that λ([α]) = λ([β]). Let F : [0, 1] × [0, 1] → S1 be the
homotopy between α and β defined by

F (t, τ) = p
(

(1− τ)α̃(t) + τ β̃(t)
)
,

where α̃ and β̃ are the lifts of α and β respectively starting at 0. Now
β̃(1) = λ([β]) = λ([α]) = α̃(1), and β̃(0) = α̃(0) = 0. Therefore
F (0, τ) = b = p(α̃(1)) = F (1, τ) for all τ ∈ [0, 1]. Thus α ' β rel {0, 1},
and therefore [α] = [β]. This shows that λ: π1(S1, b)→ Z is injective.

The homomorphism λ is surjective, since n = λ([γn]) for all n ∈ Z,
where the loop γn: [0, 1]→ S1 is given by

γn(t) = p(nt) = (cos 2πnt, sin 2πnt)

for all t ∈ [0, 1]. We conclude that λ: π1(S1, b)→ Z is an isomorphism.
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4. (a) A q-simplex in Rk is defined to be a set of the form{
q∑
j=0

tjvj : 0 ≤ tj ≤ 1 for j = 0, 1, . . . , q and

q∑
j=0

tj = 1

}
,

where v0,v1, . . . ,vq are geometrically independent points of Rk.

A finite collection K of simplices in Rk is said to be a simplicial
complex if the following two conditions are satisfied:—

• if σ is a simplex belonging to K then every face of σ also
belongs to K,

• if σ1 and σ2 are simplices belonging to K then either σ1∩σ2 =
∅ or else σ1 ∩ σ2 is a common face of both σ1 and σ2.

The polyhedron of a simplicial complex K is the union of all the
simplices of K.

(b) Let K be a simplicial complex, and let x ∈ |K|. The star stK(x)
of x in K is the union of the interiors of all simplices of K that
contain the point x.

(c) Let f : |K| → |L| be a continuous map between the polyhedra of
simplicial complexes K and L. A simplicial map s:K → L is said
to be a simplicial approximation to f if, for each x ∈ |K|, s(x) is
an element of the unique simplex of L which contains f(x) in its
interior.

(d) Let s:K → L be a simplicial approximation to f : |K| → |L|, let v
be a vertex of K, and let x ∈ stK(v). Then x and f(x) belong
to the interiors of unique simplices σ ∈ K and τ ∈ L. Moreover
v must be a vertex of σ, by definition of stK(v). Now s(x) must
belong to τ (since s is a simplicial approximation to the map f),
and therefore s(x) must belong to the interior of some face of
τ . But s(x) must belong to the interior of s(σ), since x is in the
interior of σ. It follows that s(σ) must be a face of τ , and therefore
s(v) must be a vertex of τ . Thus f(x) ∈ stL(s(v)). We conclude
that if s:K → L is a simplicial approximation to f : |K| → |L|,
then f (stK(v)) ⊂ stL (s(v)).

Conversely let s: VertK → VertL be a function with the prop-
erty that f (stK(v)) ⊂ stL (s(v)) for all vertices v of K. Let
x be a point in the interior of some simplex of K with vertices
v0,v1, . . . ,vq. Then x ∈ stK(vj) and hence f(x) ∈ stL (s(vj))
for j = 0, 1, . . . , q. It follows that each vertex s(vj) must be a
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vertex of the unique simplex τ ∈ L that contains f(x) in its in-
terior. In particular, s(v0), s(v1), . . . , s(vq) span a face of τ , and
s(x) ∈ τ . We conclude that the function s: VertK → VertL rep-
resents a simplicial map which is a simplicial approximation to
f : |K| → |L|, as required.

(e) The collection consisting of the stars stL(w) of all vertices w of L
is an open cover of |L|, since each star stL(w) is open in |L| and
the interior of any simplex of L is contained in stL(w) whenever
w is a vertex of that simplex. It follows from the continuity of the
map f : |K| → |L| that the collection consisting of the preimages
f−1(stL(w)) of the stars of all vertices w of L is an open cover of
|K|. It then follows from the Lebesgue Lemma that there exists
some δ > 0 with the property that every subset of |K| whose
diameter is less than δ is mapped by f into stL(w) for some vertex
w of L.

