Course 421: Algebraic Topology
Section 8: Modules

David R. Wilkins

Copyright © David R. Wilkins 1988–2008

Contents

1 Topological Spaces 1
 1.1 Continuity and Topological Spaces 1
 1.2 Topological Spaces . 1
 1.3 Metric Spaces . 1
 1.4 Further Examples of Topological Spaces 3
 1.5 Closed Sets . 4
 1.6 Hausdorff Spaces . 4
 1.7 Subspace Topologies . 5
 1.8 Continuous Functions between Topological Spaces 6
 1.9 A Criterion for Continuity . 6
 1.10 Homeomorphisms . 7
 1.11 Product Topologies . 8
 1.12 Identification Maps and Quotient Topologies 9
 1.13 Compact Topological Spaces 10
 1.14 The Lebesgue Lemma and Uniform Continuity 16
 1.15 Connected Topological Spaces 18

2 Homotopies and the Fundamental Group 23
 2.1 Homotopies . 23
 2.2 The Fundamental Group of a Topological Space 24
 2.3 Simply-Connected Topological Spaces 26

3 Covering Maps and the Monodromy Theorem 29
 3.1 Covering Maps . 29
 3.2 Path Lifting and the Monodromy Theorem 30
 3.3 The Fundamental Group of the Circle 33
4 Covering Maps and Discontinuous Group Actions
4.1 Covering Maps and Induced Homomorphisms of the Fundamental Group
4.2 Discontinuous Group Actions
4.3 Deck Transformations
4.4 Local Topological Properties and Local Homeomorphisms
4.5 Lifting of Continuous Maps Into Covering Spaces
4.6 Isomorphisms of Covering Maps
4.7 Deck Transformations of Locally Path-Connected Coverings

5 Simplicial Complexes
5.1 Geometrical Independence
5.2 Simplicial Complexes in Euclidean Spaces
5.3 Simplicial Maps

6 Simplicial Homology Groups
6.1 The Chain Groups of a Simplicial Complex
6.2 Boundary Homomorphisms
6.3 The Homology Groups of a Simplicial Complex
6.4 Simplicial Maps and Induced Homomorphisms
6.5 Connectedness and \(H_0(K) \)

7 Homology Calculations
7.1 The Homology Groups of an Octohedron
7.2 Another Homology Example
7.3 The Homology Groups of the Boundary of a Simplex

8 Modules
8.1 Rings and Fields
8.2 Modules
8.3 Bimodules
8.4 Free Modules
8.5 Construction of Free Modules
8.6 Tensor Products of Modules over a Unital Commutative Ring
8.7 Direct Sums and Tensor Products
8.8 Tensor Products of Abelian Groups
8.9 Multilinear Maps and Tensor Products
8.10 Tensor Products over Non-Commutative Rings
8.11 Tensor Products of Bimodules
8.12 Tensor Products involving Free Modules
8.13 The Relationship between Bimodules and Left Modules
8 Modules

8.1 Rings and Fields

Definition A ring consists of a set \(R \) on which are defined operations of addition and multiplication that satisfy the following properties:

- the ring is an Abelian group with respect to the operation of addition;
- the operation of multiplication on the ring is associative, and thus\(x(yz) = (xy)z \) for all elements \(x, y \) and \(z \) of the ring.
- the operations of addition and multiplication satisfy the Distributive Law, and thus\(x(y + z) = xy + xz \) and \((x + y)z = xz + yz \) for all elements \(x, y \) and \(z \) of the ring.

Lemma 8.1 Let \(R \) be a ring. Then \(x0 = 0 \) and \(0x = 0 \) for all elements \(x \) of \(R \).

Proof The zero element 0 of \(R \) satisfies \(0 + 0 = 0 \). Using the Distributive Law, we deduce that \(x0 + x0 = x(0 + 0) = x0 \) and \(0x + 0x = (0 + 0)x = 0x \). Thus if we add \(-(x0) \) to both sides of the identity \(x0 + x0 = x0 \) we see that \(x0 = 0 \). Similarly if we add \(-(0x) \) to both sides of the identity \(0x + 0x = 0x \) we see that \(0x = 0 \).

Lemma 8.2 Let \(R \) be a ring. Then \((-x)y = -(xy) \) and \(x(-y) = -(xy) \) for all elements \(x \) and \(y \) of \(R \).

Proof It follows from the Distributive Law that \(xy + (-x)y = (x + (-x))y = 0y = 0 \) and \(xy + x(-y) = x(y + (-y)) = x0 = 0 \). Therefore \((-x)y = -(xy) \) and \(x(-y) = -(xy) \).

A subset \(S \) of a ring \(R \) is said to be a subring of \(R \) if \(0 \in S \), \(a + b \in S \), \(-a \in S \) and \(ab \in S \) for all \(a, b \in S \).

A ring \(R \) is said to be commutative if \(xy = yx \) for all \(x, y \in R \). Not every ring is commutative: an example of a non-commutative ring is provided by the ring of \(n \times n \) matrices with real or complex coefficients when \(n > 1 \).

A ring \(R \) is said to be unital if it possesses a (necessarily unique) non-zero multiplicative identity element 1 satisfying \(1x = x = x1 \) for all \(x \in R \).

Definition A unital commutative ring \(R \) is said to be an integral domain if the product of any two non-zero elements of \(R \) is itself non-zero.
Definition A field consists of a set on which are defined operations of addition and multiplication that satisfy the following properties:

- the field is an Abelian group with respect to the operation of addition;
- the non-zero elements of the field constitute an Abelian group with respect to the operation of multiplication;
- the operations of addition and multiplication satisfy the Distributive Law, and thus \(x(y + z) = xy + xz \) and \((x + y)z = xz + yz \) for all elements \(x, y \) and \(z \) of the field.

An examination of the relevant definitions shows that a unital commutative ring \(R \) is a field if and only if, given any non-zero element \(x \) of \(R \), there exists an element \(x^{-1} \) of \(R \) such that \(xx^{-1} = 1 \). Moreover a ring \(R \) is a field if and only if the set of non-zero elements of \(R \) is an Abelian group with respect to the operation of multiplication.

Lemma 8.3 A field is an integral domain.

Proof A field is a unital commutative ring. Let \(x \) and \(y \) be non-zero elements of a field \(K \). Then there exist elements \(x^{-1} \) and \(y^{-1} \) of \(K \) such that \(xx^{-1} = 1 \) and \(yy^{-1} = 1 \). Then \(xyy^{-1}x^{-1} = 1 \). It follows that \(xy \neq 0 \), since \(0(y^{-1}x^{-1}) = 0 \) and \(1 \neq 0 \).

The set \(\mathbb{Z} \) of integers is an integral domain with respect to the usual operations of addition and multiplication. The sets \(\mathbb{Q} \), \(\mathbb{R} \) and \(\mathbb{C} \) of rational, real and complex numbers are fields.

8.2 Modules

Definition Let \(R \) be a unital ring. A set \(M \) is said to be a left module over the ring \(R \) (or left \(R \)-module) if

- (i) given any \(x, y \in M \) and \(r \in R \), there are well-defined elements \(x + y \) and \(rx \) of \(M \),

- (ii) \(M \) is an Abelian group with respect to the operation + of addition,

- (iii) the identities

\[
r(x + y) = rx + ry, \quad (r + s)x = rx + sx,
\]

\[
(rs)x = r(sx), \quad 1_R x = x
\]

are satisfied for all \(x, y \in M \) and \(r, s \in R \), where \(1_R \) denotes the multiplicative identity element of the ring \(R \).
Definition Let R be a unital ring. A set M is said to be a right module over R (or right R-module) if

(i) given any $x, y \in M$ and $r \in R$, there are well-defined elements $x + y$ and xr of M,

(ii) M is an Abelian group with respect to the operation $+$ of addition,

(iii) the identities

\[(x + y)r = xr + yr, \quad x(r + s) = xr + xs,\]

\[x(rs) = (xr)s, \quad x1_R = x\]

are satisfied for all $x, y \in M$ and $r, s \in R$, where 1_R denotes the multiplicative identity element of the ring R.

If the unital ring R is a commutative ring then there is no essential distinction between left R-modules and right R-modules. Indeed any left module M over a unital commutative ring R may be regarded as a right module on defining $xr = rx$ for all $x \in M$ and $r \in R$. We define a module over a unital commutative ring R to be a left module over R.

