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8 Modules

8.1 Rings and Fields

Definition A ring consists of a set R on which are defined operations of
addition and multiplication that satisfy the following properties:

e the ring is an Abelian group with respect to the operation of addition;

e the operation of multiplication on the ring is associative, and thus
x(yz) = (zy)z for all elements z, y and z of the ring.

e the operations of addition and multiplication satisfy the Distributive
Law, and thus z(y + z) = 2y + zz and (z + y)z = zz + yz for all
elements z, y and z of the ring.

Lemma 8.1 Let R be a ring. Then x0 =0 and 0z = 0 for all elements x of
R.

Proof The zero element 0 of R satisfies 0 + 0 = 0. Using the Distributive
Law, we deduce that 20 4+ 20 = (0 + 0) = 20 and 0z 4+ 0x = (0 + 0)z = Oz.
Thus if we add —(z0) to both sides of the identity 20 + 20 = 20 we see that
20 = 0. Similarly if we add —(0z) to both sides of the identity 0z 4+ 0z = Ox
we see that 0x = 0. |}

Lemma 8.2 Let R be a ring. Then (—x)y = —(zy) and x(—y) = —(zy) for
all elements v and y of R.

Proof It follows from the Distributive Law that zy+(—x)y = (z+(—x))y =
Oy = 0 and 2y + z(—y) = z(y + (—y)) = 20 = 0. Therefore (—z)y = —(zy)
and z(—y) = —(zy). |

A subset S of a ring R is said to be a subring of Rif 0 € S, a+b € S,
—a € Sandabe S forallabes.

A ring R is said to be commutative if xy = yx for all x,y € R. Not every
ring is commutative: an example of a non-commutative ring is provided by
the ring of n x n matrices with real or complex coefficients when n > 1.

A ring R is said to be unital if it possesses a (necessarily unique) non-zero
multiplicative identity element 1 satisfying lx = x = 1 for all z € R.

Definition A unital commutative ring R is said to be an integral domain if
the product of any two non-zero elements of R is itself non-zero.
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Definition A field consists of a set on which are defined operations of ad-
dition and multiplication that satisfy the following properties:

e the field is an Abelian group with respect to the operation of addition;

e the non-zero elements of the field constitute an Abelian group with
respect to the operation of multiplication;

e the operations of addition and multiplication satisfy the Distributive
Law, and thus z(y + 2) = zy + xz and (z + y)z = zz + yz for all
elements x, y and z of the field.

An examination of the relevant definitions shows that a unital commuta-
tive ring R is a field if and only if, given any non-zero element x of R, there
exists an element 27! of R such that zz=! = 1. Moreover a ring R is a field
if and only if the set of non-zero elements of R is an Abelian group with
respect to the operation of multiplication.

Lemma 8.3 A field is an integral domain.

Proof A field is a unital commutative ring. Let x and y be non-zero elements
of a field K. Then there exist elements 27! and y~! of K such that zz= =1
and yy~' = 1. Then zyy~'z~! = 1. Tt follows that zy # 0, since 0(y~'z71) =
Oand 1 #0. |}

The set Z of integers is an integral domain with respect to the usual
operations of addition and multiplication. The sets Q, R and C of rational,
real and complex numbers are fields.

8.2 Modules

Definition Let R be a unital ring. A set M is said to be a left module over
the ring R (or left R-module) if

(i) given any z,y € M and r € R, there are well-defined elements = + y
and rx of M,

(ii) M is an Abelian group with respect to the operation + of addition,
(iii) the identities
r(z+vy) =rz+ry, (r+s)x = rz + s,

(rs)x =r(sz), lpr ==z

are satisfied for all z,y € M and r,s € R, where 1z denotes the
multiplicative identity element of the ring R.
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Definition Let R be a unital ring. A set M is said to be a right module
over R (or right R-module) if

(i) given any x,y € M and r € R, there are well-defined elements = + y
and zr of M,

(ii) M is an Abelian group with respect to the operation + of addition,
(iii) the identities
(x +y)r = xr + yr, x(r+s) =ar + ws,

x(rs) = (xr)s, rlp==x

are satisfied for all z,y € M and r,s € R, where 1z denotes the
multiplicative identity element of the ring R.

If the unital ring R is a commutative ring then there is no essential dis-
tinction between left R-modules and right R-modules. Indeed any left mod-
ule M over a unital commutative ring R may be regarded as a right module
on defining xr = rz for all x € M and r € R. We define a module over a
unital commutative ring R to be a left module over R.

Example If K is a field, then a K-module is by definition a vector space
over K.

Example Let (M, +) be an Abelian group, and let x € M. If n is a positive
integer then we define nx to be the sum x + x + - - - + x of n copies of z. If
n is a negative integer then we define nx = —(|n|z), and we define Ox = 0.
This enables us to regard any Abelian group as a module over the ring Z of
integers. Conversely, any module over 7Z is also an Abelian group.

Example Any unital commutative ring can be regarded as a module over
itself in the obvious fashion.

Let R be a unital ring that is not necessarily commutative, and let +
and x denote the operations of addition and multiplication defined on R.
We denote by R°P the ring (R, +, X), where the underlying set of R is R
itself, the operation of addition on R coincides with that on R, but where
the operation of multiplication in the ring R°P is the operation x defined so
that rxs = s x r for all r,s € R. Note that the multiplication operation on
the ring R°P coincides with that on the ring R if and only if the ring R is
commutative.
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Any right module over the ring R may be regarded as a left module over
the ring R°P. Indeed let My be a right R-module, and let r.x = xr for all
x € Mg and r € R. Then

r.(s.x) = (s.x)r = x(sr) = x(rxs) = (rxs).z

for all z € My and r,s € R. Also all other properties required of left modules
over the ring R°P are easily seen to be satisfied. It follows that any general
results concerning left modules over unital rings yield corresponding results
concerning right modules over unital rings.

