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8 Modules

8.1 Rings and Fields

Definition A ring consists of a set R on which are defined operations of
addition and multiplication that satisfy the following properties:

• the ring is an Abelian group with respect to the operation of addition;

• the operation of multiplication on the ring is associative, and thus
x(yz) = (xy)z for all elements x, y and z of the ring.

• the operations of addition and multiplication satisfy the Distributive
Law, and thus x(y + z) = xy + xz and (x + y)z = xz + yz for all
elements x, y and z of the ring.

Lemma 8.1 Let R be a ring. Then x0 = 0 and 0x = 0 for all elements x of
R.

Proof The zero element 0 of R satisfies 0 + 0 = 0. Using the Distributive
Law, we deduce that x0 + x0 = x(0 + 0) = x0 and 0x+ 0x = (0 + 0)x = 0x.
Thus if we add −(x0) to both sides of the identity x0 + x0 = x0 we see that
x0 = 0. Similarly if we add −(0x) to both sides of the identity 0x+ 0x = 0x
we see that 0x = 0.

Lemma 8.2 Let R be a ring. Then (−x)y = −(xy) and x(−y) = −(xy) for
all elements x and y of R.

Proof It follows from the Distributive Law that xy+(−x)y = (x+(−x))y =
0y = 0 and xy + x(−y) = x(y + (−y)) = x0 = 0. Therefore (−x)y = −(xy)
and x(−y) = −(xy).

A subset S of a ring R is said to be a subring of R if 0 ∈ S, a + b ∈ S,
−a ∈ S and ab ∈ S for all a, b ∈ S.

A ring R is said to be commutative if xy = yx for all x, y ∈ R. Not every
ring is commutative: an example of a non-commutative ring is provided by
the ring of n× n matrices with real or complex coefficients when n > 1.

A ring R is said to be unital if it possesses a (necessarily unique) non-zero
multiplicative identity element 1 satisfying 1x = x = x1 for all x ∈ R.

Definition A unital commutative ring R is said to be an integral domain if
the product of any two non-zero elements of R is itself non-zero.
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Definition A field consists of a set on which are defined operations of ad-
dition and multiplication that satisfy the following properties:

• the field is an Abelian group with respect to the operation of addition;

• the non-zero elements of the field constitute an Abelian group with
respect to the operation of multiplication;

• the operations of addition and multiplication satisfy the Distributive
Law, and thus x(y + z) = xy + xz and (x + y)z = xz + yz for all
elements x, y and z of the field.

An examination of the relevant definitions shows that a unital commuta-
tive ring R is a field if and only if, given any non-zero element x of R, there
exists an element x−1 of R such that xx−1 = 1. Moreover a ring R is a field
if and only if the set of non-zero elements of R is an Abelian group with
respect to the operation of multiplication.

Lemma 8.3 A field is an integral domain.

Proof A field is a unital commutative ring. Let x and y be non-zero elements
of a field K. Then there exist elements x−1 and y−1 of K such that xx−1 = 1
and yy−1 = 1. Then xyy−1x−1 = 1. It follows that xy 6= 0, since 0(y−1x−1) =
0 and 1 6= 0.

The set Z of integers is an integral domain with respect to the usual
operations of addition and multiplication. The sets Q, R and C of rational,
real and complex numbers are fields.

8.2 Modules

Definition Let R be a unital ring. A set M is said to be a left module over
the ring R (or left R-module) if

(i) given any x, y ∈ M and r ∈ R, there are well-defined elements x + y
and rx of M ,

(ii) M is an Abelian group with respect to the operation + of addition,

(iii) the identities

r(x+ y) = rx+ ry, (r + s)x = rx+ sx,

(rs)x = r(sx), 1Rx = x

are satisfied for all x, y ∈ M and r, s ∈ R, where 1R denotes the
multiplicative identity element of the ring R.
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Definition Let R be a unital ring. A set M is said to be a right module
over R (or right R-module) if

(i) given any x, y ∈ M and r ∈ R, there are well-defined elements x + y
and xr of M ,

(ii) M is an Abelian group with respect to the operation + of addition,

(iii) the identities

(x+ y)r = xr + yr, x(r + s) = xr + xs,

x(rs) = (xr)s, x1R = x

are satisfied for all x, y ∈ M and r, s ∈ R, where 1R denotes the
multiplicative identity element of the ring R.

If the unital ring R is a commutative ring then there is no essential dis-
tinction between left R-modules and right R-modules. Indeed any left mod-
ule M over a unital commutative ring R may be regarded as a right module
on defining xr = rx for all x ∈ M and r ∈ R. We define a module over a
unital commutative ring R to be a left module over R.

Example If K is a field, then a K-module is by definition a vector space
over K.

Example Let (M,+) be an Abelian group, and let x ∈M . If n is a positive
integer then we define nx to be the sum x + x + · · · + x of n copies of x. If
n is a negative integer then we define nx = −(|n|x), and we define 0x = 0.
This enables us to regard any Abelian group as a module over the ring Z of
integers. Conversely, any module over Z is also an Abelian group.

Example Any unital commutative ring can be regarded as a module over
itself in the obvious fashion.

Let R be a unital ring that is not necessarily commutative, and let +
and × denote the operations of addition and multiplication defined on R.
We denote by Rop the ring (R,+,×), where the underlying set of Rop is R
itself, the operation of addition on Rop coincides with that on R, but where
the operation of multiplication in the ring Rop is the operation × defined so
that r×s = s× r for all r, s ∈ R. Note that the multiplication operation on
the ring Rop coincides with that on the ring R if and only if the ring R is
commutative.
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Any right module over the ring R may be regarded as a left module over
the ring Rop. Indeed let MR be a right R-module, and let r.x = xr for all
x ∈MR and r ∈ R. Then

r.(s.x) = (s.x)r = x(sr) = x(r×s) = (r×s).x

for all x ∈MR and r, s ∈ R. Also all other properties required of left modules
over the ring Rop are easily seen to be satisfied. It follows that any general
results concerning left modules over unital rings yield corresponding results
concerning right modules over unital rings.