Example If K is a field, then a K-module is by definition a vector space over K.

Example Let $(M, +)$ be an Abelian group, and let $x \in M$. If n is a positive integer then we define nx to be the sum $x + x + \cdots + x$ of n copies of x. If n is a negative integer then we define $nx = -(|n|x)$, and we define $0x = 0$. This enables us to regard any Abelian group as a module over the ring \mathbb{Z} of integers. Conversely, any module over \mathbb{Z} is also an Abelian group.

Example Any unital commutative ring can be regarded as a module over itself in the obvious fashion.

Let R be a unital ring that is not necessarily commutative, and let $+$ and \times denote the operations of addition and multiplication defined on R. We denote by R^{op} the ring $(R, +, \overline{\times})$, where the underlying set of R^{op} is R itself, the operation of addition on R^{op} coincides with that on R, but where the operation of multiplication in the ring R^{op} is the operation $\overline{\times}$ defined so that $r\overline{\times}s = s \times r$ for all $r, s \in R$. Note that the multiplication operation on the ring R^{op} coincides with that on the ring R if and only if the ring R is commutative.
Any right module over the ring R may be regarded as a left module over the ring R^{op}. Indeed let M_R be a right R-module, and let $r.x = x$ for all $x \in M_R$ and $r \in R$. Then
\[r.(s.x) = (s.x)r = x(sr) = x(rxs) = (rxs).x \]
for all $x \in M_R$ and $r, s \in R$. Also all other properties required of left modules over the ring R^{op} are easily seen to be satisfied. It follows that any general results concerning left modules over unital rings yield corresponding results concerning right modules over unital rings.

Let R be a unital ring, and let M be a left R-module. A subset L of M is said to be a submodule of M if $x + y \in L$ and $rx \in L$ for all $x, y \in L$ and $r \in R$. If M is a left R-module and L is a submodule of M then the quotient group M/L can itself be regarded as a left R-module, where $r(L+x) \equiv L+rx$ for all $L + x \in M/L$ and $r \in R$. The R-module M/L is referred to as the quotient of the module M by the submodule L.

A subset L of a ring R is said to be a left ideal of R if $0 \in L$, $-x \in L$, $x + y \in L$ and $rx \in L$ for all $x, y \in L$ and $r \in R$. Any unital ring R may be regarded as a left R-module, where multiplication on the left by elements of R is defined in the obvious fashion using the multiplication operation on the ring R itself. A subset of R is then a submodule of R (when R is regarded as a left module over itself) if and only if this subset is a left ideal of R.

Let M and N be left modules over some unital ring R. A function $\varphi: M \to N$ is said to be a homomorphism of left R-modules if $\varphi(x+y) = \varphi(x) + \varphi(y)$ and $\varphi(rx) = r\varphi(x)$ for all $x, y \in M$ and $r \in R$. A homomorphism of R-modules is said to be an isomorphism if it is invertible. The kernel $\ker \varphi$ and image $\varphi(M)$ of any homomorphism $\varphi: M \to N$ are themselves R-modules. Moreover if $\varphi: M \to N$ is a homomorphism of R-modules, and if L is a submodule of M satisfying $L \subset \ker \varphi$, then φ induces a homomorphism $\varphi: M/L \to N$. This induced homomorphism is an isomorphism if and only if $L = \ker \varphi$ and $N = \varphi(M)$.

Definition Let M_1, M_2, \ldots, M_k be left modules over a unital ring R. The direct sum $M_1 \oplus M_2 \oplus \cdots \oplus M_k$ of the modules M_1, M_2, \ldots, M_k is defined to be the set of ordered k-tuples (x_1, x_2, \ldots, x_k), where $x_i \in M_i$ for $i = 1, 2, \ldots, k$. This direct sum is itself a left R-module, where
\[
(x_1, x_2, \ldots, x_k) + (y_1, y_2, \ldots, y_k) = (x_1 + y_1, x_2 + y_2, \ldots, x_k + y_k),
\]
\[
r(x_1, x_2, \ldots, x_k) = (rx_1, rx_2, \ldots, rx_k)
\]
for all $x_i, y_i \in M_i$ and $r \in R$.

84
If K is any field, then K^n is the direct sum of n copies of K.

Definition Let M be a left module over some unital ring R. Given any subset X of M, the submodule of M generated by the set X is defined to be the intersection of all submodules of M that contain the set X. It is therefore the smallest submodule of M that contains the set X. A left R-module M is said to be *finitely-generated* if it is generated by some finite subset of itself.

Lemma 8.4 Let M be a left module over some unital ring R. Then the submodule of M generated by some finite subset $\{x_1, x_2, \ldots, x_k\}$ of M consists of all elements of M that are of the form

$$ r_1 x_1 + r_2 x_2 + \cdots + r_k x_k $$

for some $r_1, r_2, \ldots, r_k \in R$.

Proof The subset of M consisting of all elements of M of this form is clearly a submodule of M. Moreover it is contained in every submodule of M that contains the set $\{x_1, x_2, \ldots, x_k\}$. The result follows.

8.3 Bimodules

Definition Let R and S be unital rings. An R-S-*bimodule* is an Abelian group M, where elements of M may be multiplied on the left by elements of R, and may also be multiplied on the right by elements of S, and where the following properties are satisfied:

(i) M is a left R-module;

(ii) M is a right S-module;

(iii) $(rx)s = r(xs)$ for all $x \in M$, $r \in R$ and $s \in S$.

Example Let K be a field, let m and n be positive integers, and let $M_{m,n}(K)$ denote the set of $m \times n$ matrices with coefficients in the field K. Then $M_{m,n}(K)$ is an Abelian group with respect to the operation of matrix addition. The elements of $M_{m,n}(K)$ may be multiplied on the left by elements of the ring $M_m(K)$ of $m \times m$ matrices with coefficients in K; they may also be multiplied on the right by elements of the ring $M_n(K)$ of $n \times n$ matrices with coefficients in K; these multiplication operations are the usual ones resulting from matrix multiplication. Moreover $(AX)B = A(XB)$ for all $X \in M_{m,n}(K)$, $A \in M_m(K)$ and $B \in M_n(K)$. Thus $M_{m,n}(K)$ is an $M_m(K)$-$M_n(K)$-bimodule.
If \(R \) is a unital commutative ring then any \(R \)-module \(M \) may be regarded as an \(R\)-\(R \)-bimodule, where \((rx)s = r(xs) = (rs)x\) for all \(x \in M \) and \(r, s \in R \).

Definition Let \(R \) and \(S \) be unital rings, and let \(M \) and \(N \) be \(R \)-\(S \)-bimodules. A function \(\varphi: M \to N \) from \(M \) to \(N \) is said to be an \(R \)-\(S \)-bimodule homomorphism if \(\varphi(x + y) = \varphi(x) + \varphi(y) \), \(\varphi(rx) = r\varphi(x) \) and \(\varphi(xs) = \varphi(x)s \) for all \(x, y \in M \), \(r \in R \) and \(s \in S \).

8.4 Free Modules

Definition Let \(F \) be a left module over a unital ring \(R \), and let \(X \) be a subset of \(F \). We say that the left \(R \)-module \(F \) is freely generated by the subset \(X \) if, given any left \(R \)-module \(M \), and given any function \(f: X \to M \), there exists a unique \(R \)-module homomorphism \(\varphi: F \to M \) that extends the function \(f \).

Example Let \(K \) be a field. Then a \(K \)-module is a vector space over \(K \). Let \(V \) be a finite-dimensional vector space over the field \(K \), and let \(b_1, b_2, \ldots, b_n \) be a basis of \(V \). Then \(V \) is freely generated (as a \(K \)-module) by the set \(B \), where \(B = \{b_1, b_2, \ldots, b_n\} \). Indeed, given any vector space \(W \) over \(K \), and given any function \(f: B \to W \), there is a unique linear transformation \(\varphi: V \to W \) that extends \(f \). Indeed

\[
\varphi \left(\sum_{j=1}^{n} \lambda_j b_j \right) = \sum_{j=1}^{n} \lambda_j f(b_j)
\]

for all \(\lambda_1, \lambda_2, \ldots, \lambda_n \in K \). (Note that a function between vector spaces over some field \(K \) is a \(K \)-module homomorphism if and only if it is a linear transformation.)