Let R be a unital ring, and let M be a left R-module. A subset L of M
is said to be a submodule of M if v+ vy € L and rx € L for all x,y € L and
re€ R. If M is aleft R-module and L is a submodule of M then the quotient
group M /L can itself be regarded as a left R-module, where r(L+x) = L+rx
for all L+ 2 € M/L and r € R. The R-module M/L is referred to as the
quotient of the module M by the submodule L.

A subset L of a ring R is said to be a left ideal of Rif 0 € L, —x € L,
x+y € Land rx € L for all xz,y € L and r € R. Any unital ring R may be
regarded as a left R-module, where multiplication on the left by elements of
R is defined in the obvious fashion using the multiplication operation on the
ring R itself. A subset of R is then a submodule of R (when R is regarded
as a left module over itself) if and only if this subset is a left ideal of R.

Let M and N be left modules over some unital ring R. A function ¢: M —
N is said to be a homomorphism of left R-modules if o(x+y) = p(x) + ¢(y)
and p(rz) = re(x) for all z,y € M and r € R. A homomorphism of R-
modules is said to be an isomorphism if it is invertible. The kernel ker ¢ and
image ¢(M) of any homomorphism ¢: M — N are themselves R-modules.
Moreover if ¢: M — N is a homomorphism of R-modules, and if L is a
submodule of M satisfying L C ker, then ¢ induces a homomorphism
@:M/L — N. This induced homomorphism is an isomorphism if and only if
L =kery and N = p(M).

Definition Let My, M,, ..., M, be left modules over a unital ring R. The
direct sum M@ Mo®- - - M, of the modules M, Mo, ..., M, is defined to be
the set of ordered k-tuples (z1, s, ..., %), where z; € M, for i = 1,2,... k.
This direct sum is itself a left R-module, where

(1,29, xk) + (Y, ¥2, - k) = (@1 + YL, 22+ Y2, T+ Un),
r(zy, e, ..., x,) = (rey,reg, ... rey)

for all z;,y; € M; and r € R.
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If K is any field, then K™ is the direct sum of n copies of K.

Definition Let M be a left module over some unital ring R. Given any
subset X of M, the submodule of M generated by the set X is defined to be
the intersection of all submodules of M that contain the set X. It is therefore
the smallest submodule of M that contains the set X. A left R-module M is
said to be finitely-generated if it is generated by some finite subset of itself.

Lemma 8.4 Let M be a left module over some unital ring R. Then the
submodule of M generated by some finite subset {1, xs, ..., xx} of M consists
of all elements of M that are of the form

T1T1 + ToXg + - + TpTj
for some ri,7r9,..., 1% € R.

Proof The subset of M consisting of all elements of M of this form is clearly
a submodule of M. Moreover it is contained in every submodule of M that
contains the set {x1,xs,...,zt}. The result follows. |}

8.3 Bimodules

Definition Let R and S be unital rings. An R-S-bimodule is an Abelian
group M, where elements of M may be multiplied on the left by elements of
R, and may also be multiplied on the right by elements of S, and where the
following properties are satisfied:

(i) M is a left R-module;
(ii) M is a right S-module;
(iii) (rz)s =r(xs) forallz € M, r € Rand s € S.

Example Let K be a field, let m and n be positive integers, and let M,, ,,(K)
denote the set of m X n matrices with coefficients in the field K. Then
M, (K) is an Abelian group with respect to the operation of matrix addi-
tion. The elements of M,,,(K) may be multiplied on the left by elements
of the ring M,,(K) of m x m matrices with coefficients in K; they may
also be multiplied on the right by elements of the ring M, (K) of n x n ma-
trices with coefficients in K; these multiplication operations are the usual
ones resulting from matrix multiplication. Moreover (AX)B = A(XB) for
all X € M,,,(K), A € M,(K) and B € M,(K). Thus M,,,(K) is an
M, (K)-M,(K)-bimodule.
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If R is a unital commutative ring then any R-module M may be regarded
as an R-R-bimodule, where (rz)s = r(zs) = (rs)x forallz € M and r, s € R.

Definition Let R and S be unital rings, and let M and N be R-S-bimodules.
A function ¢: M — N from M to N is said to be an R-S-bimodule homo-

morphism if p(x +y) = o(x) + ¢(y), e(rz) = rp(z) and p(xs) = p(x)s for
all z,y e M, r € Rand s € S.

8.4 Free Modules

Definition Let F' be a left module over a unital ring R, and let X be a
subset of F'. We say that the left R-module F' is freely generated by the
subset X if, given any left R-module M, and given any function f: X — M,
there exists a unique R-module homomorphism ¢: F' — M that extends the
function f.

Example Let K be a field. Then a K-module is a vector space over K. Let
V be a finite-dimensional vector space over the field K, and let by,bs,...,b,
be a basis of V. Then V is freely generated (as a K-module) by the set B,
where B = {by,b,...,b,}. Indeed, given any vector space W over K, and
given any function f: B — W, there is a unique linear transformation ¢: V' —
W that extends f. Indeed

@ (Z )\jbj> = ijf(bj)

for all A\j, Ag,..., A, € K. (Note that a function between vector spaces
over some field K is a K-module homomorphism if and only if it is a linear
transformation.)