Let R be a unital ring, and let M be a left R-module. A subset L of M
is said to be a submodule of M if x + y ∈ L and rx ∈ L for all x, y ∈ L and
r ∈ R. If M is a left R-module and L is a submodule of M then the quotient
group M/L can itself be regarded as a left R-module, where r(L+x) ≡ L+rx
for all L + x ∈ M/L and r ∈ R. The R-module M/L is referred to as the
quotient of the module M by the submodule L.

A subset L of a ring R is said to be a left ideal of R if 0 ∈ L, −x ∈ L,
x+ y ∈ L and rx ∈ L for all x, y ∈ L and r ∈ R. Any unital ring R may be
regarded as a left R-module, where multiplication on the left by elements of
R is defined in the obvious fashion using the multiplication operation on the
ring R itself. A subset of R is then a submodule of R (when R is regarded
as a left module over itself) if and only if this subset is a left ideal of R.

Let M and N be left modules over some unital ring R. A function ϕ:M →
N is said to be a homomorphism of left R-modules if ϕ(x+ y) = ϕ(x) +ϕ(y)
and ϕ(rx) = rϕ(x) for all x, y ∈ M and r ∈ R. A homomorphism of R-
modules is said to be an isomorphism if it is invertible. The kernel kerϕ and
image ϕ(M) of any homomorphism ϕ:M → N are themselves R-modules.
Moreover if ϕ:M → N is a homomorphism of R-modules, and if L is a
submodule of M satisfying L ⊂ kerϕ, then ϕ induces a homomorphism
ϕ:M/L→ N . This induced homomorphism is an isomorphism if and only if
L = kerϕ and N = ϕ(M).

Definition Let M1,M2, . . . ,Mk be left modules over a unital ring R. The
direct sum M1⊕M2⊕· · ·⊕Mk of the modules M1,M2, . . . ,Mk is defined to be
the set of ordered k-tuples (x1, x2, . . . , xk), where xi ∈Mi for i = 1, 2, . . . , k.
This direct sum is itself a left R-module, where

(x1, x2, . . . , xk) + (y1, y2, . . . , yk) = (x1 + y1, x2 + y2, . . . , xk + yk),

r(x1, x2, . . . , xk) = (rx1, rx2, . . . , rxk)

for all xi, yi ∈Mi and r ∈ R.
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If K is any field, then Kn is the direct sum of n copies of K.

Definition Let M be a left module over some unital ring R. Given any
subset X of M , the submodule of M generated by the set X is defined to be
the intersection of all submodules of M that contain the set X. It is therefore
the smallest submodule of M that contains the set X. A left R-module M is
said to be finitely-generated if it is generated by some finite subset of itself.

Lemma 8.4 Let M be a left module over some unital ring R. Then the
submodule of M generated by some finite subset {x1, x2, . . . , xk} of M consists
of all elements of M that are of the form

r1x1 + r2x2 + · · ·+ rkxk

for some r1, r2, . . . , rk ∈ R.

Proof The subset of M consisting of all elements of M of this form is clearly
a submodule of M . Moreover it is contained in every submodule of M that
contains the set {x1, x2, . . . , xk}. The result follows.

8.3 Bimodules

Definition Let R and S be unital rings. An R-S-bimodule is an Abelian
group M , where elements of M may be multiplied on the left by elements of
R, and may also be multiplied on the right by elements of S, and where the
following properties are satisfied:

(i) M is a left R-module;

(ii) M is a right S-module;

(iii) (rx)s = r(xs) for all x ∈M , r ∈ R and s ∈ S.

Example Let K be a field, let m and n be positive integers, and let Mm,n(K)
denote the set of m × n matrices with coefficients in the field K. Then
Mm,n(K) is an Abelian group with respect to the operation of matrix addi-
tion. The elements of Mm,n(K) may be multiplied on the left by elements
of the ring Mm(K) of m × m matrices with coefficients in K; they may
also be multiplied on the right by elements of the ring Mn(K) of n× n ma-
trices with coefficients in K; these multiplication operations are the usual
ones resulting from matrix multiplication. Moreover (AX)B = A(XB) for
all X ∈ Mm,n(K), A ∈ Mm(K) and B ∈ Mn(K). Thus Mm,n(K) is an
Mm(K)-Mn(K)-bimodule.
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If R is a unital commutative ring then any R-module M may be regarded
as an R-R-bimodule, where (rx)s = r(xs) = (rs)x for all x ∈M and r, s ∈ R.

Definition Let R and S be unital rings, and let M and N be R-S-bimodules.
A function ϕ:M → N from M to N is said to be an R-S-bimodule homo-
morphism if ϕ(x + y) = ϕ(x) + ϕ(y), ϕ(rx) = rϕ(x) and ϕ(xs) = ϕ(x)s for
all x, y ∈M , r ∈ R and s ∈ S.

8.4 Free Modules

Definition Let F be a left module over a unital ring R, and let X be a
subset of F . We say that the left R-module F is freely generated by the
subset X if, given any left R-module M , and given any function f :X →M ,
there exists a unique R-module homomorphism ϕ:F →M that extends the
function f .

Example Let K be a field. Then a K-module is a vector space over K. Let
V be a finite-dimensional vector space over the field K, and let b1, b2, . . . , bn
be a basis of V . Then V is freely generated (as a K-module) by the set B,
where B = {b1, b2, . . . , bn}. Indeed, given any vector space W over K, and
given any function f :B → W , there is a unique linear transformation ϕ:V →
W that extends f . Indeed

ϕ

(
n∑
j=1

λjbj

)
=

n∑
j=1

λjf(bj)

for all λ1, λ2, . . . , λn ∈ K. (Note that a function between vector spaces
over some field K is a K-module homomorphism if and only if it is a linear
transformation.)

Definition A left module F over a unital ring R is said to be free if there
exists some subset of F that freely generates the R-module F .

Lemma 8.5 Let F be a left module over a unital ring R, let X be a set, and
let i:X → F be a function. Suppose that the function i:X → F satisfies the
following universal property:

given any left R-module M , and given any function f :X → M ,
there exists a unique R-module homomorphism ϕ:F → M such
that ϕ ◦ i = f .

Then the function i:X → F is injective, and F is freely generated by i(X).
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Proof Let x and y be distinct elements of the set X, and let f be a function
satisfying f(x) = 0R and f(y) = 1R, where 0R and 1R denote the zero
element and the multiplicative identity element respectively of the ring R.
The ring R may be regarded as a left R-module over itself. It follows from
the universal property of i:X → M stated above that there exists a unique
R-module homomorphism θ:F → R for which θ ◦ i = f . Then θ(i(x)) = 0R
and θ(i(y)) = 1R. It follows that i(x) 6= i(y). Thus the function i:X → F is
injective.

