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9 Introduction to Homological Algebra

9.1 Exact Sequences

In homological algebra we consider sequences

· · · −→F p−→G q−→H ···−→

where F , G, H etc. are modules over some unital ring R and p, q etc. are
R-module homomorphisms. We denote the trivial module {0} by 0, and
we denote by 0−→G and G−→0 the zero homomorphisms from 0 to G and
from G to 0 respectively. (These zero homomorphisms are of course the only
homomorphisms mapping out of and into the trivial module 0.)

Unless otherwise stated, all modules are considered to be left modules.

Definition Let R be a unital ring, let F , G and H be R-modules, and
let p:F → G and q:G → H be R-module homomorphisms. The sequence
F

p−→G q−→H of modules and homomorphisms is said to be exact at G if
and only if image(p:F → G) = ker(q:G → H). A sequence of modules and
homomorphisms is said to be exact if it is exact at each module occurring in
the sequence (so that the image of each homomorphism is the kernel of the
succeeding homomorphism).

A monomorphism is an injective homomorphism. An epimorphism is a
surjective homomorphism. An isomorphism is a bijective homomorphism.

The following result follows directly from the relevant definitions.

Lemma 9.1 let R be a unital ring, and let h:G → H be a homomorphism
of R-modules. Then

• h:G → H is a monomorphism if and only if 0−→G h−→H is an exact
sequence;

• h:G → H is an epimorphism if and only if G
h−→H−→0 is an exact

sequence;

• h:G → H is an isomorphism if and only if 0−→G h−→H−→0 is an
exact sequence.

Let R be a unital ring, and let F be a submodule of an R-module G.
Then the sequence

0−→F i−→G q−→G/F−→0,
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is exact, where G/F is the quotient module, i:F ↪→ G is the inclusion ho-
momorphism, and q:G → G/F is the quotient homomorphism. Conversely,
given any exact sequence of the form

0−→F i−→G q−→H−→0,

we can regard F as a submodule of G (on identifying F with i(F )), and then
H is isomorphic to the quotient module G/F . Exact sequences of this type
are referred to as short exact sequences.

We now introduce the concept of a commutative diagram. This is a di-
agram depicting a collection of homomorphisms between various modules
occurring on the diagram. The diagram is said to commute if, whenever
there are two routes through the diagram from a module G to a module H,
the homomorphism from G to H obtained by forming the composition of the
homomorphisms along one route in the diagram agrees with that obtained
by composing the homomorphisms along the other route. Thus, for example,
the diagram

A
f−→ B

g−→ Cyp

yq

yr

D
h−→ E

k−→ F

commutes if and only if q ◦ f = h ◦ p and r ◦ g = k ◦ q.

Proposition 9.2 Let R be a unital ring. Suppose that the following diagram
of R-modules and R-module homomorphisms

G1
θ1−→ G2

θ2−→ G3
θ3−→ G4

θ4−→ G5yψ1

yψ2

yψ3

yψ4

yψ5

H1
φ1−→ H2

φ2−→ H3
φ3−→ H4

φ4−→ H5

commutes and that both rows are exact sequences. Then the following results
follow:

(i) if ψ2 and ψ4 are monomorphisms and if ψ1 is a epimorphism then ψ3

is an monomorphism,

(ii) if ψ2 and ψ4 are epimorphisms and if ψ5 is a monomorphism then ψ3

is an epimorphism.

Proof First we prove (i). Suppose that ψ2 and ψ4 are monomorphisms and
that ψ1 is an epimorphism. We wish to show that ψ3 is a monomorphism.
Let x ∈ G3 be such that ψ3(x) = 0. Then ψ4 (θ3(x)) = φ3 (ψ3(x)) = 0,
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and hence θ3(x) = 0. But then x = θ2(y) for some y ∈ G2, by exactness.
Moreover

φ2 (ψ2(y)) = ψ3 (θ2(y)) = ψ3(x) = 0,

hence ψ2(y) = φ1(z) for some z ∈ H1, by exactness. But z = ψ1(w) for some
w ∈ G1, since ψ1 is an epimorphism. Then