Definition A left module F' over a unital ring R is said to be free if there
exists some subset of F' that freely generates the R-module F.

Lemma 8.5 Let F be a left module over a unital ring R, let X be a set, and
let i: X — F be a function. Suppose that the function i: X — F satisfies the
following universal property:

giwen any left R-module M, and given any function f: X — M,
there exists a unique R-module homomorphism o: ' — M such
that poi = f.

Then the function i: X — F' is injective, and F is freely generated by i(X).
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Proof Let z and y be distinct elements of the set X, and let f be a function
satisfying f(z) = Or and f(y) = 1g, where O and 1g denote the zero
element and the multiplicative identity element respectively of the ring R.
The ring R may be regarded as a left R-module over itself. It follows from
the universal property of ©: X — M stated above that there exists a unique
R-module homomorphism 0: F' — R for which 6 o i = f. Then 0(i(x)) = Og
and 0(i(y)) = 1g. It follows that i(x) # i(y). Thus the function i: X — F'is
injective.

Let M be a left R-module, and let ¢:i(X) — M be a function defined
on i(X). Then there exists a unique homomorphism ¢: F' — M such that
poi = goi But then [i(X) = ¢g. Thus the function g:i(X) — M
extends uniquely to a homomorphism ¢: F' — M. This shows that F' is
freely generated by i(X), as required. |}

Let F; and F; be left modules over a unital ring R, let X; be a subset of
I, and let X, be a subset of F,. Suppose that Fj is freely generated by Xi,
and that F5 is freely generated by X5. Then any function f: X; — X5 from
X7 to X5 extends uniquely to a R-module homomorphism from Fj to Fy. We
denote by fi: F1 — F5 the unique R-module homomorphism that extends f.

Now let Fi, Fy and Fj be left modules over a unital ring R, and let X,
X5 and X3 be subsets of Fy, Fy and F3 respectively. Suppose that the left
R-module F; is freely generated by X; for 1 = 1,2,3. Let f: X; — X5 and
g: Xo — X3 be functions. Then the functions f, g and g o f extend uniquely
to R-module homomorphisms fy: F; — Fy, g4 F» — Fy and (go f)y: F5 — F.
Moreover the uniqueness of the homomorphism (go f); extending go f suffices
to ensure that (g o f); = g4 o f;. Also the unique function from the module
F; extending the identity function of X, is the identity isomorphism of Fj,
for each ¢. It follows that if f: X; — X, is a bijection, then f3: F} — F; is
an isomorphism whose inverse is the unique homomorphism (f~1)y: Fy — I}
extending the inverse f~!: X5 — X of the bijection f.

8.5 Construction of Free Modules

Proposition 8.6 Let X be a set, and let R be a unital ring. Then there
exists a left R-module FrX and an injective function ix: X — FrX such
that FrX is freely generated by ix(X). The R-module FrX and the function
1x: X — FrX then satisfy the following universal property:

giwen any left R-module M, and given any function f: X — M,
there ezists a unique R-module homomorphism ¢: FrRX — M
such that poix = f.
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The elements of FrX may be represented as functions from X to R that
have only finitely many non-zero values. Also given any element x of X, the
corresponding element ix(x) of FrX is represented by the function §,: X —
R, where 6, maps x to the identity element of R, and maps all other elements
of X to the zero element of R.

Proof Let Oz and 1 denote the zero element and the multiplicative identity
element respectively of the ring R.

We define FrX to be the set of all functions o: X — R from X to R that
have at most finitely many non-zero values.

Note that if o and 7 are functions from X to R that have at most finitely
many non-zero values, then so is the sum o+7 of the functions ¢ and 7 (where
(0 +7)(x) = o(z) 4+ 7(z) for all z € X). Therefore addition of functions is a
binary operation on the set FrX. Moreover FrX is an Abelian group with
respect to the operation of addition of functions.

Given r € R, and given 0 € FrX, let ro be the function from X to R
defined such that (ro)(x) = ro(x) for all z € X. Then

r(c+71)=ro+rr, (r+s)o =ro + so,

(rs)o =r(so), lro =0

for all o,7 € FrX and r,s € R. It follows that FrX is a module over the
ring R.
Given x € X, let 0,: X — R be the function defined such that

1z fy=ux;
5x(y)_{03 ify £z’

Then 6, € FrX for all z € X. We denote by ix: X — FrX the function
that sends x to §, for all x € X.

We claim that FrX is freely generated by the set ix(X), where ix(X) =
{0, :x € X}. Let M be an R-module, and let f: X — M be a function from
X to M. We must prove that there exists a unique R-module homomorphism
¢: FRX — M such that g oiy = f (Lemma 8.5).

Let o be an element of FrX. Then o is a function from X to R with at

most finitely many non-zero values. Then 0 = > o(z)d,, where
xesupp o
suppo = {x € X : o(x) # Ogr}.
We define p(o) = >, o(x)f(z). This associates to each element o of
xrESupp o

FrX a corresponding element (o) of M. We obtain in this way a function
p: FrX — M.
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Let 0 and 7 be elements of FrX, let r be an element of the ring R, and
let Y be a finite subset of X for which suppo C Y and supp7 C Y. Then
supp(c +7) C Y, and

plo+r) = Y (o) +7(@)d =) (o(x) +7(2))d

z€supp(o+T7) €Y
= > @i+ T@h= Y o@di+ Y 71(2)d
zeY €Y TrESUpp o TESUPP T
= (o) +o(7).
Also
o(ro) = Z ro(z)d, = Z ro(x)d, =r ( Z J(x)5x> =rp(o).
zEsupp(ro) TESupp o TESUpp o

This shows that ¢: F'xy R — M is an R-module homomorphism. Moreover if
Y: Fx R — M is any R-module homomorphism satisfying ¢ o ix = f, then

P(o) = w( > a(ar)@) = Y o@v) = > ol@)ix(x))

xrESupp o rESuUpp o xrESupp o
= Y o@)f(@)=pl0)
xreESupp o

Thus ¢: FrRX — M is the unique R-module homomorphism satisfying ¢ o
ix=f.