Let M be a left R-module, and let g: i(X) → M be a function defined
on i(X). Then there exists a unique homomorphism ϕ:F → M such that
ϕ ◦ i = g ◦ i. But then ϕ|i(X) = g. Thus the function g: i(X) → M
extends uniquely to a homomorphism ϕ:F → M . This shows that F is
freely generated by i(X), as required.

Let F1 and F2 be left modules over a unital ring R, let X1 be a subset of
F1, and let X2 be a subset of F2. Suppose that F1 is freely generated by X1,
and that F2 is freely generated by X2. Then any function f :X1 → X2 from
X1 to X2 extends uniquely to a R-module homomorphism from F1 to F2. We
denote by f]:F1 → F2 the unique R-module homomorphism that extends f .

Now let F1, F2 and F3 be left modules over a unital ring R, and let X1,
X2 and X3 be subsets of F1, F2 and F3 respectively. Suppose that the left
R-module Fi is freely generated by Xi for i = 1, 2, 3. Let f :X1 → X2 and
g:X2 → X3 be functions. Then the functions f , g and g ◦ f extend uniquely
to R-module homomorphisms f]:F1 → F2, g]:F2 → F3 and (g ◦f)]:F3 → F3.
Moreover the uniqueness of the homomorphism (g◦f)] extending g◦f suffices
to ensure that (g ◦ f)] = g] ◦ f]. Also the unique function from the module
Fi extending the identity function of Xi is the identity isomorphism of Fi,
for each i. It follows that if f :X1 → X2 is a bijection, then f]:F1 → F2 is
an isomorphism whose inverse is the unique homomorphism (f−1)]:F2 → F1

extending the inverse f−1:X2 → X1 of the bijection f .

8.5 Construction of Free Modules

Proposition 8.6 Let X be a set, and let R be a unital ring. Then there
exists a left R-module FRX and an injective function iX :X → FRX such
that FRX is freely generated by iX(X). The R-module FRX and the function
iX :X → FRX then satisfy the following universal property:

given any left R-module M , and given any function f :X → M ,
there exists a unique R-module homomorphism ϕ:FRX → M
such that ϕ ◦ iX = f .
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The elements of FRX may be represented as functions from X to R that
have only finitely many non-zero values. Also given any element x of X, the
corresponding element iX(x) of FRX is represented by the function δx:X →
R, where δx maps x to the identity element of R, and maps all other elements
of X to the zero element of R.

Proof Let 0R and 1R denote the zero element and the multiplicative identity
element respectively of the ring R.

We define FRX to be the set of all functions σ:X → R from X to R that
have at most finitely many non-zero values.

Note that if σ and τ are functions from X to R that have at most finitely
many non-zero values, then so is the sum σ+τ of the functions σ and τ (where
(σ + τ)(x) = σ(x) + τ(x) for all x ∈ X). Therefore addition of functions is a
binary operation on the set FRX. Moreover FRX is an Abelian group with
respect to the operation of addition of functions.

Given r ∈ R, and given σ ∈ FRX, let rσ be the function from X to R
defined such that (rσ)(x) = rσ(x) for all x ∈ X. Then

r(σ + τ) = rσ + rτ, (r + s)σ = rσ + sσ,

(rs)σ = r(sσ), 1Rσ = σ

for all σ, τ ∈ FRX and r, s ∈ R. It follows that FRX is a module over the
ring R.

Given x ∈ X, let δx:X → R be the function defined such that

δx(y) =

{
1R if y = x;
0R if y 6= x.

.

Then δx ∈ FRX for all x ∈ X. We denote by iX :X → FRX the function
that sends x to δx for all x ∈ X.

We claim that FRX is freely generated by the set iX(X), where iX(X) =
{δx : x ∈ X}. Let M be an R-module, and let f :X →M be a function from
X to M . We must prove that there exists a unique R-module homomorphism
ϕ:FRX →M such that ϕ ◦ iX = f (Lemma 8.5).

Let σ be an element of FRX. Then σ is a function from X to R with at
most finitely many non-zero values. Then σ =

∑
x∈suppσ

σ(x)δx, where

suppσ = {x ∈ X : σ(x) 6= 0R}.

We define ϕ(σ) =
∑

x∈suppσ
σ(x)f(x). This associates to each element σ of

FRX a corresponding element ϕ(σ) of M . We obtain in this way a function
ϕ:FRX →M .
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Let σ and τ be elements of FRX, let r be an element of the ring R, and
let Y be a finite subset of X for which suppσ ⊂ Y and supp τ ⊂ Y . Then
supp(σ + τ) ⊂ Y , and

ϕ(σ + τ) =
∑

x∈supp(σ+τ)

(σ(x) + τ(x))δx =
∑
x∈Y

(σ(x) + τ(x))δx

=
∑
x∈Y

σ(x)δx +
∑
x∈Y

τ(x)δx =
∑

x∈suppσ

σ(x)δx +
∑

x∈supp τ

τ(x)δx

= ϕ(σ) + ϕ(τ).

Also

ϕ(rσ) =
∑

x∈supp(rσ)

rσ(x)δx =
∑

x∈suppσ

rσ(x)δx = r

( ∑
x∈suppσ

σ(x)δx

)
= rϕ(σ).

This shows that ϕ:FXR → M is an R-module homomorphism. Moreover if
ψ:FXR→M is any R-module homomorphism satisfying ψ ◦ iX = f , then

ψ(σ) = ψ

( ∑
x∈suppσ

σ(x)δx

)
=

∑
x∈suppσ

σ(x)ψ(δx) =
∑

x∈suppσ

σ(x)ψ(iX(x))

=
∑

x∈suppσ

σ(x)f(x) = ϕ(σ).

Thus ϕ:FRX → M is the unique R-module homomorphism satisfying ϕ ◦
iX = f .

It now follows from Lemma 8.5 that the R-module FRX is freely gener-
ated by iX(X). We have also shown that the required universal property is
satisfied by the module FRX and the function iX .