ψ2 (θ1(w)) = φ1 (ψ1(w)) = ψ2(y),

and hence θ1(w) = y, since ψ2 is a monomorphism. But then

x = θ2(y) = θ2 (θ1(w)) = 0

by exactness. Thus ψ3 is a monomorphism.
Next we prove (ii). Thus suppose that ψ2 and ψ4 are epimorphisms and

that ψ5 is a monomorphism. We wish to show that ψ3 is an epimorphism.
Let a be an element of H3. Then φ3(a) = ψ4(b) for some b ∈ G4, since ψ4 is
an epimorphism. Now

ψ5 (θ4(b)) = φ4 (ψ4(b)) = φ4 (φ3(a)) = 0,

hence θ4(b) = 0, since ψ5 is a monomorphism. Hence there exists c ∈ G3

such that θ3(c) = b, by exactness. Then

φ3 (ψ3(c)) = ψ4 (θ3(c)) = ψ4(b),

hence φ3 (a− ψ3(c)) = 0, and thus a − ψ3(c) = φ2(d) for some d ∈ H2, by
exactness. But ψ2 is an epimorphism, hence there exists e ∈ G2 such that
ψ2(e) = d. But then

ψ3 (θ2(e)) = φ2 (ψ2(e)) = a− ψ3(c).

Hence a = ψ3 (c+ θ2(e)), and thus a is in the image of ψ3. This shows that
ψ3 is an epimorphism, as required.

The following result is an immediate corollary of Proposition 9.2.

Lemma 9.3 (Five-Lemma) Suppose that the rows of the commutative dia-
gram of Proposition 9.2 are exact sequences and that ψ1, ψ2, ψ4 and ψ5 are
isomorphisms. Then ψ3 is also an isomorphism.
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9.2 Chain Complexes

Definition A chain complex C∗ is a (doubly infinite) sequence (Ci : i ∈ Z) of
modules over some unital ring, together with homomorphisms ∂i:Ci → Ci−1

for each i ∈ Z, such that ∂i ◦ ∂i+1 = 0 for all integers i.
The ith homology group Hi(C∗) of the complex C∗ is defined to be the

quotient group Zi(C∗)/Bi(C∗), where Zi(C∗) is the kernel of ∂i:Ci → Ci−1

and Bi(C∗) is the image of ∂i+1:Ci+1 → Ci.

Note that if the modules C∗ occuring in a chain complex C∗ are modules
over some unital ring R then the homology groups of the complex are also
modules over this ring R.

Definition Let C∗ and D∗ be chain complexes. A chain map f :C∗ → D∗ is
a sequence fi:Ci → Di of homomorphisms which satisfy the commutativity
condition ∂i ◦ fi = fi−1 ◦ ∂i for all i ∈ Z.

Note that a collection of homomorphisms fi:Ci → Di defines a chain map
f∗:C∗ → D∗ if and only if the diagram

· · · −→ Ci+1
∂i+1−→ Ci

∂i−→ Ci−1 −→· · ·yfi+1

yfi

yfi−1

· · · −→ Di+1
∂i+1−→ Di

∂i−→ Di−1 −→· · ·

is commutative.
Let C∗ and D∗ be chain complexes, and let f∗:C∗ → D∗ be a chain map.

Then fi(Zi(C∗)) ⊂ Zi(D∗) and fi(Bi(C∗)) ⊂ Bi(D∗) for all i. It follows
from this that fi:Ci → Di induces a homomorphism f∗:Hi(C∗) → Hi(D∗)
of homology groups sending [z] to [fi(z)] for all z ∈ Zi(C∗), where [z] =
z +Bi(C∗), and [fi(z)] = fi(z) +Bi(D∗).

Definition A short exact sequence 0−→A∗
p∗−→B∗

q∗−→C∗−→0 of chain com-
plexes consists of chain complexes A∗, B∗ and C∗ and chain maps p∗:A∗ → B∗
and q∗:B∗ → C∗ such that the sequence

0−→Ai
pi−→Bi

qi−→Ci−→0

is exact for each integer i.
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We see that 0−→A∗
p∗−→B∗

q∗−→C∗−→0 is a short exact sequence of chain
complexes if and only if the diagram

...
...

...y∂i+2

y∂i+2

y∂i+2

0 −→ Ai+1
pi+1−→ Bi+1

qi+1−→ Ci+1 −→ 0y∂i+1

y∂i+1

y∂i+1

0 −→ Ai
pi−→ Bi

qi−→ Ci −→ 0y∂i

y∂i

y∂i

0 −→ Ai−1
pi−1−→ Bi−1

qi−1−→ Ci−1 −→ 0y∂i−1

y∂i−1

y∂i−1

...
...