It now follows from Lemma 8.5 that the R-module FrX is freely gener-
ated by ix(X). We have also shown that the required universal property is
satisfied by the module FrX and the function ix. |

Definition Let X be a set, and let R be a unital ring. We define the free
left R-module on the set X to be the module FrX constructed as described
in the proof of Proposition 8.6. Moreover we may consider the set X to be
embedded in the free module FrX via the injective function ix: X — FxX
described in the statement of that proposition

Abelian groups are modules over the ring Z of integers. The construction
of free modules therefore associates to any set X a corresponding free Abelian
group FzX.

Definition Let X be a set. The free Abelian group on the set X is the
module F7X whose elements can be represented as functions from X to Z
that have only finitely many non-zero values.
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8.6 Tensor Products of Modules over a Unital Com-
mutative Ring

Definition Let R be a unital commutative ring, and let let M and N and
P be R-modules. A function f: M x N — P is said to be R-bilinear if

[z +22,9) = f(21,9) + f(22,9),

f@yn +y2) = f(2,01) + f(2,92),
and
flrz,y) = f(z,ry) =rf(z,y)
for all x,z1, 20 € M, y,y1,y2 € N and r € R.

Proposition 8.7 Let R be a unital commutative ring, and let M and N be
modules over R. Then there exists an R-module M ®r N and an R-bilinear
function jyun: M X N — M ®r N, where M @r N and jyxn satisfy the
following universal property:

giwen any R-module P, and given any R-bilinear function f: M x

N — P, there exists a unique R-module homomorphism 0: M ®pr
N — P such that f =600 jyxn-

Proof Let Fr(M x N) be the free R-module on the set M x N, and let
inxn: M XN — Fr(M x N) be the natural embedding of M x N in Fgr(M x
N). Then, given any R-module P, and given any function f: M x N — P,
there exists a unique R-module homomorphism ¢: Fr(M x N) — P such
that @ oiywy = f (Proposition 8.6).

Let K be the submodule of Fr(M x N) generated by the elements

inxn (1 + 22, y) — i n (21, Y) — ivxn (T2, 9),

ixn (T, y1 +y2) — i (T, 91) — i (2, y2),
ivxn (T2, y) — ripxn(z,y),
ivxn (T, 7y) — ripxn (2, y)

for all z,x1,29 € M, y,y1,4y2 € N and r € R. Also let M ®r N be the
quotient module Fr(M xN) /K, let m: Fr(M x N) — M ®gN be the quotient
homomorphism, and let jy;«n: M XN — M®grN be the composition function
Toiyxy. LThen

jMxN(xl + o, y) - jMxN($1, y) - jMxN(IQ, y)

= W(iMxN(xl + X2, Z/) - iMXN(xla Z/) - iMXN(x27 Z/)) =0
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for all 1,29 € M and y € N. Similarly

Imxn (T, 91+ Y2, ) — Jaxn (T, 91) — Juxn (2, 92) =0
for all x € M and y1,y, € N, and

0,
0

Imxn (e, y) — rivxn(v,y) = wliaxn (12, y) — rivsn (T, y))

I (@, ry) = rivxn(T,y) = Tlinxn (2, 7y) = ringn (7, y))

forall z € M, y € N and r € R. It follows that
Imxn (T + 22,y) = Jasn (T1,Y) + Juxn (22, 9),

Ivsn (@, 91+ y2) = Jvsen (@, 91) + Jasn (2, 172),
and
Imxn (e, y) = juxn (T, 1Y) = rimxn (T, y)
forall x,xy,29 € M, y,y1,y2 € N andr € R. Thus jyyuny: M XN — M Qg N
is an R-bilinear function.
Now let P be an R-module, and let f: M x N — P be an R-bilinear

function. Then there is a unique R-module homomorphism ¢: Fr(M x N) —
P such that f = poiyny. Then

Olipxn (1 + 22, y) — ipxn (21, Y) — ivxn (T2, Y))
= flr1+w2,y) — f(x1,9) — f(22,) =0
for all z1,29 € M and y € N. Similarly

Olinexn (T, 11 +y2) —imxn(z,01) — ivsn (@, y2)) =0
for all x € M and y;,y, € N, and

(inxn (1T, y) — rivxn (v, ) = f(re,y) —rf(z,y) =0,

plinxn ;1Y) — rinen (2, y)) = f(z,ry) —rf(z,y) =0
for all 2 € M, y € N and r € R. Thus the submodule K of Fr(M x N)
is generated by elements of ker ¢, and therefore K C ker ¢. It follows that

: Fr(M x N) — P induces a unique R-module homomorphism 6: M ®@p N —
P, where M @ g N = Fr(M x N)/K, such that ¢ = 6 o w. Then

Oojuxy =0omoiyxny =poiyxn = f.