Definition A left module \(F \) over a unital ring \(R \) is said to be free if there exists some subset of \(F \) that freely generates the \(R \)-module \(F \).

Lemma 8.5 Let \(F \) be a left module over a unital ring \(R \), let \(X \) be a set, and let \(i: X \to F \) be a function. Suppose that the function \(i: X \to F \) satisfies the following universal property:

- given any left \(R \)-module \(M \), and given any function \(f: X \to M \), there exists a unique \(R \)-module homomorphism \(\varphi: F \to M \) such that \(\varphi \circ i = f \).

Then the function \(i: X \to F \) is injective, and \(F \) is freely generated by \(i(X) \).
Proof Let \(x \) and \(y \) be distinct elements of the set \(X \), and let \(f \) be a function satisfying \(f(x) = 0_R \) and \(f(y) = 1_R \), where \(0_R \) and \(1_R \) denote the zero element and the multiplicative identity element respectively of the ring \(R \). The ring \(R \) may be regarded as a left \(R \)-module over itself. It follows from the universal property of \(i: X \to M \) stated above that there exists a unique \(R \)-module homomorphism \(\theta: F \to R \) for which \(\theta \circ i = f \). Then \(\theta(i(x)) = 0_R \) and \(\theta(i(y)) = 1_R \). It follows that \(i(x) \neq i(y) \). Thus the function \(i: X \to F \) is injective.

Let \(M \) be a left \(R \)-module, and let \(g: i(X) \to M \) be a function defined on \(i(X) \). Then there exists a unique homomorphism \(\varphi: F \to M \) such that \(\varphi \circ i = g \circ i \). But then \(\varphi|_{i(X)} = g \). Thus the function \(g: i(X) \to M \) extends uniquely to a homomorphism \(\varphi: F \to M \). This shows that \(F \) is freely generated by \(i(X) \), as required.

Let \(F_1 \) and \(F_2 \) be left modules over a unital ring \(R \), let \(X_1 \) be a subset of \(F_1 \), and let \(X_2 \) be a subset of \(F_2 \). Suppose that \(F_1 \) is freely generated by \(X_1 \), and that \(F_2 \) is freely generated by \(X_2 \). Then any function \(f: X_1 \to X_2 \) from \(X_1 \) to \(X_2 \) extends uniquely to a \(R \)-module homomorphism from \(F_1 \) to \(F_2 \). We denote by \(f_2: F_1 \to F_2 \) the unique \(R \)-module homomorphism that extends \(f \).

Now let \(F_1, F_2 \) and \(F_3 \) be left modules over a unital ring \(R \), and let \(X_1, X_2 \) and \(X_3 \) be subsets of \(F_1, F_2 \) and \(F_3 \) respectively. Suppose that the left \(R \)-module \(F_i \) is freely generated by \(X_i \) for \(i = 1, 2, 3 \). Let \(f: X_1 \to X_2 \) and \(g: X_2 \to X_3 \) be functions. Then the functions \(f, g \) and \(g \circ f \) extend uniquely to \(R \)-module homomorphisms \(f_2: F_1 \to F_2, g_2: F_2 \to F_3 \) and \((g \circ f)_2: F_3 \to F_3 \). Moreover the uniqueness of the homomorphism \((g \circ f)_2 \) extending \(g \circ f \) suffices to ensure that \((g \circ f)_2 = g_2 \circ f_2 \). Also the unique function from the module \(F_i \) extending the identity function of \(X_i \) is the identity isomorphism of \(F_i \), for each \(i \). It follows that if \(f: X_1 \to X_2 \) is a bijection, then \(f_2: F_1 \to F_2 \) is an isomorphism whose inverse is the unique homomorphism \((f^{-1})_2: F_2 \to F_1 \) extending the inverse \(f^{-1}: X_2 \to X_1 \) of the bijection \(f \).

8.5 Construction of Free Modules

Proposition 8.6 Let \(X \) be a set, and let \(R \) be a unital ring. Then there exists a left \(R \)-module \(F_R X \) and an injective function \(i_X: X \to F_R X \) such that \(F_R X \) is freely generated by \(i_X(X) \). The \(R \)-module \(F_R X \) and the function \(i_X: X \to F_R X \) then satisfy the following universal property:

- given any left \(R \)-module \(M \), and given any function \(f: X \to M \),
- there exists a unique \(R \)-module homomorphism \(\varphi: F_R X \to M \) such that \(\varphi \circ i_X = f \).

87
The elements of $F_R X$ may be represented as functions from X to R that have only finitely many non-zero values. Also given any element x of X, the corresponding element $i_X(x)$ of $F_R X$ is represented by the function $\delta_x: X \to R$, where δ_x maps x to the identity element of R, and maps all other elements of X to the zero element of R.

Proof Let 0_R and 1_R denote the zero element and the multiplicative identity element respectively of the ring R.

We define $F_R X$ to be the set of all functions $\sigma: X \to R$ from X to R that have at most finitely many non-zero values.

Note that if σ and τ are functions from X to R that have at most finitely many non-zero values, then so is the sum $\sigma + \tau$ of the functions σ and τ (where $(\sigma + \tau)(x) = \sigma(x) + \tau(x)$ for all $x \in X$). Therefore addition of functions is a binary operation on the set $F_R X$. Moreover $F_R X$ is an Abelian group with respect to the operation of addition of functions.

Given $r \in R$, and given $\sigma \in F_R X$, let $r\sigma$ be the function from X to R defined such that $(r\sigma)(x) = r\sigma(x)$ for all $x \in X$. Then

$$r(\sigma + \tau) = r\sigma + r\tau, \quad (r + s)\sigma = r\sigma + s\sigma,$$

$$(rs)\sigma = r(s\sigma), \quad 1_R \sigma = \sigma$$

for all $\sigma, \tau \in F_R X$ and $r, s \in R$. It follows that $F_R X$ is a module over the ring R.

Given $x \in X$, let $\delta_x: X \to R$ be the function defined such that $\delta_x(y) = \begin{cases} 1_R & \text{if } y = x; \\ 0_R & \text{if } y \neq x. \end{cases}$

Then $\delta_x \in F_R X$ for all $x \in X$. We denote by $i_X: X \to F_R X$ the function that sends x to δ_x for all $x \in X$.

We claim that $F_R X$ is freely generated by the set $i_X(X)$, where $i_X(X) = \{ \delta_x : x \in X \}$. Let M be an R-module, and let $f: X \to M$ be a function from X to M. We must prove that there exists a unique R-module homomorphism $\varphi: F_R X \to M$ such that $\varphi \circ i_X = f$ (Lemma 8.5).

Let σ be an element of $F_R X$. Then σ is a function from X to R with at most finitely many non-zero values. Then $\sigma = \sum_{x \in \text{supp } \sigma} \sigma(x) \delta_x$, where

$$\text{supp } \sigma = \{ x \in X : \sigma(x) \neq 0_R \}.$$

We define $\varphi(\sigma) = \sum_{x \in \text{supp } \sigma} \sigma(x)f(x)$. This associates to each element σ of $F_R X$ a corresponding element $\varphi(\sigma)$ of M. We obtain in this way a function $\varphi: F_R X \to M$.

88
Let σ and τ be elements of F_RX, let r be an element of the ring R, and let Y be a finite subset of X for which $\text{supp}\sigma \subset Y$ and $\text{supp}\tau \subset Y$. Then
\[\text{supp}(\sigma + \tau) \subset Y, \]
and
\[\varphi(\sigma + \tau) = \sum_{x \in \text{supp}(\sigma + \tau)} (\sigma(x) + \tau(x))\delta_x = \sum_{x \in Y} (\sigma(x) + \tau(x))\delta_x = \sum_{x \in \text{supp}\sigma} \sigma(x)\delta_x + \sum_{x \in \text{supp}\tau} \tau(x)\delta_x = \varphi(\sigma) + \varphi(\tau). \]

Also
\[\varphi(r\sigma) = \sum_{x \in \text{supp}(r\sigma)} r\sigma(x)\delta_x = \sum_{x \in \text{supp}\sigma} r\sigma(x)\delta_x = r \left(\sum_{x \in \text{supp}\sigma} \sigma(x)\delta_x \right) = r\varphi(\sigma). \]

This shows that $\varphi: F_XR \to M$ is an R-module homomorphism. Moreover if $\psi: F_XR \to M$ is any R-module homomorphism satisfying $\psi \circ i_X = f$, then
\[\psi(\sigma) = \psi \left(\sum_{x \in \text{supp}\sigma} \sigma(x)\delta_x \right) = \sum_{x \in \text{supp}\sigma} \sigma(x)\psi(\delta_x) = \sum_{x \in \text{supp}\sigma} \sigma(x)\psi(i_X(x)) = \sum_{x \in \text{supp}\sigma} \sigma(x)f(x) = \varphi(\sigma). \]

Thus $\varphi: F_RX \to M$ is the unique R-module homomorphism satisfying $\varphi \circ i_X = f$.