Now the mesh µ(K(j)) of the jth barycentric subdivision of K
tends to zero as j → +∞, since

µ(K(j)) ≤
(

dimK

dimK + 1

)j
µ(K)

for all j. Thus we can choose j such that µ(K(j)) < 1
2
δ. If v is

a vertex of K(j) then each point of stK(j)(v) is within a distance
1
2
δ of v, and hence the diameter of stK(j)(v) is at most δ. We can

therefore choose, for each vertex v of K(j) a vertex s(v) of L such
that f(stK(j)(v)) ⊂ stL(s(v)). In this way we obtain a function
s: VertK(j) → VertL from the vertices of K(j) to the vertices of L.
This is the desired simplicial approximation to f .
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5. (a) [Quoted from lecture notes.] Let K be a simplicial complex, and let
y and z be vertices of K. We say that y and z can be joined by an
edge path if there exists a sequence v0,v1, . . . ,vm of vertices of K
with v0 = y and vm = z such that the line segment with endpoints
vj−1 and vj is an edge belonging to K for j = 1, 2, . . . ,m.

(b) [Quoted from lecture notes.] It is easy to verify that if any two
vertices of K can be joined by an edge path then |K| is path-
connected and is thus connected. (Indeed any two points of |K|
can be joined by a path made up of a finite number of straight
line segments.)

We must show that if |K| is connected then any two vertices of K
can be joined by an edge path. Choose a vertex v0 of K. It suffices
to verify that every vertex of K can be joined to v0 by an edge
path.

Let K0 be the collection of all of the simplices of K having the
property that one (and hence all) of the vertices of that simplex
can be joined to v0 by an edge path. If σ is a simplex belonging
to K0 then every vertex of σ can be joined to v0 by an edge
path, and therefore every face of σ belongs to K0. Thus K0 is
a subcomplex of K. Clearly the collection K1 of all simplices
of K which do not belong to K0 is also a subcomplex of K. Thus
K = K0 ∪K1, where K0 ∩K1 = ∅, and hence |K| = |K0| ∪ |K1|,
where |K0|∩ |K1| = ∅. But the polyhedra |K0| and |K1| of K0 and
K1 are closed subsets of |K|. It follows from the connectedness
of |K| that either |K0| = ∅ or |K1| = ∅. But v0 ∈ K0. Thus
K1 = ∅ and K0 = K, showing that every vertex of K can be
joined to v0 by an edge path, as required.

(c) [Quoted from lecture notes.] Let u1,u2, . . . ,ur be the vertices of
the simplicial complex K. Every 0-chain of K can be expressed
uniquely as a formal sum of the form

n1〈u1〉+ n2〈u2〉+ · · ·+ nr〈ur〉

for some integers n1, n2, . . . , nr. It follows that there is a well-
defined homomorphism ε:C0(K)→ Z defined by

ε (n1〈u1〉+ n2〈u2〉+ · · ·+ nr〈ur〉) = n1 + n2 + · · ·+ nr.

Now ε(∂1(〈y, z〉)) = ε(〈z〉 − 〈y〉) = 0 whenever y and z are end-
points of an edge of K. It follows that ε ◦ ∂1 = 0, and hence
B0(K) ⊂ ker ε.
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Let v0,v1, . . . ,vm be vertices of K determining an edge path.
Then

〈vm〉 − 〈v0〉 = ∂1

(
m∑
j=1

〈vj−1,vj〉

)
∈ B0(K).

Now |K| is connected, and therefore any pair of vertices of K
can be joined by an edge path. We deduce that 〈z〉 − 〈y〉 ∈
B0(K) for all vertices y and z of K. Thus if c ∈ ker ε, where

c =
r∑
j=1

nj〈uj〉, then
r∑
j=1

nj = 0, and hence c =
r∑
j=2

nj(〈uj〉 − 〈u1〉).