Definition Let X be a set, and let R be a unital ring. We define the free
left R-module on the set X to be the module FRX constructed as described
in the proof of Proposition 8.6. Moreover we may consider the set X to be
embedded in the free module FRX via the injective function iX :X → FXX
described in the statement of that proposition

Abelian groups are modules over the ring Z of integers. The construction
of free modules therefore associates to any set X a corresponding free Abelian
group FZX.

Definition Let X be a set. The free Abelian group on the set X is the
module FZX whose elements can be represented as functions from X to Z
that have only finitely many non-zero values.
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8.6 Tensor Products of Modules over a Unital Com-
mutative Ring

Definition Let R be a unital commutative ring, and let let M and N and
P be R-modules. A function f :M ×N → P is said to be R-bilinear if

f(x1 + x2, y) = f(x1, y) + f(x2, y),

f(x, y1 + y2) = f(x, y1) + f(x, y2),

and
f(rx, y) = f(x, ry) = rf(x, y)

for all x, x1, x2 ∈M , y, y1, y2 ∈ N and r ∈ R.

Proposition 8.7 Let R be a unital commutative ring, and let M and N be
modules over R. Then there exists an R-module M ⊗R N and an R-bilinear
function jM×N :M × N → M ⊗R N , where M ⊗R N and jM×N satisfy the
following universal property:

given any R-module P , and given any R-bilinear function f :M×
N → P , there exists a unique R-module homomorphism θ:M ⊗R
N → P such that f = θ ◦ jM×N .

Proof Let FR(M × N) be the free R-module on the set M × N , and let
iM×N :M×N → FR(M×N) be the natural embedding of M×N in FR(M×
N). Then, given any R-module P , and given any function f :M × N → P ,
there exists a unique R-module homomorphism ϕ:FR(M × N) → P such
that ϕ ◦ iM×N = f (Proposition 8.6).

Let K be the submodule of FR(M ×N) generated by the elements

iM×N(x1 + x2, y)− iM×N(x1, y)− iM×N(x2, y),

iM×N(x, y1 + y2)− iM×N(x, y1)− iM×N(x, y2),

iM×N(rx, y)− riM×N(x, y),

iM×N(x, ry)− riM×N(x, y)

for all x, x1, x2 ∈ M , y, y1, y2 ∈ N and r ∈ R. Also let M ⊗R N be the
quotient module FR(M×N)/K, let π:FR(M×N)→M⊗RN be the quotient
homomorphism, and let jM×N :M×N →M⊗RN be the composition function
π ◦ iM×N . Then

jM×N(x1 + x2, y)− jM×N(x1, y)− jM×N(x2, y)

= π(iM×N(x1 + x2, y)− iM×N(x1, y)− iM×N(x2, y)) = 0
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for all x1, x2 ∈M and y ∈ N . Similarly

jM×N(x, y1 + y2, y)− jM×N(x, y1)− jM×N(x, y2) = 0

for all x ∈M and y1, y2 ∈ N , and

jM×N(rx, y)− rjM×N(x, y) = π(iM×N(rx, y)− riM×N(x, y)) = 0,

jM×N(x, ry)− rjM×N(x, y) = π(iM×N(x, ry)− riM×N(x, y)) = 0

for all x ∈M , y ∈ N and r ∈ R. It follows that

jM×N(x1 + x2, y) = jM×N(x1, y) + jM×N(x2, y),

jM×N(x, y1 + y2) = jM×N(x, y1) + jM×N(x, y2),

and
jM×N(rx, y) = jM×N(x, ry) = rjM×N(x, y)

for all x, x1, x2 ∈M , y, y1, y2 ∈ N and r ∈ R. Thus jM×N :M×N →M⊗RN
is an R-bilinear function.

Now let P be an R-module, and let f :M × N → P be an R-bilinear
function. Then there is a unique R-module homomorphism ϕ:FR(M×N)→
P such that f = ϕ ◦ iM×N . Then

ϕ(iM×N(x1 + x2, y)− iM×N(x1, y)− iM×N(x2, y))

= f(x1 + x2, y)− f(x1, y)− f(x2, y) = 0

for all x1, x2 ∈M and y ∈ N . Similarly

ϕ(iM×N(x, y1 + y2)− iM×N(x, y1)− iM×N(x, y2)) = 0

for all x ∈M and y1, y2 ∈ N , and

ϕ(iM×N(rx, y)− riM×N(x, y)) = f(rx, y)− rf(x, y) = 0,

ϕ(iM×N(x, ry)− riM×N(x, y)) = f(x, ry)− rf(x, y) = 0

for all x ∈ M , y ∈ N and r ∈ R. Thus the submodule K of FR(M × N)
is generated by elements of kerϕ, and therefore K ⊂ kerϕ. It follows that
ϕ:FR(M×N)→ P induces a unique R-module homomorphism θ:M⊗RN →
P , where M ⊗R N = FR(M ×N)/K, such that ϕ = θ ◦ π. Then

θ ◦ jM×N = θ ◦ π ◦ iM×N = ϕ ◦ iM×N = f.

Moreover is ψ:M ⊗R N → P is any R-module homomorphism satisfying
ψ ◦ jM×N = f then ψ ◦ π ◦ iM×N = f . The uniqueness of the homomorphism
ϕ:FR(M × N) → P then ensures that ψ ◦ π = ϕ = θ ◦ π. But then ψ = θ,
because the quotient homomorphism π:FR(M×N)→M⊗RN is surjective.
Thus the homomorphism θ is uniquely determined, as required.
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Let M and N be modules over a unital commutative ring R. The module
M ⊗R N constructed as described in the proof of Proposition 8.7 is referred
to as the tensor product M ⊗R N of the modules M and N over the ring R.
Given x ∈M and y ∈ N , we denote by x⊗y the image j(x, y) of (x, y) under
the bilinear function jM×N :M × N → M ⊗R N . We call this element the
tensor product of the elements x and y. Then

(x1 + x2)⊗ y = x1 ⊗ y + x2 ⊗ y, x⊗ (y1 + y2) = x⊗ y1 + x⊗ y2,

and
(rx)⊗ y = x⊗ (ry) = r(x⊗ y)

for all x, x1, x2 ∈ M , y, y1, y2 ∈ N and r ∈ R. The universal property
characterizing tensor products described in Proposition 8.7 then yields the
following result.