It now follows from Lemma 8.5 that the R-module F_RX is freely generated by $i_X(X)$. We have also shown that the required universal property is satisfied by the module F_RX and the function i_X.

Definition Let X be a set, and let R be a unital ring. We define the free left R-module on the set X to be the module F_RX constructed as described in the proof of Proposition 8.6. Moreover we may consider the set X to be embedded in the free module F_RX via the injective function $i_X: X \to F_XX$ described in the statement of that proposition.

Abelian groups are modules over the ring \mathbb{Z} of integers. The construction of free modules therefore associates to any set X a corresponding free Abelian group $F_\mathbb{Z}X$.

Definition Let X be a set. The free Abelian group on the set X is the module $F_\mathbb{Z}X$ whose elements can be represented as functions from X to \mathbb{Z} that have only finitely many non-zero values.
8.6 Tensor Products of Modules over a Unital Commutative Ring

Definition Let R be a unital commutative ring, and let M and N and P be R-modules. A function $f : M \times N \to P$ is said to be R-bilinear if

$$ f(x_1 + x_2, y) = f(x_1, y) + f(x_2, y), $$

$$ f(x, y_1 + y_2) = f(x, y_1) + f(x, y_2), $$

and

$$ f(rx, y) = rf(x, y) $$

for all $x, x_1, x_2 \in M$, $y, y_1, y_2 \in N$ and $r \in R$.

Proposition 8.7 Let R be a unital commutative ring, and let M and N be modules over R. Then there exists an R-module $M \otimes_R N$ and an R-bilinear function $j_{M \times N} : M \times N \to M \otimes_R N$, where $M \otimes_R N$ and $j_{M \times N}$ satisfy the following universal property:

given any R-module P, and given any R-bilinear function $f : M \times N \to P$, there exists a unique R-module homomorphism $\theta : M \otimes_R N \to P$ such that $f = \theta \circ j_{M \times N}$.

Proof Let $F_R(M \times N)$ be the free R-module on the set $M \times N$, and let $i_{M \times N} : M \times N \to F_R(M \times N)$ be the natural embedding of $M \times N$ in $F_R(M \times N)$. Then, given any R-module P, and given any function $f : M \times N \to P$, there exists a unique R-module homomorphism $\varphi : F_R(M \times N) \to P$ such that $\varphi \circ i_{M \times N} = f$ (Proposition 8.6).

Let K be the submodule of $F_R(M \times N)$ generated by the elements

$$ i_{M \times N}(x_1 + x_2, y) - i_{M \times N}(x_1, y) - i_{M \times N}(x_2, y), $$

$$ i_{M \times N}(x, y_1 + y_2) - i_{M \times N}(x, y_1) - i_{M \times N}(x, y_2), $$

$$ i_{M \times N}(rx, y) - ri_{M \times N}(x, y), $$

$$ i_{M \times N}(x, ry) - ri_{M \times N}(x, y) $$

for all $x, x_1, x_2 \in M$, $y, y_1, y_2 \in N$ and $r \in R$. Also let $M \otimes_R N$ be the quotient module $F_R(M \times N)/K$, let $\pi : F_R(M \times N) \to M \otimes_R N$ be the quotient homomorphism, and let $j_{M \times N} : M \times N \to M \otimes_R N$ be the composition function $\pi \circ i_{M \times N}$. Then

$$ j_{M \times N}(x_1 + x_2, y) - j_{M \times N}(x_1, y) - j_{M \times N}(x_2, y) $$

$$ = \pi(i_{M \times N}(x_1 + x_2, y) - i_{M \times N}(x_1, y) - i_{M \times N}(x_2, y)) = 0 $$

90
for all $x_1, x_2 \in M$ and $y \in N$. Similarly

$$j_{M \times N}(x, y_1 + y_2) - j_{M \times N}(x, y_1) - j_{M \times N}(x, y_2) = 0$$

for all $x \in M$ and $y_1, y_2 \in N$, and

$$j_{M \times N}(rx, y) - r j_{M \times N}(x, y) = \pi(i_{M \times N}(rx, y) - r i_{M \times N}(x, y)) = 0,$$

$$j_{M \times N}(x, ry) - r j_{M \times N}(x, y) = \pi(i_{M \times N}(x, ry) - r i_{M \times N}(x, y)) = 0$$

for all $x \in M$, $y \in N$ and $r \in R$. It follows that

$$j_{M \times N}(x_1 + x_2, y) = j_{M \times N}(x_1, y) + j_{M \times N}(x_2, y),$$

$$j_{M \times N}(x, y_1 + y_2) = j_{M \times N}(x, y_1) + j_{M \times N}(x, y_2),$$

and

$$j_{M \times N}(rx, y) = j_{M \times N}(x, ry) = r j_{M \times N}(x, y)$$

for all $x, x_1, x_2 \in M$, $y, y_1, y_2 \in N$ and $r \in R$. Thus $j_{M \times N}: M \times N \to M \otimes_R N$ is an R-bilinear function.

Now let P be an R-module, and let $f: M \times N \to P$ be an R-bilinear function. Then there is a unique R-module homomorphism $\varphi: F_R(M \times N) \to P$ such that $f = \varphi \circ i_{M \times N}$. Then

$$\varphi(i_{M \times N}(x_1 + x_2, y) - i_{M \times N}(x_1, y) - i_{M \times N}(x_2, y))$$

$$= f(x_1 + x_2, y) - f(x_1, y) - f(x_2, y) = 0$$

for all $x_1, x_2 \in M$ and $y \in N$. Similarly

$$\varphi(i_{M \times N}(x, y_1 + y_2) - i_{M \times N}(x, y_1) - i_{M \times N}(x, y_2)) = 0$$

for all $x \in M$ and $y_1, y_2 \in N$, and

$$\varphi(i_{M \times N}(rx, y) - r i_{M \times N}(x, y)) = f(rx, y) - r f(x, y) = 0,$$

$$\varphi(i_{M \times N}(x, ry) - r i_{M \times N}(x, y)) = f(x, ry) - r f(x, y) = 0$$

for all $x \in M$, $y \in N$ and $r \in R$. Thus the submodule K of $F_R(M \times N)$ is generated by elements of $\ker \varphi$, and therefore $K \subset \ker \varphi$. It follows that $\varphi: F_R(M \times N) \to P$ induces a unique R-module homomorphism $\theta: M \otimes_R N \to P$, where $M \otimes_R N = F_R(M \times N)/K$, such that $\varphi = \theta \circ \pi$. Then

$$\theta \circ j_{M \times N} = \theta \circ \pi \circ i_{M \times N} = \varphi \circ i_{M \times N} = f.$$

Moreover is $\psi: M \otimes_R N \to P$ is any R-module homomorphism satisfying $\psi \circ j_{M \times N} = f$ then $\psi \circ \pi \circ i_{M \times N} = f$. The uniqueness of the homomorphism $\varphi: F_R(M \times N) \to P$ then ensures that $\psi \circ \pi = \varphi = \theta \circ \pi$. But then $\psi = \theta$, because the quotient homomorphism $\pi: F_R(M \times N) \to M \otimes_R N$ is surjective. Thus the homomorphism θ is uniquely determined, as required. ■
Let M and N be modules over a unital commutative ring R. The module $M \otimes_R N$ constructed as described in the proof of Proposition 8.7 is referred to as the tensor product $M \otimes_R N$ of the modules M and N over the ring R. Given $x \in M$ and $y \in N$, we denote by $x \otimes y$ the image $j(x,y)$ of (x,y) under the bilinear function $j_{M \times N}: M \times N \to M \otimes_R N$. We call this element the tensor product of the elements x and y. Then
\[(x_1 + x_2) \otimes y = x_1 \otimes y + x_2 \otimes y, \quad x \otimes (y_1 + y_2) = x \otimes y_1 + x \otimes y_2,\]
and
\[(rx) \otimes y = x \otimes (ry) = r(x \otimes y)\]
for all $x, x_1, x_2 \in M$, $y, y_1, y_2 \in N$ and $r \in R$. The universal property characterizing tensor products described in Proposition 8.7 then yields the following result.

