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7 Homology Calculations

7.1 The Homology Groups of an Octohedron

Let K be the simplicial complex consisting of the triangular faces, edges and
vertices of an octohedron in R3 with vertices P1, P2, P3, P4, P5 and P6, where

P1 = (0, 0, 1), P2 = (1, 0, 0), P3 = (0, 1, 0),

P4 = (−1, 0, 0), P5 = (0,−1, 0), P6 = (0, 0,−1)

This octohedron consists of the four triangular faces P1P2P3, P1P3P4, P1P4P5

and P1P5P2 of the pyramid whose base is the square P2P3P4P5 and whose
apex is P1, together with the four triangular faces P6P2P3, P6P3P4, P6P4P5

and P6P5P2 of the pyramid whose base is P2P3P4P5 and whose apex is P6.
A typical 2-chain c2 of K is a linear combination, with integer coeffi-

cients, of eight oriented 2-simplices that represent the triangular faces of the
octohedron. Thus we can write

c2 =
8∑

i=1

niσi,

where ni ∈ Z for i = 1, 2, . . . , 8 and

σ1 = 〈P1, P2, P3〉, σ2 = 〈P1, P3, P4〉, σ3 = 〈P1, P4, P5〉,

σ4 = 〈P1, P5, P2〉, σ5 = 〈P6, P3, P2〉, σ6 = 〈P6, P4, P3〉,

σ7 = 〈P6, P5, P4〉, σ8 = 〈P6, P2, P5〉.

(The orientation on each of these triangles has been chosen such that the
vertices of the triangle are listed in anticlockwise order when viewed from a
point close to the centre of triangle that lies outside the octohedron.)

Similarly a typical 1-chain c1 of K is a linear combination, with integer
coefficients, of twelve 1-simplices that represent the edges of the octohedron.
Thus we can write

c1 =
12∑

j=1

mjρj,

where mj ∈ Z for j = 1, 2, . . . , 12 and

ρ1 = 〈P1, P2〉, ρ2 = 〈P1, P3〉, ρ3 = 〈P1, P4〉, ρ4 = 〈P1, P5〉,

ρ5 = 〈P2, P3〉, ρ6 = 〈P3, P4〉, ρ7 = 〈P4, P5〉, ρ8 = 〈P5, P2〉,
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ρ9 = 〈P2, P6〉, ρ10 = 〈P3, P6〉, ρ11 = 〈P4, P6〉, ρ12 = 〈P5, P6〉,

A typical 0-chain c0 takes the form

c0 =
6∑

k=1

rk〈Pk〉,

where rk ∈ Z for k = 1, 2, . . . , 6.
We now calculate the boundary of a 2-chain. It follows from the definition

of the boundary homomorphism ∂2 that

∂2σ1 = ∂2〈P1, P2, P3〉 = 〈P2P3〉 − 〈P1P3〉+ 〈P1P2〉 = ρ5 − ρ2 + ρ1.

Similarly

∂2σ2 = ∂2〈P1, P3, P4〉 = ρ6 − ρ3 + ρ2,

∂2σ3 = ∂2〈P1, P4, P5〉 = ρ7 − ρ4 + ρ3,

∂2σ4 = ∂2〈P1, P5, P2〉 = ρ8 − ρ1 + ρ4,

∂2σ5 = ∂2〈P6, P3, P2〉 = −ρ5 + ρ9 − ρ10,

∂2σ6 = ∂2〈P6, P4, P3〉 = −ρ6 + ρ10 − ρ11,

∂2σ7 = ∂2〈P6, P5, P4〉 = −ρ7 + ρ11 − ρ12,

∂2σ8 = ∂2〈P6, P2, P5〉 = −ρ8 + ρ12 − ρ9.

Thus

∂2c2 = ∂2 (n1σ1 + n2σ2 + n3σ3 + n4σ4 + n5σ5 + n6σ6 + n7σ7 + n8σ8)

= n1∂2σ1 + n2∂2σ2 + n3∂2σ3 + n4∂2σ4

+ n5∂2σ5 + n6∂2σ6 + n7∂2σ7 + n8∂2σ8

= (n1 − n4)ρ1 + (n2 − n1)ρ2 + (n3 − n2)ρ3 + (n4 − n3)ρ4

+ (n1 − n5)ρ5 + (n2 − n6)ρ6 + (n3 − n7)ρ7 + (n4 − n8)ρ8

+ (n5 − n8)ρ9 + (n6 − n5)ρ10 + (n7 − n6)ρ11 + (n8 − n7)ρ12

It follows that ∂2c2 = 0 if and only if

n1 = n2 = n3 = n4 = n5 = n6 = n7 = n8.

Therefore

Z2(K) = ker ∂2 = {nµ : n ∈ Z}, where µ =
8∑

i=1

σi.
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Now C3(K) = 0, and thus B2(K) = 0 (where 0 here denotes the zero group),
since the complex K has no 3-simplices. Therefore H2(K) ∼= Z2(K) ∼= Z.