...

.

is a commutative diagram whose rows are exact sequences and whose columns
are chain complexes.

Lemma 9.4 Given any short exact sequence 0−→A∗
p∗−→B∗

q∗−→C∗−→0 of
chain complexes, there is a well-defined homomorphism

αi:Hi(C∗)→ Hi−1(A∗)

which sends the homology class [z] of z ∈ Zi(C∗) to the homology class [w] of
any element w of Zi−1(A∗) with the property that pi−1(w) = ∂i(b) for some
b ∈ Bi satisfying qi(b) = z.

Proof Let z ∈ Zi(C∗). Then there exists b ∈ Bi satisfying qi(b) = z, since
qi:Bi → Ci is surjective. Moreover

qi−1(∂i(b)) = ∂i(qi(b)) = ∂i(z) = 0.

But pi−1:Ai−1 → Bi−1 is injective and pi−1(Ai−1) = ker qi−1, since the se-
quence

0−→Ai−1
pi−1−→Bi−1

qi−1−→Ci−1

is exact. Therefore there exists a unique element w of Ai−1 such that ∂i(b) =
pi−1(w). Moreover

pi−2(∂i−1(w)) = ∂i−1(pi−1(w)) = ∂i−1(∂i(b)) = 0

(since ∂i−1 ◦ ∂i = 0), and therefore ∂i−1(w) = 0 (since pi−2:Ai−2 → Bi−2 is
injective). Thus w ∈ Zi−1(A∗).
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Now let b, b′ ∈ Bi satisfy qi(b) = qi(b
′) = z, and let w,w′ ∈ Zi−1(A∗)

satisfy pi−1(w) = ∂i(b) and pi−1(w
′) = ∂i(b

′). Then qi(b− b′) = 0, and hence
b′ − b = pi(a) for some a ∈ Ai, by exactness. But then

pi−1(w + ∂i(a)) = pi−1(w) + ∂i(pi(a)) = ∂i(b) + ∂i(b
′ − b) = ∂i(b

′) = pi−1(w
′),

and pi−1:Ai−1 → Bi−1 is injective. Therefore w + ∂i(a) = w′, and hence
[w] = [w′] in Hi−1(A∗). Thus there is a well-defined function α̃i:Zi(C∗) →
Hi−1(A∗) which sends z ∈ Zi(C∗) to [w] ∈ Hi−1(A∗), where w ∈ Zi−1(A∗) is
chosen such that pi−1(w) = ∂i(b) for some b ∈ Bi satisfying qi(b) = z. This
function α̃i is clearly a homomorphism from Zi(C∗) to Hi−1(A∗).

Suppose that elements z and z′ of Zi(C∗) represent the same homology
class in Hi(C∗). Then z′ = z+∂i+1c for some c ∈ Ci+1. Moreover c = qi+1(d)
for some d ∈ Bi+1, since qi+1:Bi+1 → Ci+1 is surjective. Choose b ∈ Bi such
that qi(b) = z, and let b′ = b+ ∂i+1(d). Then

qi(b
′) = z + qi(∂i+1(d)) = z + ∂i+1(qi+1(d)) = z + ∂i+1(c) = z′.

Moreover ∂i(b
′) = ∂i(b + ∂i+1(d)) = ∂i(b) (since ∂i ◦ ∂i+1 = 0). Therefore

α̃i(z) = α̃i(z
′). It follows that the homomorphism α̃i:Zi(C∗)→ Hi−1(A∗) in-

duces a well-defined homomorphism αi:Hi(C∗)→ Hi−1(A∗), as required.

Let 0−→A∗
p∗−→B∗

q∗−→C∗−→0 and 0−→A′∗
p′∗−→B′∗

q′∗−→C ′∗−→0 be short ex-
act sequences of chain complexes, and let λ∗:A∗ → A′∗, µ∗:B∗ → B′∗ and
ν∗:C∗ → C ′∗ be chain maps. For each integer i, let αi:Hi(C∗) → Hi−1(A∗)
and α′i:Hi(C

′
∗) → Hi−1(A

′
∗) be the homomorphisms defined as described in

Lemma 9.4. Suppose that the diagram

0 −→ A∗
p∗−→ B∗

q∗−→ C∗ −→ 0yλ∗

yµ∗

yν∗

0 −→ A′∗
p′∗−→ B′∗

q′∗−→ C ′∗ −→ 0

commutes (i.e., p′i ◦λi = µi ◦ pi and q′i ◦µi = νi ◦ qi for all i). Then the square