But 〈uj〉−〈u1〉 ∈ B0(K). It follows that c ∈ B0(K). We conclude
that ker ε ⊂ B0(K), and hence ker ε = B0(K).

Now the homomorphism ε:C0(K)→ Z is surjective and its kernel
isB0(K). Therefore it induces an isomorphism from C0(K)/B0(K)
to Z. However Z0(K) = C0(K) (since ∂0 = 0 by definition). Thus
H0(K) ≡ C0(K)/B0(K) ∼= Z, as required.
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6. (a)

∂2c = (n124 + n125)e12 + (n134 + n135)e13

+ (−n124 − n134)e14 + (−n125 − n135)e15

+ (n234 + n235)e23 + (n124 − n234)e24

+ (n125 − n235)e25 + (n134 + n234)e34

+ (n135 + n235)e35.

It follows that ∂2c = 0 if and only if

n124 = −n125 = −n134 = n135 = n234 = −n235.

Morover B2(K) = 0 (since C3(K) = 0). It follows that

H2(K) = Z2(K)/B2(K) = Z2(K) = {nz : n ∈ Z} ∼= Z,

where
z = σ124 − σ125 − σ134 + σ135 + σ234 − σ235.

(b) Let

g = m12e12 +m13e13 +m14e14 +m15e15 +m23e23

+m24e24 +m25e25 +m34e34 +m35e35.

Then

∂1g = (−m12 −m13 −m14 −m15)P1

+ (m12 −m23 −m24 −m25)P2

+ (m13 +m23 −m34 −m35)P3

+ (m14 +m24 +m34)P4 + (m15 +m25 +m35)P5

If g is a 1-boundary of K, then g is a 1-cycle of K, since ∂1◦∂2 = 0.
[Alternatively, this may be verified directly.] Conversely suppose
that g is a 1-cycle of K. Then ∂1g = 0, and thus

m12 +m13 +m14 +m15 = 0,

m12 −m23 −m24 −m25 = 0,

m13 +m23 −m34 −m35 = 0,

m14 +m24 +m34 = 0,

m15 +m25 +m35 = 0.
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Suppose there exists a 2-chain c such that ∂2c = g, where c is as
in part (a). We need to show that integers n124, n125, n134, n135,
n234 and n235 may be found such that

n124 + n125 = m12,

n134 + n135 = m13,

−n124 − n134 = m14,

−n125 − n135 = m15,

n234 + n235 = m23,

n124 − n234 = m24,

n125 − n235 = m25,

n134 + n234 = m34,

n135 + n235 = m35.

We look for a solution satisfying n235 = 0. [This is sensible since
any 2-chain of K is homologous to a 2-chain satisfying this condi-
tion.] Take

n235 = 0,

n135 = m35,

n234 = m23,

n125 = m25,

n134 = m13 − n135 = m13 −m35,

n124 = m24 + n234 = m23 +m24.

One can verify directly that this solves the relevant equations. For
example

n124 + n125 = m23 +m24 +m25 = m12.

Thus any 1-cycle of K is a 1-boundary of K. We conclude that
Z1(K) = B1(K), and thus H1(K) = 0.

(c) The calculation in (b) shows that any 1-cycle g of K is of the form
∂2c for some 2-chain c of K with n235 = 0. Such a 2-chain c is
in fact a 2-chain of L. It follows directly that Z1(L) = B1(L),
and thus H1(L) = 0. It also follows directly from the answer to
(a) that if c is a 2-cycle of L (i.e., if ∂2c = 0 and n235 = 0) then
c = 0. Therefore Z2(L) = 0, and hence H2(L) = 0. [There are
alternative ways of answering this part of the question.]
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7. (a) [All definitions taken from from printed lecture notes.] The se-

quence F
p→ G

q→ H of Abelian groups and homomorphisms is
said to be exact at G if and only if image(p:F → G) = ker(q:G→
H). A sequence of Abelian groups and homomorphisms is said to
be exact if it is exact at each Abelian group occurring in the se-
quence (so that the image of each homomorphism is the kernel of
the succeeding homomorphism).