Moreover is ¥: M ®zr N — P is any R-module homomorphism satisfying
Yo jyxny = f then pomoiy .y = f. The uniqueness of the homomorphism
¢: Fr(M x N) — P then ensures that ¥y om = ¢ = 6 o . But then ¢) = 0,
because the quotient homomorphism 7: Fr(M x N) — M ®g N is surjective.
Thus the homomorphism 6 is uniquely determined, as required.  |j
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Let M and N be modules over a unital commutative ring R. The module
M ®pr N constructed as described in the proof of Proposition 8.7 is referred
to as the tensor product M @i N of the modules M and N over the ring R.
Given x € M and y € N, we denote by x ®y the image j(z,y) of (x,y) under
the bilinear function jyxn: M x N — M ®r N. We call this element the
tensor product of the elements x and y. Then

(1 +2) QY= QY+ 220y, (Y1 +1y2) =T QY1 + 2 X ya,

and
(rr)@y=2® (ry) =r(ry)

for all z,x1,29 € M, y,y1,y2 € N and r € R. The universal property
characterizing tensor products described in Proposition 8.7 then yields the
following result.

Corollary 8.8 Let M and N be modules over a unital commutative ring R,
let M @g N be the tensor product of M and N over R. Then, given any R-
module P, and given any R-bilinear function f: M x N — P, there exists a
unique R-module homomorphism 0: M@rN — P such that 0(x®@y) = f(z,y)
forallz € M and y € N.

The following corollary shows that the universal property stated in Propo-
sition 8.7 characterizes tensor products up to isomorphism.

Corollary 8.9 Let M, N and T be modules over a unital commutative
ring R, let M &g N be the tensor product of M and N, and let k: M x N — T
be an R-bilinear function. Suppose that k: M x N — T satisfies the universal
property characterizing tensor products so that, given any R-module P, and
giwen any R-bilinear function f: M x N — P, there exists a unique R-module
homomorphism 1: T — P such that f =¥ok. ThenT = M ®QgrN, and there
is a unique R-isomorphism ¢: M @r N — T such that k(x,y) = o(x Qr y)
forallz € M and y € N.

Proof It follows from Corollary 8.8 that there exists a unique R-module
homomorphism ¢: M ®g N — T such that k(z,y) = p(z ® y) for all x €
M and y € N. Also universal property satisfied by the bilinear function
k: M x N — T ensures that there exists a unique R-module homomorphism
:T — M ®g N such that x ® y = ¥(k(z,y)) for all z € M and y € N.
Then Y(p(z ®y)) = z®y for all x € M and y € M. But the universal
property characterizing the tensor product ensures that any homomorphism
from M xgr N to itself is determined uniquely by its action on elements of
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the form r ® y, where x € M and y € N. It follows that 1) o ¢ is the identity
automorphism of M ®g N. Similarly @o1) is the identity automorphism of 7.
It follows that ¢: M@z N — T'is an isomorphism of R-modules whose inverse
is : T — M ®r N. The isomorphism ¢ has the required properties. |}

Corollary 8.10 Let M be a module over a unital commutative ring R, and
let k: R@gr M — M be the R-module homomorphism defined such that k(r ®
x) = rx for allr € R and x € M. Then k is an isomorphism, and thus
R®pr M = M.

Proof Let P be an R-module, and let f: R x M — P be an R-bilinear
function. Let ¢: M — P be defined such that ¢)(z) = f(1g,x) for all x € M,
where 1 denotes the identity element of the ring R. Then ¢ is an R-module
homomorphism. Moreover f(r,z) = rf(lg,z) = f(1g,rz) = ¢¥(rz) for all
x € M and r € R. Thus f = ok, where k: R x M — M is the R-bilinear
function defined such that k(r,z) = rz for all r € R and x € M. The result
therefore follows on applying Corollary 8.9. |}

Corollary 8.11 Let M, M’', N and N’ be modules over a unital commutative
ring R, and let o:: M — M’ and 1p: N — N’ be R-module homomorphisms.
Then ¢ and v induce an R-module homomorphism ¢ @19: M Qg N — M' Qg
N, where (¢ @ Y)(m @n) = p(m) @Y(n) for allm € M andn € N.

Proof The result follows immediately on applying Corollary 8.8 to the bi-
linear function from M x N to M’ ®r N’ that sends (m,n) to ¢(m) ® ¥(n)
foralme M andne N. |

8.7 Direct Sums and Tensor Products

Lemma 8.12 Let L, M and N be R-modules over a unital commutative
ring R. Then

(Le&M)@r N=(L®grN)®d (M ®gN).
Proof The function
j:(LEBM) x N — (L®RN)EB(M®RN)

is an R-bilinear function, where j((z,v),2) = (z ® 2,y ® z) for all z € L,
y € M and z € N. We prove that the R-module (L ®r N) & (M ®x N) and
the R-bilinear function j satisfy the universal property that characterizes the
tensor product of (L @ M) and N over the ring R up to isomorphism.
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Let P be an R-module, and let f: (L & M) x N — P be an R-bilinear
function. Then f determines R-bilinear functions g: L x N — P and h: M X
N — P, where g(z,2) = f((x,0),2) and h(y,z) = f((0,z),z for all x € L,
y € M and z € N. Moreover

f((xay)7z> = f((ZE,O)—i-(O,y),Z) = f((flf,O),Z)—i—f(O,y), z) = g(ZL', Z)—f—h(y,Z).

forall z € L,y € M and z € N. Now there exist unique R-module ho-
momorphisms ¢: L g N — P ¢:L ®zr N — P satisfying the identities
oz ®z) =g(r,z) and Y(y ® 2) = h(y,z) forall z € L, y € M and z € N.
Then

fl(z,9),2) =p(r@2) +Y(y@2) =0((z ® 2), (y ® 2)) = 0(j((z,9), 2),

where 6: (LQr N)® (M ®g N) — P is the R-module homomorphism defined
such that 0(u,v) = p(u) + ¥(v) for all w € L ®g N and v € M ®g N.
We have thus shown that, given any R-module P, and given any R-bilinear
function f: (L @& M) x N — P, there exists an R-module homomorphism
0:(L&r N)@ (M ®r N) — P satisfying f = theta o j. This homomorphism
is uniquely determined. It follows directly from this that

(LeM)®g N2 (Ler N)® (M @z N),

as required. |}

8.8 Tensor Products of Abelian Groups

Proposition 8.13 Z,, ®z Zn = Zgcam,n) for all positive integers m and n,
where Z,, = Z/nZ and gcd(m,n) is the greatest common divisor of m and n.