Corollary 8.8 Let M and N be modules over a unital commutative ring R, let $M \otimes_R N$ be the tensor product of M and N over R. Then, given any R-module P, and given any R-bilinear function $f: M \times N \to P$, there exists a unique R-module homomorphism $\theta: M \otimes_R N \to P$ such that $\theta(x \otimes y) = f(x,y)$ for all $x \in M$ and $y \in N$.

The following corollary shows that the universal property stated in Proposition 8.7 characterizes tensor products up to isomorphism.

Corollary 8.9 Let M, N and T be modules over a unital commutative ring R, let $M \otimes_R N$ be the tensor product of M and N, and let $k: M \times N \to T$ be an R-bilinear function. Suppose that $k: M \times N \to T$ satisfies the universal property characterizing tensor products so that, given any R-module P, and given any R-bilinear function $f: M \times N \to P$, there exists a unique R-module homomorphism $\psi: T \to P$ such that $f = \psi \circ k$. Then $T \cong M \otimes_R N$, and there is a unique R-isomorphism $\varphi: M \otimes_R N \to T$ such that $k(x,y) = \varphi(x \otimes y)$ for all $x \in M$ and $y \in N$.

Proof It follows from Corollary 8.8 that there exists a unique R-module homomorphism $\varphi: M \otimes_R N \to T$ such that $k(x,y) = \varphi(x \otimes y)$ for all $x \in M$ and $y \in N$. Also universal property satisfied by the bilinear function $k: M \times N \to T$ ensures that there exists a unique R-module homomorphism $\psi: T \to M \otimes_R N$ such that $x \otimes y = \psi(k(x,y))$ for all $x \in M$ and $y \in N$. Then $\psi(\varphi(x \otimes y)) = x \otimes y$ for all $x \in M$ and $y \in M$. But the universal property characterizing the tensor product ensures that any homomorphism from $M \times_R N$ to itself is determined uniquely by its action on elements of
the form \(x \otimes y \), where \(x \in M \) and \(y \in N \). It follows that \(\psi \circ \varphi \) is the identity automorphism of \(M \otimes_R N \). Similarly \(\varphi \circ \psi \) is the identity automorphism of \(T \).

It follows that \(\varphi: M \otimes_R N \to T \) is an isomorphism of \(R \)-modules whose inverse is \(\psi: T \to M \otimes_R N \). The isomorphism \(\varphi \) has the required properties.

Corollary 8.10 Let \(M \) be a module over a unital commutative ring \(R \), and let \(\kappa: R \otimes_R M \to M \) be the \(R \)-module homomorphism defined such that \(\kappa(r \otimes x) = rx \) for all \(r \in R \) and \(x \in M \). Then \(\kappa \) is an isomorphism, and thus \(R \otimes_R M \cong M \).

Proof Let \(P \) be an \(R \)-module, and let \(f: R \times M \to P \) be an \(R \)-bilinear function. Let \(\psi: M \to P \) be defined such that \(\psi(x) = f(1_R, x) \) for all \(x \in M \), where \(1_R \) denotes the identity element of the ring \(R \). Then \(\psi \) is an \(R \)-module homomorphism. Moreover \(f(r, x) = rf(1_R, x) = f(1_R, rx) = \psi(rx) \) for all \(x \in M \) and \(r \in R \). Thus \(f = \psi \circ k \), where \(k: R \times M \to M \) is the \(R \)-bilinear function defined such that \(k(r, x) = rx \) for all \(r \in R \) and \(x \in M \). The result therefore follows on applying Corollary 8.9.

Corollary 8.11 Let \(M, M', N \) and \(N' \) be modules over a unital commutative ring \(R \), and let \(\varphi: M \to M' \) and \(\psi: N \to N' \) be \(R \)-module homomorphisms. Then \(\varphi \) and \(\psi \) induce an \(R \)-module homomorphism \(\varphi \otimes \psi: M \otimes_R N \to M' \otimes_R N' \), where \((\varphi \otimes \psi)(m \otimes n) = \varphi(m) \otimes \psi(n) \) for all \(m \in M \) and \(n \in N \).

Proof The result follows immediately on applying Corollary 8.8 to the bilinear function from \(M \times N \) to \(M' \otimes_R N' \) that sends \((m, n) \) to \(\varphi(m) \otimes \psi(n) \) for all \(m \in M \) and \(n \in N \).

8.7 Direct Sums and Tensor Products

Lemma 8.12 Let \(L, M \) and \(N \) be \(R \)-modules over a unital commutative ring \(R \). Then

\[
(L \oplus M) \otimes_R N \cong (L \otimes_R N) \oplus (M \otimes_R N).
\]

Proof The function

\[
j: (L \oplus M) \times N \to (L \otimes_R N) \oplus (M \otimes_R N)
\]

is an \(R \)-bilinear function, where \(j((x, y), z) = (x \otimes z, y \otimes z) \) for all \(x \in L \), \(y \in M \) and \(z \in N \). We prove that the \(R \)-module \((L \otimes_R N) \oplus (M \otimes_R N)\) and the \(R \)-bilinear function \(j \) satisfy the universal property that characterizes the tensor product of \((L \oplus M)\) and \(N \) over the ring \(R \) up to isomorphism.
Let P be an R-module, and let $f: (L \oplus M) \times N \to P$ be an R-bilinear function. Then f determines R-bilinear functions $g: L \times N \to P$ and $h: M \times N \to P$, where $g(x, z) = f((x, 0), z)$ and $h(y, z) = f((0, x), z)$ for all $x \in L$, $y \in M$ and $z \in N$. Moreover

$$f((x, y), z) = f((x, 0)+(0, y), z) = f((x, 0), z)+f(0, y), z) = g(x, z)+h(y, z).$$

for all $x \in L$, $y \in M$ and $z \in N$. Now there exist unique R-module homomorphisms $\varphi: L \otimes_R N \to P$ $\psi: L \otimes_R N \to P$ satisfying the identities $\varphi(x \otimes z) = g(x, z)$ and $\psi(y \otimes z) = h(y, z)$ for all $x \in L$, $y \in M$ and $z \in N$. Then

$$f((x, y), z) = \varphi(x \otimes z) + \psi(y \otimes z) = \theta((x \otimes z), (y \otimes z)) = \theta(j((x, y), z),$$

where $\theta: (L \otimes_R N) \oplus (M \otimes_R N) \to P$ is the R-module homomorphism defined such that $\theta(u, v) = \varphi(u) + \psi(v)$ for all $u \in L \otimes_R N$ and $v \in M \otimes_R N$. We have thus shown that, given any R-module P, and given any R-bilinear function $f: (L \oplus M) \times N \to P$, there exists an R-module homomorphism $\theta: (L \otimes_R N) \oplus (M \otimes_R N) \to P$ satisfying $f = \text{theta} \circ j$. This homomorphism is uniquely determined. It follows directly from this that

$$(L \oplus M) \otimes_R N \cong (L \otimes_R N) \oplus (M \otimes_R N),$$

as required.

8.8 Tensor Products of Abelian Groups

Proposition 8.13 $\mathbb{Z}_m \otimes \mathbb{Z}_n \cong \mathbb{Z}_{\gcd(m,n)}$ for all positive integers m and n, where $\mathbb{Z}_n = \mathbb{Z}/n\mathbb{Z}$ and $\gcd(m,n)$ is the greatest common divisor of m and n.

Proof The cyclic groups \mathbb{Z}_m and \mathbb{Z}_n are generated by a and b respectively, where $a = 1 + \mathbb{Z}_m$ and $b = 1 + \mathbb{Z}_n$. Moreover $\mathbb{Z}_m = \{ja : j \in \mathbb{Z}\}$, $\mathbb{Z}_n = \{kb : k \in \mathbb{Z}\}$, $j.a = 0$ if and only if m divides the integer j, and $k.b = 0$ if and only if n divides the integer k.