Next we calculate the boundary of a 1-chain. It follows from the definition
of the boundary homomorphism ∂1 that

∂1c1 = ∂1

(
12∑

j=1

mjρj

)
= m1(〈P2〉 − 〈P1〉) +m2(〈P3〉 − 〈P1〉)

+m3(〈P4〉 − 〈P1〉) +m4(〈P5〉 − 〈P1〉)
+m5(〈P3〉 − 〈P2〉) +m6(〈P4〉 − 〈P3〉)
+m7(〈P5〉 − 〈P4〉) +m8(〈P2〉 − 〈P5〉)
+m9(〈P6〉 − 〈P2〉) +m10(〈P6〉 − 〈P3〉)
+m11(〈P6〉 − 〈P4〉) +m12(〈P6〉 − 〈P5〉)

= −(m1 +m2 +m3 +m4)〈P1〉+ (m1 −m5 +m8 −m9)〈P2〉
+ (m2 +m5 −m6 −m10)〈P3〉+ (m3 +m6 −m7 −m11)〈P4〉
+ (m4 +m7 −m8 −m12)〈P5〉+ (m9 +m10 +m11 +m12)〈P6〉

It follows that the 1-chain c1 is a 1-cycle if and only if

m1 +m2 +m3 +m4 = 0, m1 −m5 +m8 −m9 = 0,

m2 +m5 −m6 −m10 = 0, m3 +m6 −m7 −m11 = 0,

m4 +m7 −m8 −m12 = 0 and m9 +m10 +m11 +m12 = 0.

On examining the structure of these equations, we see that, when c1 is a 1-
cycle, it is possible to eliminate five of the integer quantities mj, expressing
them in terms of the remaining quantities. For example, we can eliminate
m4, m6, m7, m8 and m12, expressing these quantities in terms of m1, m2, m3,
m5, m9 m10 and m11 by means of the equations

m4 = −m1 −m2 −m3,

m6 = m2 −m10 +m5,

m7 = m2 +m3 −m10 −m11 +m5,

m8 = −m1 +m9 +m5,

m12 = −m9 −m10 −m11

It follows that

Z2(K) = {m1z1 +m2z2 +m3z3 +m5z5 +m9z9 +m10z10 +m11z11},
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where

z1 = ρ1 − ρ4 − ρ8 = −∂2σ4,

z2 = ρ2 − ρ4 + ρ6 + ρ7 = ∂2(σ2 + σ3),

z3 = ρ3 − ρ4 + ρ7 = ∂2σ3,

z5 = ρ5 + ρ6 + ρ7 + ρ8 = ∂2(σ1 + σ2 + σ3 + σ4),

z9 = ρ8 + ρ9 − ρ12 = −∂2σ8,

z10 = −ρ6 − ρ7 + ρ10 − ρ12 = ∂2(σ6 + σ7),

z11 = ρ11 − ρ7 − ρ12 = ∂2σ7.

From these equations, we see that the generators z1, z2, z3, z5, z9, z10 and z11

of the group Z1(K) of 1-cycles all belong to the group B1(K) of 1-boundaries.
It follows that Z1(K) = B1(K), and therefore H1(K) = 0.

In order to determine H0(K) it suffices to note that the 0-chains

〈P2〉 − 〈P1〉, 〈P3〉 − 〈P1〉, 〈P4〉 − 〈P1〉, 〈P5〉 − 〈P1〉 and 〈P6〉 − 〈P1〉

are 0-boundaries. Indeed

〈P2〉 − 〈P1〉 = ∂1ρ1, 〈P3〉 − 〈P1〉 = ∂1ρ2, 〈P4〉 − 〈P1〉 = ∂1ρ3,

〈P5〉 − 〈P1〉 = ∂1ρ4 and 〈P6〉 − 〈P1〉 = ∂1(ρ1 + ρ9).

Therefore
6∑

k=1

rk〈Pk〉 −

(
6∑

k=1

rk

)
〈P1〉 ∈ B0(K)

for all integers r1, r2, r3, r4, r5 and r6. It follows that B0(K) = ker ε, where
ε:C0(K)→ Z is the homomorphism defined such that

ε

(
6∑

k=1

rk〈Pk〉

)
=

6∑
k=1

rk

for all integers rk (k = 1, 2, . . . , 6). Now Z0(K) = C0(K) since the homo-
morphism ∂0:C0(K) → C−1(K) is the zero homomorphism mapping C0(K)
to the zero group. It follows that

H0(K) = C0(K)/B0(K) = C0(K)/ ker ε ∼= Z.

(Here we are using the result that the image of a homomorphism is isomorphic
to the quotient of the domain of the homomorphism by the kernel of the
homomorphism.)
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We have thus shown that

H2(K) ∼= Z, H1(K) = 0, H0(K) ∼= Z.

One can show that Z1(K) = B1(K) by employing an alternative approach

to that used above. An element z of Z1(K) is of the form z =
12∑

j=1

mjρj, where

m1 +m2 +m3 +m4 = 0, m1 −m5 +m8 −m9 = 0,

m2 +m5 −m6 −m10 = 0, m3 +m6 −m7 −m11 = 0,

m4 +m7 −m8 −m12 = 0 and m9 +m10 +m11 +m12 = 0.