Proof The cyclic groups Z,, and Z,, are generated by a and b respectively,
where « = 1+ Z,, and b = 1 + Z,. Moreover Z,, = {ja : j € 17},
Ly =A{k.b: k€ Z}, ja=0if and only if m divides the integer j, and k.b = 0
if and only if n divides the integer k.

Now Z,, ®z Z,, is generated by elements of the form x ® y, where x € Z,,
and y € Z,. Moreover (j.a) ® (k.b) = jk(a ® b) for all integers j and k. It
follows that Z,, ®7Z, = {ja®b: j € Z}. Thus the tensor product Z,, ®zZ,
is a cyclic group generated by a ® b. We must show that the order of this
generator is the greatest common divisor of m and n.

Let r = ged(m,n). It follows from a basic result of elementary number
theory that there exist integers s and t such that » = sm + tn. Then

rla®b) = sm(a®b)+itn(a®b) =s((ma)®b) + t(a® (nb))
= 5(0®b)+tla®0)=0.
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It follows that the generator a ® b of Z,, ®z Z,, is an element of finite order,
and the order of this element divides 7.

It remains to show that a ® b is of order r. Now if j, j/, k and k' are
integers, and if j.a = j'.a and k.b = k’.b then m divides j — j' and n divides
k —k'. But then the greatest common divisor r of m and n divides jk — j'k’,
since jk — j'k' = (j — j))k + j'(k — k’). Let ¢ be the generator 1 + rZ of
Z.. Then there is a well-defined bilinear function f:Z,, X Z — Z,, where
f(j.a,k.b) = jk.c for all integers j and k. This function induces a unique
group homomorphism ¢:Z,, ®z Z — Z,, where o(z ® y) = f(z,y) for all
x € Ly and y € Z,. Then ¢(ja ® b) = jc for all integers j. Now the
generator ¢ of Z, is of order r, and thus jc = 0 only when r divides j. It
follows that ja ® b = 0 only when r divides j. Thus the generator a ® j of
Loy, Q7 Ly, is of order r, and therefore Z,, ®z Z,, = Z,, where r = ged(m, n),
as required. |}

There is a fundamental theorem concerning the structure of finitely-
generated Abelian groups, which asserts that any finitely-generated Abelian
group is isomorphic to the direct sum of a finite number of cyclic groups.
Thus, given any Abelian group A, there exist positive integers ny,ns, ..., ng
and r such that

AZZy ®ZLy,® - B Ly, L.

Now Corollary 8.10 ensures that Z ®z B = B for any Abelian group B. It
follows from Lemma 8.12 that

A®z B=(Zy, @2 B)® (Zn, ®2B) & -+ & (Zy, ®z B) ® B".
On applying Proposition 8.13, we find in particular that
A Xz Zm = chd(m,m) D chd(ng,m) DD chd(nk,m) S Z;L

for any positive integer r. Also A ®z Z = A, by Corollary 8.10.

Note that that Z; is the zero group 0, and therefore 0 & B = B for any
Abelian group. (Indeed 0 x B = {(0,b) : b € B}, and this group of ordered
pairs of the form (0,b) with b € B is obviously isomorphic to B.) We are
thus in a position to evaluate the tensor product of any two finitely-generated
Abelian groups

Note also that if integers m and n are coprime, then Z,,, = Z,, ® Z,.
Indeed let a € Z,, be an element of order m (which therefore generates Z,,),
and let b € Z,, be an element of order n. Then the order of the element (a, b)
of Z,, ® Z, is divisible by both m and n, and is therefore divisible by mn.
It then follows that (a,b) generates the group Z,, ® Z,, and this group is
therefore isomorphic to Z,,,.
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Example Let
A2218@28@Z2 and B§Z9@Z4@Z5

Then
ARzB = (A®z7Zy) © (A®zZy) © A°
> Ly Ol OLED L O LB LD L O L B LY

12

Zo®Ti073D L3 DL D LY.

Now Zig = Zs @ Zgy, because the integers 2 and 9 are coprime. (See remarks
above). It follows that

ARz BT ®Z 0707 & 7.