Now $\mathbb{Z}_m \otimes \mathbb{Z}_n$ is generated by elements of the form $x \otimes y$, where $x \in \mathbb{Z}_m$ and $y \in \mathbb{Z}_n$. Moreover $(j.a) \otimes (k.b) = jk(a \otimes b)$ for all integers j and k. It follows that $\mathbb{Z}_m \otimes \mathbb{Z}_n = \{ja \otimes b : j \in \mathbb{Z}\}$. Thus the tensor product $\mathbb{Z}_m \otimes \mathbb{Z}_n$ is a cyclic group generated by $a \otimes b$. We must show that the order of this generator is the greatest common divisor of m and n.

Let $r = \gcd(m,n)$. It follows from a basic result of elementary number theory that there exist integers s and t such that $r = sm + tn$. Then

$$r(a \otimes b) = sm(a \otimes b) + tn(a \otimes b) = s((ma) \otimes b) + t(a \otimes (nb)) = s(0 \otimes b) + t(a \otimes 0) = 0.$$
It follows that the generator \(a \otimes b \) of \(\mathbb{Z}_m \otimes \mathbb{Z}_n \) is an element of finite order, and the order of this element divides \(r \).

It remains to show that \(a \otimes b \) is of order \(r \). Now if \(j, j', k \) and \(k' \) are integers, and if \(j.a = j'.a \) and \(k.b = k'.b \) then \(m \) divides \(j - j' \) and \(n \) divides \(k - k' \). But then the greatest common divisor \(r \) of \(m \) and \(n \) divides \(jk - j'k' \), since \(jk - j'k' = (j - j')k + j'(k - k') \). Let \(c \) be the generator \(1 + rz \) of \(\mathbb{Z}_r \). Then \(\mathbb{Z}_r \) is a well-defined bilinear function \(f : \mathbb{Z}_m \times \mathbb{Z} \rightarrow \mathbb{Z}_r \), where \(f(j.a, k.b) = jk.c \) for all integers \(j \) and \(k \). This function induces a unique group homomorphism \(\varphi : \mathbb{Z}_m \otimes \mathbb{Z} \rightarrow \mathbb{Z}_r \), where \(\varphi(x \otimes y) = f(x, y) \) for all \(x \in \mathbb{Z}_m \) and \(y \in \mathbb{Z}_n \). Then \(\varphi(ja \otimes b) = jc \) for all integers \(j \). Now the generator \(c \) of \(\mathbb{Z}_r \) is of order \(r \), and thus \(jc = 0 \) only when \(r \) divides \(j \). It follows that \(ja \otimes b = 0 \) only when \(r \) divides \(j \). Thus the generator \(a \otimes j \) of \(\mathbb{Z}_m \otimes \mathbb{Z}_n \) is of order \(r \), and therefore \(\mathbb{Z}_m \otimes \mathbb{Z}_n \cong \mathbb{Z}_r \), where \(r = \gcd(m, n) \), as required.

There is a fundamental theorem concerning the structure of finitely-generated Abelian groups, which asserts that any finitely-generated Abelian group is isomorphic to the direct sum of a finite number of cyclic groups. Thus, given any Abelian group \(A \), there exist positive integers \(n_1, n_2, \ldots, n_k \) and \(r \) such that

\[
A \cong \mathbb{Z}_{n_1} \oplus \mathbb{Z}_{n_2} \oplus \cdots \oplus \mathbb{Z}_{n_k} \oplus \mathbb{Z}^r.
\]

Now Corollary 8.10 ensures that \(\mathbb{Z} \otimes \mathbb{Z} B \cong B \) for any Abelian group \(B \). It follows from Lemma 8.12 that

\[
A \otimes \mathbb{Z} B \cong (\mathbb{Z}_{n_1} \otimes \mathbb{Z} B) \oplus (\mathbb{Z}_{n_2} \otimes \mathbb{Z} B) \oplus \cdots \oplus (\mathbb{Z}_{n_k} \otimes \mathbb{Z} B) \oplus \mathbb{Z}^r.
\]

On applying Proposition 8.13, we find in particular that

\[
A \otimes \mathbb{Z} \mathbb{Z}_m \cong \mathbb{Z}_{\gcd(n_1, m)} \oplus \mathbb{Z}_{\gcd(n_2, m)} \oplus \cdots \oplus \mathbb{Z}_{\gcd(n_k, m)} \oplus \mathbb{Z}_m^r
\]

for any positive integer \(r \). Also \(A \otimes \mathbb{Z} \mathbb{Z} \cong A \), by Corollary 8.10.

Note that that \(\mathbb{Z}_1 \) is the zero group 0, and therefore \(0 \oplus B \cong B \) for any Abelian group. (Indeed \(0 \times B = \{ (0, b) : b \in B \} \), and this group of ordered pairs of the form \((0, b) \) with \(b \in B \) is obviously isomorphic to \(B \).) We are thus in a position to evaluate the tensor product of any two finitely-generated Abelian groups.

Note also that if integers \(m \) and \(n \) are coprime, then \(\mathbb{Z}_{mn} \cong \mathbb{Z}_m \oplus \mathbb{Z}_n \). Indeed let \(a \in \mathbb{Z}_m \) be an element of order \(m \) (which therefore generates \(\mathbb{Z}_m \)), and let \(b \in \mathbb{Z}_n \) be an element of order \(n \). Then the order of the element \((a, b) \) of \(\mathbb{Z}_m \oplus \mathbb{Z}_n \) is divisible by both \(m \) and \(n \), and is therefore divisible by \(mn \). It then follows that \((a, b) \) generates the group \(\mathbb{Z}_m \oplus \mathbb{Z}_n \), and this group is therefore isomorphic to \(\mathbb{Z}_{mn} \).
Example Let
\[A \cong \mathbb{Z}_{18} \oplus \mathbb{Z}_8 \oplus \mathbb{Z}_2 \] and
\[B \cong \mathbb{Z}_9 \oplus \mathbb{Z}_4 \oplus \mathbb{Z}_5. \]
Then
\[A \otimes_{\mathbb{Z}} B \cong (A \otimes \mathbb{Z}_9) \oplus (A \otimes \mathbb{Z}_4) \oplus A^5 \]
\[\cong \mathbb{Z}_9 \oplus \mathbb{Z}_4 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_4 \oplus \mathbb{Z}_2^5 \oplus \mathbb{Z}_{18}^5 \oplus \mathbb{Z}_{18} \oplus \mathbb{Z}_{10} \]
Now \(\mathbb{Z}_{18} \cong \mathbb{Z}_2 \oplus \mathbb{Z}_9 \), because the integers 2 and 9 are coprime. (See remarks above). It follows that
\[A \otimes_{\mathbb{Z}} B \cong \mathbb{Z}_6^2 \oplus \mathbb{Z}_3^4 \oplus \mathbb{Z}_5^8 \oplus \mathbb{Z}_8^9 \oplus \mathbb{Z}_{10}^{10}. \]