Corollary 8.8 Let M and N be modules over a unital commutative ring R,
let M ⊗R N be the tensor product of M and N over R. Then, given any R-
module P , and given any R-bilinear function f :M ×N → P , there exists a
unique R-module homomorphism θ:M⊗RN → P such that θ(x⊗y) = f(x, y)
for all x ∈M and y ∈ N .

The following corollary shows that the universal property stated in Propo-
sition 8.7 characterizes tensor products up to isomorphism.

Corollary 8.9 Let M , N and T be modules over a unital commutative
ring R, let M⊗RN be the tensor product of M and N , and let k:M×N → T
be an R-bilinear function. Suppose that k:M×N → T satisfies the universal
property characterizing tensor products so that, given any R-module P , and
given any R-bilinear function f :M×N → P , there exists a unique R-module
homomorphism ψ:T → P such that f = ψ◦k. Then T ∼= M⊗RN , and there
is a unique R-isomorphism ϕ:M ⊗R N → T such that k(x, y) = ϕ(x ⊗R y)
for all x ∈M and y ∈ N .

Proof It follows from Corollary 8.8 that there exists a unique R-module
homomorphism ϕ:M ⊗R N → T such that k(x, y) = ϕ(x ⊗ y) for all x ∈
M and y ∈ N . Also universal property satisfied by the bilinear function
k:M ×N → T ensures that there exists a unique R-module homomorphism
ψ:T → M ⊗R N such that x ⊗ y = ψ(k(x, y)) for all x ∈ M and y ∈ N .
Then ψ(ϕ(x ⊗ y)) = x ⊗ y for all x ∈ M and y ∈ M . But the universal
property characterizing the tensor product ensures that any homomorphism
from M ×R N to itself is determined uniquely by its action on elements of
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the form x⊗ y, where x ∈M and y ∈ N . It follows that ψ ◦ϕ is the identity
automorphism of M⊗RN . Similarly ϕ◦ψ is the identity automorphism of T .
It follows that ϕ:M⊗RN → T is an isomorphism of R-modules whose inverse
is ψ:T →M ⊗R N . The isomorphism ϕ has the required properties.

Corollary 8.10 Let M be a module over a unital commutative ring R, and
let κ:R⊗RM →M be the R-module homomorphism defined such that κ(r⊗
x) = rx for all r ∈ R and x ∈ M . Then κ is an isomorphism, and thus
R⊗RM ∼= M .

Proof Let P be an R-module, and let f :R × M → P be an R-bilinear
function. Let ψ:M → P be defined such that ψ(x) = f(1R, x) for all x ∈M ,
where 1R denotes the identity element of the ring R. Then ψ is an R-module
homomorphism. Moreover f(r, x) = rf(1R, x) = f(1R, rx) = ψ(rx) for all
x ∈ M and r ∈ R. Thus f = ψ ◦ k, where k:R ×M → M is the R-bilinear
function defined such that k(r, x) = rx for all r ∈ R and x ∈ M . The result
therefore follows on applying Corollary 8.9.

Corollary 8.11 Let M , M ′, N and N ′ be modules over a unital commutative
ring R, and let ϕ:M → M ′ and ψ:N → N ′ be R-module homomorphisms.
Then ϕ and ψ induce an R-module homomorphism ϕ⊗ψ:M⊗RN →M ′⊗R
N ′, where (ϕ⊗ ψ)(m⊗ n) = ϕ(m)⊗ ψ(n) for all m ∈M and n ∈ N .

Proof The result follows immediately on applying Corollary 8.8 to the bi-
linear function from M ×N to M ′ ⊗R N ′ that sends (m,n) to ϕ(m)⊗ ψ(n)
for all m ∈M and n ∈ N .

8.7 Direct Sums and Tensor Products

Lemma 8.12 Let L, M and N be R-modules over a unital commutative
ring R. Then

(L⊕M)⊗R N ∼= (L⊗R N)⊕ (M ⊗R N).

Proof The function

j: (L⊕M)×N → (L⊗R N)⊕ (M ⊗R N)

is an R-bilinear function, where j((x, y), z) = (x ⊗ z, y ⊗ z) for all x ∈ L,
y ∈M and z ∈ N . We prove that the R-module (L⊗R N)⊕ (M ⊗R N) and
the R-bilinear function j satisfy the universal property that characterizes the
tensor product of (L⊕M) and N over the ring R up to isomorphism.
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Let P be an R-module, and let f : (L ⊕M) × N → P be an R-bilinear
function. Then f determines R-bilinear functions g:L×N → P and h:M ×
N → P , where g(x, z) = f((x, 0), z) and h(y, z) = f((0, x), z for all x ∈ L,
y ∈M and z ∈ N . Moreover

f((x, y), z) = f((x, 0)+(0, y), z) = f((x, 0), z)+f(0, y), z) = g(x, z)+h(y, z).

for all x ∈ L, y ∈ M and z ∈ N . Now there exist unique R-module ho-
momorphisms ϕ:L ⊗R N → P ψ:L ⊗R N → P satisfying the identities
ϕ(x ⊗ z) = g(x, z) and ψ(y ⊗ z) = h(y, z) for all x ∈ L, y ∈ M and z ∈ N .
Then

f((x, y), z) = ϕ(x⊗ z) + ψ(y ⊗ z) = θ((x⊗ z), (y ⊗ z)) = θ(j((x, y), z),

where θ: (L⊗RN)⊕ (M⊗RN)→ P is the R-module homomorphism defined
such that θ(u, v) = ϕ(u) + ψ(v) for all u ∈ L ⊗R N and v ∈ M ⊗R N .
We have thus shown that, given any R-module P , and given any R-bilinear
function f : (L ⊕ M) × N → P , there exists an R-module homomorphism
θ: (L⊗RN)⊕ (M ⊗RN)→ P satisfying f = theta ◦ j. This homomorphism
is uniquely determined. It follows directly from this that

(L⊕M)⊗R N ∼= (L⊗R N)⊕ (M ⊗R N),

as required.

8.8 Tensor Products of Abelian Groups

Proposition 8.13 Zm ⊗Z Zn ∼= Zgcd(m,n) for all positive integers m and n,
where Zn = Z/nZ and gcd(m,n) is the greatest common divisor of m and n.