8.9 Multilinear Maps and Tensor Products

Let My, My, ..., M, be modules over a unital commutative ring R, and let
P be an R-module. A function f: M; x My x --- x M, — P is said to be
R-multilinear if

f(ill'l, e ,$k,1,$;€ + .I'%,.Z'k+1, PN ,SCn)
= (X1, o1y Thoy Tht 1y - - - Tp)
+ f(xla e 7xk:—17xlk/7xk+l7 oo 7In)
and
flry, o g1, Py Tt 1y -+ oy ) = T (L1, e oy Tty Ty Tpt1y - - -5 Tpy)

for k =1,2,...,n, for all x;, 2}, 2] € M; (I =1,2,...,n), and for all » € R.
(When k =1 the list z, ..., 2,1 should be interpreted as the empty list in
the formulae above; when k£ = n the list x4y1,..., 2, should be interpreted
as the empty list.) One can construct a module M; ®g My ®p -+ @r M,
referred to as the tensor product of the modules My, M,, ..., M, over the
ring R, and an R-multilinear mapping

My x My xx My M1 X My X -+ X M,y = M) @p My Qp -+ @r M,

where the tensor product and multilinear mapping jas, x s, x..xar,, satisfy the
following universal property:

given any R-module P, and given any R-multilinear function
fiMy x My x --- x M,, — P, there exists a unique R-module
homomorphism 6: M7 @ My Qg - -+ ®g M,, — P such that f =

9 o ]M1><M2><~~~><Mn-
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This tensor product is defined to be the quotient of the free module Fg(M; x
My x - - x M,) by the submodule K generated by elements of the free module
that are of the form

. / /!
UMy x Mo XX My, (xla vy Tp—1, T, + Ly Tht1y - - - 71771)
. /
- ZMlXMQX---XMn($17 e 75616717 xlm xk+17 oo an)
. "
— UMy X Moo My (T15 - -+ The1, Ly Tht 1 - - - ' Tn),

or are of the form

My X My x My (T1y -+ Tk 1, TThy Thg 1, - - - 5 Ty)
— TEMy x My x My (T15 -+ s The 1y Ty T 15 - -+ 5 T,
where z, z;, 2] € M, forl =1,2,...,n, and r € R. There is an R-multilinear

function
JMyxMyscx My M1 X My X oo X My, — My Qr My @p -+ Qr My,

where Jas x My x.-xa, 18 the composition 7 o 4y s ar, .., Of the natural em-

bedding
UMy s MMy, s My X My X -« X My, — Fp(My x My X -+ x M,)
and the quotient homomorphism

m Fr(My X My X -+ x My,) = My Qg My ®@p -+ Qr M,.

8.10 Tensor Products over Non-Commutative Rings

Let R be a unital ring that is not necessarily commutative, let M be a right
R-module, and let N be a left R-module. These modules are Abelian groups
under the operation of addition, and Abelian groups are modules over the
ring Z of integers. We can therefore form their tensor product M ®z N. This
tensor product is an Abelian group.

Let K be the subgroup of M ®7; N generated by the elements

(2r) @z y — = @z (1Y)

for all z € M, y € N and r € R, where x ®z y denotes the tensor product
of x and y in the ring M ®z N. We define the tensor product M ®r N of
the right R-module M and the left R-module N over the ring R to be the
quotient group M ®; N/K. Given x € M and y € N, let 2 ® y denote the
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image of r ®z y under the quotient homomorphism 7: M ®z N — M ®gr N.
Then

(1 +2) QY= QY+ 220y, R (Y1 +Yy2) =T QY1 + T R ya,

and
(zr) @y =2 ® (ry)

for all x,z1, 20 € M, y,y1,y2 € N and r € R.

Lemma 8.14 Let R be a unital ring, let M be a right R-module, and let N
be a left R-module. Then the tensor product M @r N of M and N is an
Abelian group that satisfies the following universal property:

given any Abelian group P, and given any 7Z-bilinear function
f: M x N — P which satisfies

far,y) = [z, ry)

forallz € M,y € N and r € R, there exists a unique Abelian
group homomorphism ¢: M @ N — P such that f(z,y) = p(x®
y) for allx € M and y € N.

8.11 Tensor Products of Bimodules

Let @, R and S be unital rings, let M be a Q- R-bimodule, and let N be an
R-S-bimodule. Then M is a right R-module and N is a left R-module. We
can therefore form the tensor product M @z N of M and N over the ring R.
This tensor product is an Abelian group under the operation of addition.

Let ¢ € @Q and r € R. The definition of bimodules ensures that (qz)r =
q(xr) forallz € M. Let L,: M x N — M ®@g N be the function defined such
that Ly(z,y) = (¢qz) ® y for all z € M and y € N. Then the function f is
Z-bilinear. Moreover

Ly(zr,y) = (q(zr)) @ y = ((gz)r) @ y = (qx) @ (ry) = Ly(x, ry).

for all x € M and y € N. It follows from Lemma 8.14 that there exists a
group homomorphism A\;: M @g N — M @ N, where A\ (z®y) = (¢qv)®y for
allz € M and y € N. Similarly, given any element s of the ring S, there exists
a group homomorphism ps: M @ g N — M @ N, where A\;(x ®y) = 2 ® (ys).
We define ga = A\() and as = ps(a) for all « € M ® N. One can
check that M ®r N is a @-S-bimodule with respect to these operations of
left multiplication by elements of () and right multiplication by elements of
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S. Moreover, given any ()-S-bimodule P, and given any Z-bilinear function
f:M x N — P that satisfies

flary) = af(v,y),  flary) = f(xry),  flo,ys) = f(z,y)s

forallz € M,y € N, g€ Q,r € R and s € 9, there exists a unique Q-5
bimodule homomorphism ¢: M ® g N — P such that f(z,y) = p(z ® y) for
all x € M and y € N.

This constuction generalizes the definition and universal property of the
tensor product of modules over a unital commutative ring R, in view of the
fact that any module over a unital commutative ring R may be regarded as

an R-R-bimodule.