8.9 Multilinear Maps and Tensor Products

Let \(M_1, M_2, \ldots, M_n \) be modules over a unital commutative ring \(R \), and let \(P \) be an \(R \)-module. A function \(f: M_1 \times M_2 \times \cdots \times M_n \to P \) is said to be \(R \)-multilinear if
\[
f(x_1, \ldots, x_{k-1}, x'_k + x''_k, x_{k+1}, \ldots, x_n)
= f(x_1, \ldots, x_{k-1}, x'_k, x_{k+1}, \ldots, x_n)
+ f(x_1, \ldots, x_{k-1}, x''_k, x_{k+1}, \ldots, x_n)
\]
and
\[
f(x_1, \ldots, x_{k-1}, rx_k, x_{k+1}, \ldots, x_n) = rf(x_1, \ldots, x_{k-1}, x_k, x_{k+1}, \ldots, x_n)
\]
for \(k = 1, 2, \ldots, n \), for all \(x_l, x'_l, x''_l \in M_l \) \((l = 1, 2, \ldots, n)\), and for all \(r \in R \).
(When \(k = 1 \) the list \(x_1, \ldots, x_{k-1} \) should be interpreted as the empty list in the formulae above; when \(k = n \) the list \(x_{k+1}, \ldots, x_n \) should be interpreted as the empty list.) One can construct a module \(M_1 \otimes_R M_2 \otimes_R \cdots \otimes_R M_n \), referred to as the tensor product of the modules \(M_1, M_2, \ldots, M_n \) over the ring \(R \), and an \(R \)-multilinear mapping
\[
\tilde{j}_{M_1 \times M_2 \times \cdots \times M_n}: M_1 \times M_2 \times \cdots \times M_n \to M_1 \otimes_R M_2 \otimes_R \cdots \otimes_R M_n
\]
where the tensor product and multilinear mapping \(\tilde{j}_{M_1 \times M_2 \times \cdots \times M_n} \) satisfy the following universal property:

given any \(R \)-module \(P \), and given any \(R \)-multilinear function \(f: M_1 \times M_2 \times \cdots \times M_n \to P \), there exists a unique \(R \)-module homomorphism \(\theta: M_1 \otimes_R M_2 \otimes_R \cdots \otimes_R M_n \to P \) such that \(f = \theta \circ \tilde{j}_{M_1 \times M_2 \times \cdots \times M_n} \).
This tensor product is defined to be the quotient of the free module $F_R(M_1 \times M_2 \times \cdots \times M_n)$ by the submodule K generated by elements of the free module that are of the form

$$i_{M_1 \times M_2 \times \cdots \times M_n}(x_1, \ldots, x_{k-1}, x'_k, x_{k+1}, \ldots, x_n)$$

$$- i_{M_1 \times M_2 \times \cdots \times M_n}(x_1, \ldots, x_{k-1}, x'_k, x_{k+1}, \ldots, x_n)$$

$$- i_{M_1 \times M_2 \times \cdots \times M_n}(x_1, \ldots, x_{k-1}, x''_k, x_{k+1}, \ldots, x_n),$$

or are of the form

$$i_{M_1 \times M_2 \times \cdots \times M_n}(x_1, \ldots, x_{k-1}, x'_k, x_{k+1}, \ldots, x_n)$$

$$- ri_{M_1 \times M_2 \times \cdots \times M_n}(x_1, \ldots, x_{k-1}, x_k, x_{k+1}, \ldots, x_n),$$

where $x_l, x'_l, x''_l \in M_l$ for $l = 1, 2, \ldots, n$, and $r \in R$. There is an R-multilinear function

$$j_{M_1 \times M_2 \times \cdots \times M_n}: M_1 \times M_2 \times \cdots \times M_n \to M_1 \otimes_R M_2 \otimes_R \cdots \otimes_R M_n,$$

where $j_{M_1 \times M_2 \times \cdots \times M_n}$ is the composition $\pi \circ i_{M_1 \times M_2 \times \cdots \times M_n}$ of the natural embedding

$$i_{M_1 \times M_2 \times \cdots \times M_n}: M_1 \times M_2 \times \cdots \times M_n \to F_R(M_1 \times M_2 \times \cdots \times M_n)$$

and the quotient homomorphism

$$\pi: F_R(M_1 \times M_2 \times \cdots \times M_n) \to M_1 \otimes_R M_2 \otimes_R \cdots \otimes_R M_n.$$

8.10 Tensor Products over Non-Commutative Rings

Let R be a unital ring that is not necessarily commutative, let M be a right R-module, and let N be a left R-module. These modules are Abelian groups under the operation of addition, and Abelian groups are modules over the ring \mathbb{Z} of integers. We can therefore form their tensor product $M \otimes_{\mathbb{Z}} N$. This tensor product is an Abelian group.

Let K be the subgroup of $M \otimes_{\mathbb{Z}} N$ generated by the elements

$$(xr) \otimes_{\mathbb{Z}} y - x \otimes_{\mathbb{Z}} (ry)$$

for all $x \in M$, $y \in N$ and $r \in R$, where $x \otimes_{\mathbb{Z}} y$ denotes the tensor product of x and y in the ring $M \otimes_{\mathbb{Z}} N$. We define the tensor product $M \otimes_R N$ of the right R-module M and the left R-module N over the ring R to be the quotient group $M \otimes_{\mathbb{Z}} N/K$. Given $x \in M$ and $y \in N$, let $x \otimes y$ denote the
image of \(x \otimes \mathbb{Z} y \) under the quotient homomorphism \(\pi: M \otimes \mathbb{Z} N \rightarrow M \otimes_R N \).

Then

\[
(x_1 + x_2) \otimes y = x_1 \otimes y + x_2 \otimes y, \quad x \otimes (y_1 + y_2) = x \otimes y_1 + x \otimes y_2,
\]

and

\[
(xr) \otimes y = x \otimes (ry)
\]

for all \(x, x_1, x_2 \in M, \ y, y_1, y_2 \in N \) and \(r \in R \).

Lemma 8.14 Let \(R \) be a unital ring, let \(M \) be a right \(R \)-module, and let \(N \) be a left \(R \)-module. Then the tensor product \(M \otimes_R N \) of \(M \) and \(N \) is an Abelian group that satisfies the following universal property:

given any Abelian group \(P \), and **given any \(\mathbb{Z} \)-bilinear function** \(f: M \times N \rightarrow P \) which satisfies

\[
f(xr, y) = f(x, ry)
\]

for all \(x \in M, \ y \in N \) **and** \(r \in R \), there exists a unique Abelian group homomorphism \(\varphi: M \otimes_R N \rightarrow P \) such that \(f(x, y) = \varphi(x \otimes y) \) **for all** \(x \in M \) **and** \(y \in N \).

8.11 Tensor Products of Bimodules

Let \(Q, R \) and \(S \) be unital rings, let \(M \) be a \(Q \)-\(R \)-bimodule, and let \(N \) be an \(R \)-\(S \)-bimodule. Then \(M \) is a right \(R \)-module and \(N \) is a left \(R \)-module. We can therefore form the tensor product \(M \otimes_R N \) of \(M \) and \(N \) over the ring \(R \). This tensor product is an Abelian group under the operation of addition.

Let \(q \in Q \) and \(r \in R \). The definition of bimodules ensures that \((qx)r = q.xr\) for all \(x \in M \). Let \(L_q: M \times N \rightarrow M \otimes_R N \) be the function defined such that \(L_q(x, y) = (qx) \otimes y \) for all \(x \in M \) and \(y \in N \). Then the function \(f \) is \(\mathbb{Z} \)-bilinear. Moreover

\[
L_q(xr, y) = (q(xr)) \otimes y = ((qx)r) \otimes y = (qx) \otimes (ry) = L_q(x, ry).
\]

for all \(x \in M \) and \(y \in N \). It follows from Lemma 8.14 that there exists a group homomorphism \(\lambda_q: M \otimes_R N \rightarrow M \otimes_R N \), where \(\lambda_q(x \otimes y) = (qx) \otimes y \) for all \(x \in M \) and \(y \in N \). Similarly, given any element \(s \) of the ring \(S \), there exists a group homomorphism \(\rho_s: M \otimes_R N \rightarrow M \otimes_R N \), where \(\lambda_s(x \otimes y) = x \otimes (ys) \). We define \(qa = \lambda_q(a) \) and \(\alpha s = \rho_s(\alpha) \) for all \(\alpha \in M \otimes_R N \). One can check that \(M \otimes_R N \) is a \(Q \)-\(S \)-bimodule with respect to these operations of left multiplication by elements of \(Q \) and right multiplication by elements of
Moreover, given any Q-S-bimodule P, and given any Z-bilinear function $f: M \times N \to P$ that satisfies
\[f(qx, y) = qf(x, y), \quad f(xr, y) = f(x, ry), \quad f(x, ys) = f(x, y)s \]
for all $x \in M$, $y \in N$, $q \in Q$, $r \in R$ and $s \in S$, there exists a unique Q-S bimodule homomorphism $\varphi: M \otimes_R N \to P$ such that $f(x, y) = \varphi(x \otimes y)$ for all $x \in M$ and $y \in N$.

This construction generalizes the definition and universal property of the tensor product of modules over a unital commutative ring R, in view of the fact that any module over a unital commutative ring R may be regarded as an R-R-bimodule.