Proof The cyclic groups Zm and Zn are generated by a and b respectively,
where a = 1 + Zm and b = 1 + Zn. Moreover Zm = {j.a : j ∈ IZ},
Zn = {k.b : k ∈ Z}, j.a = 0 if and only if m divides the integer j, and k.b = 0
if and only if n divides the integer k.

Now Zm⊗Z Zn is generated by elements of the form x⊗ y, where x ∈ Zm
and y ∈ Zn. Moreover (j.a) ⊗ (k.b) = jk(a ⊗ b) for all integers j and k. It
follows that Zm⊗ZZn = {ja⊗ b : j ∈ Z}. Thus the tensor product Zm⊗ZZn
is a cyclic group generated by a ⊗ b. We must show that the order of this
generator is the greatest common divisor of m and n.

Let r = gcd(m,n). It follows from a basic result of elementary number
theory that there exist integers s and t such that r = sm+ tn. Then

r(a⊗ b) = sm(a⊗ b) + tn(a⊗ b) = s((ma)⊗ b) + t(a⊗ (nb))

= s(0⊗ b) + t(a⊗ 0) = 0.
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It follows that the generator a⊗ b of Zm ⊗Z Zn is an element of finite order,
and the order of this element divides r.

It remains to show that a ⊗ b is of order r. Now if j, j′, k and k′ are
integers, and if j.a = j′.a and k.b = k′.b then m divides j − j′ and n divides
k− k′. But then the greatest common divisor r of m and n divides jk− j′k′,
since jk − j′k′ = (j − j′)k + j′(k − k′). Let c be the generator 1 + rZ of
Zr. Then there is a well-defined bilinear function f :Zm × Z → Zr, where
f(j.a, k.b) = jk.c for all integers j and k. This function induces a unique
group homomorphism ϕ:Zm ⊗Z Z → Zr, where ϕ(x ⊗ y) = f(x, y) for all
x ∈ Zm and y ∈ Zn. Then ϕ(ja ⊗ b) = jc for all integers j. Now the
generator c of Zr is of order r, and thus jc = 0 only when r divides j. It
follows that ja ⊗ b = 0 only when r divides j. Thus the generator a ⊗ j of
Zm ⊗Z Zn is of order r, and therefore Zm ⊗Z Zn ∼= Zr, where r = gcd(m,n),
as required.

There is a fundamental theorem concerning the structure of finitely-
generated Abelian groups, which asserts that any finitely-generated Abelian
group is isomorphic to the direct sum of a finite number of cyclic groups.
Thus, given any Abelian group A, there exist positive integers n1, n2, . . . , nk
and r such that

A ∼= Zn1 ⊕ Zn2 ⊕ · · · ⊕ Znk
⊕ Zr.

Now Corollary 8.10 ensures that Z ⊗Z B ∼= B for any Abelian group B. It
follows from Lemma 8.12 that

A⊗Z B ∼= (Zn1 ⊗Z B)⊕ (Zn2 ⊗Z B)⊕ · · · ⊕ (Znk
⊗Z B)⊕Br.

On applying Proposition 8.13, we find in particular that

A⊗Z Zm ∼= Zgcd(n1,m) ⊕ Zgcd(n2,m) ⊕ · · · ⊕ Zgcd(nk,m) ⊕ Zrm

for any positive integer r. Also A⊗Z Z ∼= A, by Corollary 8.10.
Note that that Z1 is the zero group 0, and therefore 0 ⊕ B ∼= B for any

Abelian group. (Indeed 0 × B = {(0, b) : b ∈ B}, and this group of ordered
pairs of the form (0, b) with b ∈ B is obviously isomorphic to B.) We are
thus in a position to evaluate the tensor product of any two finitely-generated
Abelian groups

Note also that if integers m and n are coprime, then Zmn ∼= Zm ⊕ Zn.
Indeed let a ∈ Zm be an element of order m (which therefore generates Zm),
and let b ∈ Zn be an element of order n. Then the order of the element (a, b)
of Zm ⊕ Zn is divisible by both m and n, and is therefore divisible by mn.
It then follows that (a, b) generates the group Zm ⊕ Zn, and this group is
therefore isomorphic to Zmn.
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Example Let

A ∼= Z18 ⊕ Z8 ⊕ Z2 and B ∼= Z9 ⊕ Z4 ⊕ Z5.

Then

A⊗Z B ∼= (A⊗Z Z9)⊕ (A⊗Z Z4)⊕ A5

∼= Z9 ⊕ Z1 ⊕ Z2
9 ⊕ Z2 ⊕ Z4 ⊕ Z2

4 ⊕ Z5
18 ⊕ Z5

8 ⊕ Z10

∼= Z2 ⊕ Z3
4 ⊕ Z5

8 ⊕ Z3
9 ⊕ Z5

18 ⊕ Z10.

Now Z18
∼= Z2 ⊕ Z9, because the integers 2 and 9 are coprime. (See remarks

above). It follows that

A⊗Z B ∼= Z6
2 ⊕ Z3

4 ⊕ Z5
8 ⊕ Z8

9 ⊕ Z10.

8.9 Multilinear Maps and Tensor Products

Let M1,M2, . . . ,Mn be modules over a unital commutative ring R, and let
P be an R-module. A function f :M1 ×M2 × · · · ×Mn → P is said to be
R-multilinear if

f(x1, . . . , xk−1, x
′
k + x′′k, xk+1, . . . , xn)

= f(x1, . . . , xk−1, x
′
k, xk+1, . . . , xn)

+ f(x1, . . . , xk−1, x
′′
k, xk+1, . . . , xn)

and

f(x1, . . . , xk−1, rxk, xk+1, . . . , xn) = rf(x1, . . . , xk−1, xk, xk+1, . . . , xn)

for k = 1, 2, . . . , n, for all xl, x
′
l, x
′′
l ∈ Ml (l = 1, 2, . . . , n), and for all r ∈ R.