Hi(C∗)
αi−→ Hi−1(A∗)yν∗

yλ∗

Hi(C
′
∗)

α′i−→ Hi−1(A
′
∗)

commutes for all i ∈ Z (i.e., λ∗ ◦ αi = α′i ◦ ν∗).
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Proposition 9.5 Let 0−→A∗
p∗−→B∗

q∗−→C∗−→0 be a short exact sequence of
chain complexes. Then the (infinite) sequence

· · · αi+1−→Hi(A∗)
p∗−→Hi(B∗)

q∗−→Hi(C∗)
αi−→Hi−1(A∗)

p∗−→Hi−1(B∗)
q∗−→· · ·

of homology groups is exact, where αi:Hi(C∗)→ Hi−1(A∗) is the well-defined
homomorphism that sends the homology class [z] of z ∈ Zi(C∗) to the homol-
ogy class [w] of any element w of Zi−1(A∗) with the property that pi−1(w) =
∂i(b) for some b ∈ Bi satisfying qi(b) = z.

Proof First we prove exactness at Hi(B∗). Now qi ◦ pi = 0, and hence
q∗ ◦ p∗ = 0. Thus the image of p∗:Hi(A∗) → Hi(B∗) is contained in the
kernel of q∗:Hi(B∗) → Hi(C∗). Let x be an element of Zi(B∗) for which
[x] ∈ ker q∗. Then qi(x) = ∂i+1(c) for some c ∈ Ci+1. But c = qi+1(d) for
some d ∈ Bi+1, since qi+1:Bi+1 → Ci+1 is surjective. Then

qi(x− ∂i+1(d)) = qi(x)− ∂i+1(qi+1(d)) = qi(x)− ∂i+1(c) = 0,

and hence x− ∂i+1(d) = pi(a) for some a ∈ Ai, by exactness. Moreover

pi−1(∂i(a)) = ∂i(pi(a)) = ∂i(x− ∂i+1(d)) = 0,

since ∂i(x) = 0 and ∂i ◦ ∂i+1 = 0. But pi−1:Ai−1 → Bi−1 is injective.
Therefore ∂i(a) = 0, and thus a represents some element [a] of Hi(A∗). We
deduce that

[x] = [x− ∂i+1(d)] = [pi(a)] = p∗([a]).

We conclude that the sequence of homology groups is exact at Hi(B∗).
Next we prove exactness at Hi(C∗). Let x ∈ Zi(B∗). Now

αi(q∗[x]) = αi([qi(x)]) = [w],

where w is the unique element of Zi(A∗) satisfying pi−1(w) = ∂i(x). But
∂i(x) = 0, and hence w = 0. Thus αi ◦ q∗ = 0. Now let z be an element
of Zi(C∗) for which [z] ∈ kerαi. Choose b ∈ Bi and w ∈ Zi−1(A∗) such
that qi(b) = z and pi−1(w) = ∂i(b). Then w = ∂i(a) for some a ∈ Ai, since
[w] = αi([z]) = 0. But then qi(b − pi(a)) = z and ∂i(b − pi(a)) = 0. Thus
b − pi(a) ∈ Zi(B∗) and q∗([b − pi(a)]) = [z]. We conclude that the sequence
of homology groups is exact at Hi(C∗).

Finally we prove exactness at Hi−1(A∗). Let z ∈ Zi(C∗). Then αi([z]) =
[w], where w ∈ Zi−1(A∗) satisfies pi−1(w) = ∂i(b) for some b ∈ Bi satisfying
qi(b) = z. But then p∗(αi([z])) = [pi−1(w)] = [∂i(b)] = 0. Thus p∗ ◦ αi = 0.
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Now let w be an element of Zi−1(A∗) for which [w] ∈ ker p∗. Then [pi−1(w)] =
0 in Hi−1(B∗), and hence pi−1(w) = ∂i(b) for some b ∈ Bi. But

∂i(qi(b)) = qi−1(∂i(b)) = qi−1(pi−1(w)) = 0.

Therefore [w] = αi([z]), where z = qi(b). We conclude that the sequence of
homology groups is exact at Hi−1(A∗), as required.
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