8.12 Tensor Products involving Free Modules

Proposition 8.15 Let R and S be unital rings, let M be an R-S-bimodule and let $F_S X$ be a free left S-module on a set X. Then the tensor product $M \otimes_S F_S X$ is isomorphic, as an R-module, to $\Gamma(X, M)$, where $\Gamma(X, M)$ is the left R-module whose elements are represented as functions from X to M with only finitely many non-zero values, and where $(\lambda + \mu)(x) = \lambda(x) + \mu(x)$, and $(r\lambda)(x) = r\lambda(x)$ for all $\lambda, \mu \in \Gamma(X, M)$ and $r \in R$.

Proof The elements of the free left S-module $F_S X$ are represented as functions from X to S. Let $f: M \times F_S X \to \Gamma(X, M)$ be the Z-bilinear function defined such that $f(m, \sigma)(x) = m\sigma(x)$ for all $m \in M$, $\sigma \in F_S X$ and $x \in X$. Then $f(ms, \sigma) = f(m, s\sigma)$ for all $m \in M$, $\sigma \in F_S X$ and $s \in S$. It follows from Lemma 8.14 that the function f induces a unique homomorphism $\theta: M \otimes_S F_S X \to \Gamma(X, M)$ such that $\theta(m \otimes \sigma) = f(m, \sigma)$. Moreover θ is an R-module homomorphism.

Given $\mu \in \Gamma(X, M)$ we define
\[
\varphi(\mu) = \sum_{x \in \text{supp} \mu} \mu(x) \otimes \delta_x,
\]
where $\text{supp} \mu = \{x \in X : \mu(x) \neq 0\}$ and δ_x denotes the function from X to S which takes the value 1_S at x and is zero elsewhere. Then $\varphi: \Gamma(X, M) \to M \otimes_S F_S X$ is also an R-module homomorphism. Now
\[
\varphi(\theta(m \otimes \sigma)) = \sum_{x \in \text{supp} \sigma} m\sigma(x) \otimes \delta_x = \sum_{x \in \text{supp} \sigma} m \otimes \sigma(x)\delta_x = m \otimes \left(\sum_{x \in \text{supp} \sigma} \sigma(x)\delta_x \right) = m \otimes \sigma
\]
for all $m \in M$ and $\sigma \in F_S X$. It follows that $\varphi \circ \theta$ is the identity automorphism of the tensor product $M \otimes_S F_S X$.

Also
\[
\theta(\varphi(\mu)) = \theta \left(\sum_{x \in \text{supp} \mu} \mu(x) \otimes \delta_x \right) = \sum_{x \in \text{supp} \mu} \theta(\mu(x) \otimes \delta_x)
\]
for all $\mu \in \Gamma(X, M)$. But
\[
\theta(\mu(x) \otimes \delta_x)(y) = \begin{cases}
\mu(x) & \text{if } y = x; \\
0 & \text{if } y \neq x.
\end{cases}
\]
It follows that
\[
\theta(\varphi(\mu)) = \sum_{x \in \text{supp} \mu} \theta(\mu(x) \otimes \delta_x) = \mu
\]
for all $\mu \in \Gamma(X, M)$. Thus $\theta \circ \varphi$ is the identity automorphism of $\Gamma(X, M)$. We conclude that $\theta : M \otimes_S F_S X \to \Gamma(X, M)$ is an isomorphism of R-modules, as required.

Let R be a unital ring. We can regard R as an R-Z-bimodule, where rn is the sum of n copies of r and $r(-n) = -rn$ for all non-negative integers n and elements r of R. We may therefore form the tensor product $R \otimes_Z A$ of the ring R with any additive group A. (An additive group as an Abelian group where the group operation is expressed using additive notation.) This tensor product is an R-module. The following corollary is therefore a direct consequence of Proposition 8.15.

Corollary 8.16 Let R be a unital ring, let X be a set, and let $F_Z X$ be the free Abelian group on the set X. Then $R \otimes_Z F_Z X \cong F_R X$. Thus the tensor product of the ring R with any free Abelian group is a free R-module.

8.13 The Relationship between Bimodules and Left Modules

Let R and S be unital rings with multiplicative identity elements 1_R and 1_S, and let S^{op} be the unital ring $(S, +, \overline{\times})$ whose elements are those of S, whose operation of addition is the same as that defined on S, and whose operation $\overline{\times}$ of multiplication is defined such that $s_1 \overline{\times} s_2 = s_2 s_1$ for all $s_1, s_2 \in S$.

We can then construct a ring $R \otimes_Z S^{\text{op}}$. The elements of this ring belong to the tensor product of the rings R and S^{op} over the ring Z of integers, and the operation of addition on $R \otimes_Z S^{\text{op}}$ is that defined on the tensor product. The operation of multiplication on $R \otimes_Z S^{\text{op}}$ is then defined such that
\[
(r_1 \otimes s_1) \times (r_2 \otimes s_2) = (r_1 r_2) \otimes (s_1 \overline{s_2}) = (r_1 r_2) \otimes (s_2 s_1).
\]
Lemma 8.17 Let R and S be unital rings, and let M be an R-S-bimodule. Then M is a left module over the ring $R \otimes_{\mathbb{Z}} S^{\text{op}}$, where

$$(r_1 \otimes s_1) \times (r_2 \otimes s_2) = (r_1 r_2) \otimes (s_2 s_1)$$

for all $r_1, r_2 \in R$ and $s_1, s_2 \in S$, and where

$$(r \otimes s).x = (rx)s = r(xs)$$

for all $r \in R$, $s \in S$ and $x \in M$.

Proof Given any element x of M, let $b_x : R \times S \to M$ be the function defined such that $b_x(r, s) = (rx)s = r(xs)$ for all $r \in R$ and $s \in S$. Then the function b_x is \mathbb{Z}-bilinear, and therefore induces a unique \mathbb{Z}-module homomorphism $\beta_x : R \otimes_{\mathbb{Z}} S^{\text{op}} \to M$, where $\beta_x(r \otimes s) = b_x(r, s) = (rx)s$ for all $r \in R$, $s \in S$ and $x \in M$. We define $u.x = \beta_x(u)$ for all $u \in R \otimes_{\mathbb{Z}} S^{\text{op}}$ and $x \in M$. Then $(u_1 + u_2).x = u_1.x + u_2.x$ for all $u_1, u_2 \in R \otimes_{\mathbb{Z}} S^{\text{op}}$ and $x \in M$, because β_x is a homomorphism of Abelian groups. Also $u.(x_1 + x_2) = u.x_1 + u.x_2$, because $b_{x_1 + x_2} = b_{x_1} + b_{x_2}$ and therefore $\beta_{x_1 + x_2} = \beta_{x_1} + \beta_{x_2}$.

Now

$$(r_1 \otimes s_1).((r_2 \otimes s_2).x) = (r_1 \otimes s_1).((r_2 x_2)s_2) = r_1(r_2(x_2s_2))s_1$$

$$= ((r_1r_2)(xs_2))s_1 = (r_1r_2)((xs_2)s_1)$$

$$= (r_1r_2)(x(s_2s_1)) = ((r_1r_2) \otimes_{\mathbb{Z}} (s_2s_1)).x$$

$$= ((r_1 \otimes_{\mathbb{Z}} s_1) \times (r_2 \otimes_{\mathbb{Z}} s_2)).x$$

for all $r_1, r_2 \in R$, $s_1, s_2 \in S$ and $x \in M$. The bilinearity of the function β_x then ensures that $u_1.(u_2.x) = (u_1 \times u_2).x$ for all $u_1, u_2 \in R \otimes_{\mathbb{Z}} S^{\text{op}}$ and $x \in M$. Also $(1_R, 1_S).x = x$ for all $x \in M$, where 1_R and 1_S denote the identity elements of the rings R and S. We conclude that M is a left $R \otimes_{\mathbb{Z}} S^{\text{op}}$, as required.

Let R and S be unital rings, and let M be a left module over the ring $R \otimes_{\mathbb{Z}} S^{\text{op}}$. Then M can be regarded as an R-S-bimodule, where $(rx)s = r(xs) = (r \otimes s).x$ for all $r \in R$, $s \in S$ and $x \in M$. We conclude therefore that all R-S-bimodules are left modules over the ring $R \otimes_{\mathbb{Z}} S^{\text{op}}$, and vice versa. It follows that any general result concerning left modules over unital rings yields a corresponding result concerning bimodules.