A chain complex C∗ is a (doubly infinite) sequence (Ci : i ∈ Z) of
Abelian groups, together with homomorphisms ∂i:Ci → Ci−1 for
each i ∈ Z, such that ∂i ◦ ∂i+1 = 0 for all integers i.

The ith homology group Hi(C∗) of the complex C∗ is defined to
be the quotient group Zi(C∗)/Bi(C∗), where Zi(C∗) is the kernel
of ∂i:Ci → Ci−1 and Bi(C∗) is the image of ∂i+1:Ci+1 → Ci.

Let C∗ and D∗ be chain complexes. A chain map f :C∗ → D∗
is a sequence fi:Ci → Di of homomorphisms which satisfy the
commutativity condition ∂i ◦ fi = fi−1 ◦ ∂i for all i ∈ Z.

A short exact sequence 0 → A∗
p∗→ B∗

q∗→ C∗ → 0 of chain com-
plexes consists of chain complexes A∗, B∗ and C∗ and chain maps
p∗:A∗ → B∗ and q∗:B∗ → C∗ such that the sequence

0→ Ai
pi→ Bi

qi→ Ci → 0

is exact for each integer i.

(b) [Quoted from from printed lecture notes.] Let z ∈ Zi(C∗). Then
there exists b ∈ Bi satisfying qi(b) = z, since qi:Bi → Ci is surjec-
tive. Moreover

qi−1(∂i(b)) = ∂i(qi(b)) = ∂i(z) = 0.

But pi−1:Ai−1 → Bi−1 is injective and pi−1(Ai−1) = ker qi−1, since
the sequence

0→ Ai−1
pi−1→ Bi−1

qi−1→ Ci−1

is exact. Therefore there exists a unique element w of Ai−1 such
that ∂i(b) = pi−1(w). Moreover

pi−2(∂i−1(w)) = ∂i−1(pi−1(w)) = ∂i−1(∂i(b)) = 0

(since ∂i−1 ◦∂i = 0), and therefore ∂i−1(w) = 0 (since pi−2:Ai−2 →
Bi−2 is injective). Thus w ∈ Zi−1(A∗).

Now let b, b′ ∈ Bi satisfy qi(b) = qi(b
′) = z, and let w,w′ ∈

Zi−1(A∗) satisfy pi−1(w) = ∂i(b) and pi−1(w′) = ∂i(b
′). Then
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qi(b − b′) = 0, and hence b′ − b = pi(a) for some a ∈ Ai, by
exactness. But then

pi−1(w + ∂i(a)) = = pi−1(w) + ∂i(pi(a)) = ∂i(b) + ∂i(b
′ − b)

= ∂i(b
′) = pi−1(w′),

and pi−1:Ai−1 → Bi−1 is injective. Therefore w + ∂i(a) = w′,
and hence [w] = [w′] in Hi−1(A∗). Thus there is a well-defined
function α̃i:Zi(C∗) → Hi−1(A∗) which sends z ∈ Zi(C∗) to [w] ∈
Hi−1(A∗), where w ∈ Zi−1(A∗) is chosen such that pi−1(w) = ∂i(b)
for some b ∈ Bi satisfying qi(b) = z. This function α̃i is clearly a
homomorphism from Zi(C∗) to Hi−1(A∗).

Suppose that elements z and z′ of Zi(C∗) represent the same ho-
mology class in Hi(C∗). Then z′ = z + ∂i+1c for some c ∈ Ci+1.
Moreover c = qi+1(d) for some d ∈ Bi+1, since qi+1:Bi+1 → Ci+1

is surjective. Choose b ∈ Bi such that qi(b) = z, and let b′ =
b+ ∂i+1(d). Then

qi(b
′) = z + qi(∂i+1(d)) = z + ∂i+1(qi+1(d)) = z + ∂i+1(c) = z′.