(When k = 1 the list x1, . . . , xk−1 should be interpreted as the empty list in
the formulae above; when k = n the list xk+1, . . . , xn should be interpreted
as the empty list.) One can construct a module M1 ⊗R M2 ⊗R · · · ⊗R Mn,
referred to as the tensor product of the modules M1,M2, . . . ,Mn over the
ring R, and an R-multilinear mapping

jM1×M2×···×Mn :M1 ×M2 × · · · ×Mn →M1 ⊗RM2 ⊗R · · · ⊗RMn

where the tensor product and multilinear mapping jM1×M2×···×Mn satisfy the
following universal property:

given any R-module P , and given any R-multilinear function
f :M1 × M2 × · · · × Mn → P , there exists a unique R-module
homomorphism θ:M1 ⊗R M2 ⊗R · · · ⊗R Mn → P such that f =
θ ◦ jM1×M2×···×Mn .
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This tensor product is defined to be the quotient of the free module FR(M1×
M2×· · ·×Mn) by the submodule K generated by elements of the free module
that are of the form

iM1×M2×···×Mn(x1, . . . , xk−1, x
′
k + x′′k, xk+1, . . . , xn)

− iM1×M2×···×Mn(x1, . . . , xk−1, x
′
k, xk+1, . . . , xn)

− iM1×M2×···×Mn(x1, . . . , xk−1, x
′′
k, xk+1, . . . , xn),

or are of the form

iM1×M2×···×Mn(x1, . . . , xk−1, rxk, xk+1, . . . , xn)

− riM1×M2×···×Mn(x1, . . . , xk−1, xk, xk+1, . . . , xn),

where xl, x
′
l, x
′′
l ∈Ml for l = 1, 2, . . . , n, and r ∈ R. There is an R-multilinear

function

jM1×M2×···×Mn :M1 ×M2 × · · · ×Mn →M1 ⊗RM2 ⊗R · · · ⊗RMn,

where jM1×M2×···×Mn is the composition π ◦ iM1×M2×···×Mn of the natural em-
bedding

iM1×M2×···×Mn :M1 ×M2 × · · · ×Mn → FR(M1 ×M2 × · · · ×Mn)

and the quotient homomorphism

π:FR(M1 ×M2 × · · · ×Mn)→M1 ⊗RM2 ⊗R · · · ⊗RMn.

8.10 Tensor Products over Non-Commutative Rings

Let R be a unital ring that is not necessarily commutative, let M be a right
R-module, and let N be a left R-module. These modules are Abelian groups
under the operation of addition, and Abelian groups are modules over the
ring Z of integers. We can therefore form their tensor product M⊗ZN . This
tensor product is an Abelian group.

Let K be the subgroup of M ⊗Z N generated by the elements

(xr)⊗Z y − x⊗Z (ry)

for all x ∈ M , y ∈ N and r ∈ R, where x ⊗Z y denotes the tensor product
of x and y in the ring M ⊗Z N . We define the tensor product M ⊗R N of
the right R-module M and the left R-module N over the ring R to be the
quotient group M ⊗Z N/K. Given x ∈ M and y ∈ N , let x ⊗ y denote the
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image of x⊗Z y under the quotient homomorphism π:M ⊗Z N →M ⊗R N .
Then

(x1 + x2)⊗ y = x1 ⊗ y + x2 ⊗ y, x⊗ (y1 + y2) = x⊗ y1 + x⊗ y2,

and
(xr)⊗ y = x⊗ (ry)

for all x, x1, x2 ∈M , y, y1, y2 ∈ N and r ∈ R.

Lemma 8.14 Let R be a unital ring, let M be a right R-module, and let N
be a left R-module. Then the tensor product M ⊗R N of M and N is an
Abelian group that satisfies the following universal property:

given any Abelian group P , and given any Z-bilinear function
f :M ×N → P which satisfies

f(xr, y) = f(x, ry)

for all x ∈ M , y ∈ N and r ∈ R, there exists a unique Abelian
group homomorphism ϕ:M ⊗RN → P such that f(x, y) = ϕ(x⊗
y) for all x ∈M and y ∈ N .

8.11 Tensor Products of Bimodules

Let Q, R and S be unital rings, let M be a Q-R-bimodule, and let N be an
R-S-bimodule. Then M is a right R-module and N is a left R-module. We
can therefore form the tensor product M ⊗RN of M and N over the ring R.
This tensor product is an Abelian group under the operation of addition.

Let q ∈ Q and r ∈ R. The definition of bimodules ensures that (qx)r =
q(xr) for all x ∈M . Let Lq:M ×N →M ⊗RN be the function defined such
that Lq(x, y) = (qx) ⊗ y for all x ∈ M and y ∈ N . Then the function f is
Z-bilinear. Moreover

Lq(xr, y) = (q(xr))⊗ y = ((qx)r)⊗ y = (qx)⊗ (ry) = Lq(x, ry).

for all x ∈ M and y ∈ N . It follows from Lemma 8.14 that there exists a
group homomorphism λq:M⊗RN →M⊗RN , where λq(x⊗y) = (qx)⊗y for
all x ∈M and y ∈ N . Similarly, given any element s of the ring S, there exists
a group homomorphism ρs:M ⊗RN →M ⊗RN , where λs(x⊗y) = x⊗ (ys).
We define qα = λq(α) and αs = ρs(α) for all α ∈ M ⊗R N . One can
check that M ⊗R N is a Q-S-bimodule with respect to these operations of
left multiplication by elements of Q and right multiplication by elements of
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S. Moreover, given any Q-S-bimodule P , and given any Z-bilinear function
f :M ×N → P that satisfies

f(qx, y) = qf(x, y), f(xr, y) = f(x, ry), f(x, ys) = f(x, y)s

for all x ∈ M , y ∈ N , q ∈ Q, r ∈ R and s ∈ S, there exists a unique Q-S
bimodule homomorphism ϕ:M ⊗R N → P such that f(x, y) = ϕ(x⊗ y) for
all x ∈M and y ∈ N .

This constuction generalizes the definition and universal property of the
tensor product of modules over a unital commutative ring R, in view of the
fact that any module over a unital commutative ring R may be regarded as
an R-R-bimodule.

8.12 Tensor Products involving Free Modules

Proposition 8.15 Let R and S be unital rings, let M be an R-S-bimodule
and let FSX be a free left S-module on a set X. Then the tensor product
M ⊗S FSX is isomorphic, as an R-module, to Γ(X,M), where Γ(X,M) is
the left R-module whose elements are represented as functions from X to M
with only finitely many non-zero values, and where (λ+µ)(x) = λ(x) +µ(x),
and (rλ)(x) = rλ(x) for all λ, µ ∈ Γ(X,M) and r ∈ R.