8.12 Tensor Products involving Free Modules

Proposition 8.15 Let R and S be unital rings, let M be an R-S-bimodule
and let FsX be a free left S-module on a set X. Then the tensor product
M ®g FsX is isomorphic, as an R-module, to I'(X, M), where I'(X, M) is
the left R-module whose elements are represented as functions from X to M
with only finitely many non-zero values, and where (A+ u)(z) = M) + u(x),
and (rA)(z) = rA(z) for all \,p € T'(X, M) and r € R.

Proof The elements of the free left S-module Fg.X are represented as func-
tions from X to S. Let f: M x FsX — ['(X, M) be the Z-bilinear function
defined such that f(m,o)(x) = mo(x) for allm € M, o0 € FsX and = € X.
Then f(ms,o) = f(m,so) for all m € M, 0 € FgX and s € S. It fol-
lows from Lemma 8.14 that the function f induces a unique homomorphism
0: M ®@g FsX — T'(X, M) such that §(m ® o) = f(m, o). Moreover 0 is an
R-module homomorphism.
Given p € I'(X, M) we define

o) = D ux)®0,
xTESUpPp U

where supppu = {x € X : u(z) # 0} and ¢, denotes the function from X to
S which takes the value 1g at x and is zero elsewhere. Then ¢:T'(X, M) —
M ®g FsX is also an R-module homomorphism. Now

eB(m®o)) = Z mo(r) ® §, = Z m® o(x)0,

xesupp o xresupp o

= m®< Z J($)5I>:m®a

xEsupp o
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for allm € M and 0 € FsX. It follows that ¢o# is the identity automorphism
of the tensor product M ®g FsX.
Also

9(¢(u))=9< > u(x)®5x>= > () @4,)

rESUPP [ xTESUPP U

for all p € T'(X, M). But

O(u(z) @ 6,)(y) = { ’OM) i z ; i

It follows that
0(e(n) = Y 0(ux)®05,) =p
xrESUpp U
for all u € T'(X, M). Thus 6 o ¢ is the identity automorphism of I'(X, M).
We conclude that 0: M ®g Fs X — T'(X, M) is an isomorphism of R-modules,
as required. |}

Let R be a unital ring. We can regard R as an R-Z-bimodule, where rn
is the sum of n copies of r and r(—n) = —rn for all non-negative integers n
and elements r of R. We may therefore form the tensor product R ®z A of
the ring R with any additive group A. (An additive group as an Abelian
group where the group operation is expressed using additive notation.) This
tensor product is an R-module. The following corollary is therefore a direct
consequence of Proposition 8.15.

Corollary 8.16 Let R be a unital ring, let X be a set, and let Fz X be the
free Abelian group on the set X. Then R ®z FzX = FrX. Thus the tensor
product of the ring R with any free Abelian group is a free R-module.

8.13 The Relationship between Bimodules and Left
Modules

Let R and S be unital rings with multiplicative identity elements 1z and 1g,
and let S°? be the unital ring (.S, +, x) whose elements are those of S, whose
operation of addition is the same as that defined on S, and whose operation
% of multiplication is defined such that s;xsy = 5951 for all 51,55 € S.

We can then construct a ring R ®z S°P. The elements of this ring belong
to the tensor product of the rings R and S°P over the ring Z of integers, and
the operation of addition on R ®z S°P is that defined on the tensor product.
The operation of multiplication on R ®z S°P is then defined such that

(r1 ®s1) X (12 ® 89) = (r172) ® (81X 82) = (r172) @ (8251)-
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Lemma 8.17 Let R and S be unital rings, and let M be an R-S-bimodule.
Then M 1is a left module over the ring R ®z S°P, where

(11 ® 81) X (12 @ 82) = (r172) ® (8281)
for all ri,ro € R and s1, 2 € S, and where
(r®s).ax=(rx)s =r(xs)
forallr e R, se€ S andxz € M.

Proof Given any element x of M, let b,: R x S — M be the function de-
fined such that b,(r,s) = (ra)s = r(xs) for all r € R and s € S. Then the
function b, is Z-bilinear, and therefore induces a unique Z-module homomor-
phism (,: R ®z S°® — M, where S,(r ® s) = b,(r,s) = (rx)s for all r € R,
s € S and x € M. We define u.x = 3,(u) for all u € R ®z 5 and x € M.
Then (u; + ug).x = uy.x 4 ug.z for all uy, uy € R®gz S°P and x € M, because
B is a homomorphism of Abelian groups. Also u.(z; + x2) = w.zy + u.xe,
because by, 14, = by, + b., and therefore B,, 1., = Boy + Bas-
Now

11 ® 81).((rax)se) = ri(ra(xsse))sy

(r1 ® $1). ((r2 ® s2).x) ( s

= ((rir2)(zs2))s1 = (rir2)((ws2)s1)
(
(

rira)(z(s251) = ((rire) @z (s281)).x
(r1 ®z 81) X (r2 @z 82)).x

for all r1,79 € R, s1,89 € S and x € M. The bilinearity of the function [,
then ensures that u;.(ug.x) = (u1 X ug).z for all uy, us € R®zS°P and = € M.
Also (1g,1g).x = x for all x € M, where 1 and 1g denote the identity
elements of the rings R and S. We conclude that M is a left R ®z S°P, as
required. ||

Let R and S be unital rings, and let M be a left module over the ring
R ®z S°°. Then M can be regarded as an R-S-bimodule, where (rz)s =
r(zs) = (r®@s)o forallr € R, s € S and v € M. We conclude therefore
that all R-S-bimodules are left modules over the ring R ®z S°P, and vica
versa. It follows that any general result concerning left modules over unital
rings yields a corresponding result concerning bimodules.
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