Moreover ∂i(b
′) = ∂i(b + ∂i+1(d)) = ∂i(b) (since ∂i ◦ ∂i+1 = 0).

Therefore α̃i(z) = α̃i(z
′). It follows that the homomorphism

α̃i:Zi(C∗)→ Hi−1(A∗) induces a well-defined homomorphism

αi:Hi(C∗)→ Hi−1(A∗),

as required.
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8. (a) [Adapted from printed lecture notes.] Let K be a simplicial com-
plex and let L and M be subcomplexes of K such that K = L∪M .
Let

iq:Cq(L ∩M)→ Cq(L), jq:Cq(L ∩M)→ Cq(M),

uq:Cq(L)→ Cq(K), vq:Cq(M)→ Cq(K)

be the inclusion homomorphisms induced by the inclusion maps
i:L ∩M ↪→ L, j:L ∩M ↪→M , u:L ↪→ K and v:M ↪→ K. Then

0→ C∗(L ∩M)
k∗→ C∗(L)⊕ C∗(M)

w∗→ C∗(K)→ 0

is a short exact sequence of chain complexes, where

kq(c) = (iq(c),−jq(c)),
wq(c

′, c′′) = uq(c
′) + vq(c

′′),

∂q(c
′, c′′) = (∂q(c

′), ∂q(c
′′))

for all c ∈ Cq(L∩M), c′ ∈ Cq(L) and c′′ ∈ Cq(M). This gives rise
to an exact sequence

· · ·
αq+1→ Hq(L∩M) k∗→ Hq(L)⊕Hq(M) w∗→ Hq(K)

αq→ Hq−1(L∩M) k∗→ · · · ,

of homology groups. This long exact sequence of homology groups
is referred to as the Mayer-Vietoris sequence associated with the
decomposition of K as the union of the subcomplexes L and M .

(b) Using the results that H2(L) = 0, H2(M) = 0 and H1(M) = 0,
we obtain the following exact sequence from the Mayer-Vietoris
sequence

0→ H2(K)
α2→ H1(L ∩M)

i∗→ H1(L)
u∗→ H1(K)

α1→ H0(L ∩M)
k∗→ H0(L) ∩H0(M).

NowH0(L∩M) ∼= H0(L) ∼= H0(M) ∼= Z, since |L|, |M | and |L∩M |
are connected. Moreover the homomorphisms i∗H0(L ∩ M) →
H0(L) and j∗(L ∩M) → H0(M) induced by the relevant inclu-
sion maps are isomorphisms, and k∗(γ) = (i∗(γ), j∗(γ)) for all
γ ∈ H0(L∩M). It follows that k∗:H0(L∩M)→ H0(L)⊕H0(M) is
injective. It then follows from exactness that imageα1 = ker k∗ =
{0}, so that α1 is the zero homomorphism. But then kerα1 =
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H1(K), and therefore (by exactness), u∗:H1(L) → H1(K) is sur-
jective. We therefore obtain an exact sequence

0→ H2(K)
α2→ H1(L ∩M)

i∗→ H1(L)
u∗→ H1(K)→ 0.

We now use the fact (given in the question) that there exists a 2-
chain c of L such that ∂2c = 2zL−zL∩M , where zL is a 1-cycle of L
whose homology class [zL] generates H1(L), and zL∩M is a 1-cycle
of L∩M , whose homology class [zL∩M ] generates H1(L∩M). But
then

i∗[zL∩M ] = [2zL − ∂2c] = 2[zL].