Proof The elements of the free left S-module FSX are represented as func-
tions from X to S. Let f :M × FSX → Γ(X,M) be the Z-bilinear function
defined such that f(m,σ)(x) = mσ(x) for all m ∈ M , σ ∈ FSX and x ∈ X.
Then f(ms, σ) = f(m, sσ) for all m ∈ M , σ ∈ FSX and s ∈ S. It fol-
lows from Lemma 8.14 that the function f induces a unique homomorphism
θ:M ⊗S FSX → Γ(X,M) such that θ(m ⊗ σ) = f(m,σ). Moreover θ is an
R-module homomorphism.

Given µ ∈ Γ(X,M) we define

ϕ(µ) =
∑

x∈suppµ

µ(x)⊗ δx,

where suppµ = {x ∈ X : µ(x) 6= 0} and δx denotes the function from X to
S which takes the value 1S at x and is zero elsewhere. Then ϕ: Γ(X,M) →
M ⊗S FSX is also an R-module homomorphism. Now

ϕ(θ(m⊗ σ)) =
∑

x∈suppσ

mσ(x)⊗ δx =
∑

x∈suppσ

m⊗ σ(x)δx

= m⊗

( ∑
x∈suppσ

σ(x)δx

)
= m⊗ σ
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for all m ∈M and σ ∈ FSX. It follows that ϕ◦θ is the identity automorphism
of the tensor product M ⊗S FSX.

Also

θ(ϕ(µ)) = θ

( ∑
x∈suppµ

µ(x)⊗ δx

)
=

∑
x∈suppµ

θ(µ(x)⊗ δx)

for all µ ∈ Γ(X,M). But

θ(µ(x)⊗ δx)(y) =

{
µ(x) if y = x;
0 if y 6= x.

It follows that
θ(ϕ(µ) =

∑
x∈suppµ

θ(µ(x)⊗ δx) = µ

for all µ ∈ Γ(X,M). Thus θ ◦ ϕ is the identity automorphism of Γ(X,M).
We conclude that θ:M⊗SFSX → Γ(X,M) is an isomorphism of R-modules,
as required.

Let R be a unital ring. We can regard R as an R-Z-bimodule, where rn
is the sum of n copies of r and r(−n) = −rn for all non-negative integers n
and elements r of R. We may therefore form the tensor product R ⊗Z A of
the ring R with any additive group A. (An additive group as an Abelian
group where the group operation is expressed using additive notation.) This
tensor product is an R-module. The following corollary is therefore a direct
consequence of Proposition 8.15.

Corollary 8.16 Let R be a unital ring, let X be a set, and let FZX be the
free Abelian group on the set X. Then R ⊗Z FZX ∼= FRX. Thus the tensor
product of the ring R with any free Abelian group is a free R-module.

8.13 The Relationship between Bimodules and Left
Modules

Let R and S be unital rings with multiplicative identity elements 1R and 1S,
and let Sop be the unital ring (S,+,×) whose elements are those of S, whose
operation of addition is the same as that defined on S, and whose operation
× of multiplication is defined such that s1×s2 = s2s1 for all s1, s2 ∈ S.

We can then construct a ring R⊗Z S
op. The elements of this ring belong

to the tensor product of the rings R and Sop over the ring Z of integers, and
the operation of addition on R⊗Z S

op is that defined on the tensor product.
The operation of multiplication on R⊗Z S

op is then defined such that

(r1 ⊗ s1)× (r2 ⊗ s2) = (r1r2)⊗ (s1×s2) = (r1r2)⊗ (s2s1).
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Lemma 8.17 Let R and S be unital rings, and let M be an R-S-bimodule.
Then M is a left module over the ring R⊗Z S

op, where

(r1 ⊗ s1)× (r2 ⊗ s2) = (r1r2)⊗ (s2s1)

for all r1, r2 ∈ R and s1, s2 ∈ S, and where

(r ⊗ s).x = (rx)s = r(xs)

for all r ∈ R, s ∈ S and x ∈M .

Proof Given any element x of M , let bx:R × S → M be the function de-
fined such that bx(r, s) = (rx)s = r(xs) for all r ∈ R and s ∈ S. Then the
function bx is Z-bilinear, and therefore induces a unique Z-module homomor-
phism βx:R ⊗Z S

op → M , where βx(r ⊗ s) = bx(r, s) = (rx)s for all r ∈ R,
s ∈ S and x ∈ M . We define u.x = βx(u) for all u ∈ R ⊗Z S

op and x ∈ M .
Then (u1 + u2).x = u1.x+ u2.x for all u1, u2 ∈ R⊗Z S

op and x ∈M , because
βx is a homomorphism of Abelian groups. Also u.(x1 + x2) = u.x1 + u.x2,
because bx1+x2 = bx1 + bx2 and therefore βx1+x2 = βx1 + βx2 .

Now

(r1 ⊗ s1). ((r2 ⊗ s2).x) = (r1 ⊗ s1).((r2x)s2) = r1(r2(xs2))s1

= ((r1r2)(xs2))s1 = (r1r2)((xs2)s1)

= (r1r2)(x(s2s1) = ((r1r2)⊗Z (s2s1)).x

= ((r1 ⊗Z s1)× (r2 ⊗Z s2)).x

for all r1, r2 ∈ R, s1, s2 ∈ S and x ∈ M . The bilinearity of the function βx
then ensures that u1.(u2.x) = (u1×u2).x for all u1, u2 ∈ R⊗ZS

op and x ∈M .
Also (1R, 1S).x = x for all x ∈ M , where 1R and 1S denote the identity
elements of the rings R and S. We conclude that M is a left R ⊗Z S

op, as
required.

Let R and S be unital rings, and let M be a left module over the ring
R ⊗Z S

op. Then M can be regarded as an R-S-bimodule, where (rx)s =
r(xs) = (r ⊗ s).x for all r ∈ R, s ∈ S and x ∈ M . We conclude therefore
that all R-S-bimodules are left modules over the ring R ⊗Z S

op, and vica
versa. It follows that any general result concerning left modules over unital
rings yields a corresponding result concerning bimodules.
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