Thus i∗:H1(L ∩M)→ H1(L) corresponds under appropriate iso-
morphisms to the homomorphism from Z to Z that sends each in-
teger n to 2n. We deduce that ker i∗ = {0}, and H1(L)/i∗(H1(L∩
M)) ∼= Z/2Z. But α2:H2(K) → H1(L ∩M) is injective (by ex-
actness), and α2(H2(K)) = ker i∗ = {0} (again by exactness).
Therefore H2(K) = 0. Also

H1(K) = imageu∗ ∼= H1(L)/ keru∗ = H1(L)/i∗(H1(L∩M)) ∼= Z2,

where Z2 = Z/2Z. Finally we note that H0(K) ∼= Z, since |K| is
connected. Thus

H0(K) ∼= Z, H1(K) ∼= Z2, H2(K) = 0,

(and Hq(K) = 0 when q > 2 and when q < 0).
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9. (a) [Quoted from from printed lecture notes.] Two simplicial maps
s:K → L and t:K → L between simplicial complexes K and L
are said to be contiguous if, given any simplex σ of K, there exists
a simplex τ of L such that s(v) and t(v) are vertices of τ for each
vertex v of σ.

(b) [Quoted from from printed lecture notes.] Let x be a point in the
interior of some simplex σ of K. Then f(x) belongs to the interior
of a unique simplex τ of L, and moreover s(x) ∈ τ and t(x) ∈ τ ,
since s and t are simplicial approximations to the map f . But
s(x) and t(x) are contained in the interior of the simplices s(σ)
and t(σ) of L. It follows that s(σ) and t(σ) are faces of τ , and
hence s(v) and t(v) are vertices of τ for each vertex v of σ, as
required.

(c) [Quoted from from printed lecture notes.] Choose an ordering of
the vertices of K. Then there are well-defined homomorphisms
Dq:Cq(K)→ Cq+1(L) characterized by the property that

Dq(〈v0,v1, . . . ,vq〉) =

q∑
j=0

(−1)j〈s(v0), . . . , s(vj), t(vj), . . . , t(vq)〉.

whenever v0,v1, . . .vq are the vertices of a q-simplex of K listed
in increasing order (with respect to the chosen ordering of the
vertices of K). Then

∂1(D0(〈v〉)) = ∂1(〈s(v), t(v)〉) = 〈t(v)〉 − 〈s(v)〉,

and thus ∂1 ◦D0 = t0 − s0. Also

Dq−1(∂q(〈v0, . . . ,vq〉))

=

q∑
i=0

(−1)iDq−1(〈v0, . . . , v̂i, . . . ,vq〉)

=

q∑
i=0

i−1∑
j=0

(−1)i+j〈s(v0), . . . , s(vj), t(vj), . . . ,̂t(vi), . . . , t(vq)〉

+

q∑
i=0

q∑
j=i+1

(−1)i+j−1〈s(v0), . . . ,̂s(vi), . . . , s(vj), t(vj), . . . , t(vq)〉

and

∂q+1(Dq(〈v0, . . .vq〉))
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=

q∑
j=0

(−1)j∂q+1(〈s(v0), . . . , s(vj), t(vj), . . . , t(vq)〉)

=

q∑
j=0

j−1∑
i=0

(−1)i+j〈s(v0), . . . ,̂s(vi), . . . , s(vj), t(vj), . . . , t(vq)〉

+〈t(v0), . . . , t(vq)〉+

q∑
j=1

〈s(v0), . . . , s(vj−1), t(vj), . . . , t(vq)〉

−
q−1∑
j=0

〈s(v0), . . . , s(vj), t(vj+1), . . . , t(vq)〉 − 〈s(v0), . . . , s(vq)〉

+

q∑
j=0

q∑
i=j+1

(−1)i+j+1〈s(v0), . . . , s(vj), t(vj), . . . ,̂t(vi), . . . , t(vq)〉

= −Dq−1(∂q(〈v0, . . . ,vq〉)) + 〈t(v0), . . . , t(vq)〉 − 〈s(v0), . . . , s(vq)〉

and thus
∂q+1 ◦Dq +Dq−1 ◦ ∂q = tq − sq

for all q > 0. It follows that tq(z) − sq(z) = ∂q+1 (Dq(z)) for any
q-cycle z of K, and therefore s∗([z]) = t∗([z]). Thus s∗ = t∗ as
homomorphisms from Hq(K) to Hq(L), as required.
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