The 1-cycle z belongs to the group B1(K) if and only if there exists some
2-chain c2 such that z = ∂2c2. It follows that z ∈ B1(K) if and only if there
exist integers n1, n2, . . . , n8 such that

m1 = n1 − n4, m2 = n2 − n1, m3 = n3 − n2, m4 = n4 − n3,

m5 = n1 − n5, m6 = n2 − n6, m7 = n3 − n7, m8 = n4 − n8,

m9 = n5 − n8, m10 = n6 − n5, m11 = n7 − n6, m12 = n8 − n7.

The integers n1, n2, . . . , n8 solving the above equations are not uniquely de-
termined, since, given one collection of integers n1, n2, . . . , n8 satisfying these
equations, another solution can be obtained by adding some fixed integer to
each of n1, n2, . . . , n8. It follows from this that if there exists some collection
n1, n2, . . . , n8 of integers that solves the above equations, then there exists a
solution which satisfies the extra condition n1 = 0. We then find that

n1 = 0, n2 = m2, n3 = m2 +m3, n4 = −m1,

n5 = −m5, n6 = m2 −m6, n7 = m2 +m3 −m7, n8 = −m1 −m8.

On substituting n1, n2, . . . , n8 into the relevant equations, and making use of
the constraints on the values of m1,m2, . . . ,m12, we find that we do indeed
have a solution to the equations that express the integers mj in terms of
the integers ni. It follows that every 1-cycle of K is a 1-boundary. Thus
Z1(K) = B1(K), and therefore H1(K) = 0.
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7.2 Another Homology Example

Let P1, P2, P3, P4, P5 and P6 be the vertices of a regular hexagon in the
plane, listed in cyclic order, and let K be simplicial complex consisting of
the triangles P1P2P3, P3P4P5 and P5P6P1, together with all the edges and
vertices of these triangles. Then

C2(K) = {n1τ1 + n2τ2 + n3τ3 : n1, n2, n3 ∈ Z},

where
τ1 = 〈P1P2P3〉, τ2 = 〈P3P4P5〉 and τ3 = 〈P5P6P1〉.

Also

C1(K) =

{
9∑

j=1

mjρj : mj ∈ Z for j = 1, 2, . . . , 9

}
,

where

ρ1 = 〈P6P1〉, ρ2 = 〈P1P2〉, ρ3 = 〈P2P3〉, ρ4 = 〈P3P4〉, ρ5 = 〈P4P5〉,

ρ6 = 〈P5P6〉, ρ7 = 〈P5P1〉, ρ8 = 〈P1P3〉 and ρ9 = 〈P3P5〉,
and

C0(K) =

{
6∑

k=1

rk〈Pk〉 : mk ∈ Z for k = 1, 2, . . . , 6

}
.

Also

∂2τ1 = ρ3 − ρ8 + ρ2, ∂2τ2 = ρ5 − ρ9 + ρ4, ∂2τ3 = ρ1 − ρ7 + ρ6,

Now

∂2(n1τ1 + n2τ2 + n3τ3)

= n3ρ1 + n1ρ2 + n1ρ3 + n2ρ4 + n2ρ5 + n3ρ6 − n3ρ7 − n1ρ8 − n2ρ9.

The simplicial complex K has no non-zero 2-cycles, and therefore Z2(K) = 0.
It follows that H2(K) = 0.

Let

c1 =
9∑

j=1

mjρj.

Then

∂1c1 = (m1 −m2 +m7 −m8)〈P1〉+ (m2 −m3)〈P2〉
+ (m3 −m4 +m8 −m9)〈P3〉+ (m4 −m5)〈P4〉
+ (m5 −m6 +m9 −m7)〈P5〉+ (m6 −m1)〈P6〉
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It follows that c1 is a 1-cycle of K if and only if

m2 = m3, m4 = m5, m6 = m1

and
m1 +m7 = m3 +m8 = m5 +m9.

Moreover c1 is a 1-boundary of K if and only if

m2 = m3 = −m8, m4 = m5 = −m9, m6 = m1 = −m7.

We see from this that not every 1-cycle of K is a 1-boundary of K. Indeed

Z1(K) = {n1∂2τ1 + n2∂2τ2 + n3∂2τ3 + nz : n1, n2, n3, n ∈ Z},

where z = ρ7 + ρ8 + ρ9. Let θ:Z1(K) → Z be the homomorphism defined
such that

θ (n1∂2τ1 + n2∂2τ2 + n3∂2τ3 + nz) = n

for all n1, n2, n3, n ∈ Z. Now

n1∂2τ1 + n2∂2τ2 + n3∂2τ3 + nz ∈ B1(K) if and only if n = 0.

It follows that B1(K) = ker θ. Therefore the homomorphism θ induces an
isomorphism from H1(K) to Z, where H1(K) = Z1(K)/B1(K). Indeed
H1(K) = {n[z] : n ∈ Z}, where z = ρ7 + ρ8 + ρ9 and [z] denotes the
homology class of the 1-cycle z.

It is a straightforward exercise to verify that

B0(K) =

{
6∑

k=1

rk〈Pk〉 : rk ∈ Z for k = 1, 2, . . . , 6 and
6∑

k=1

rk = 0

}
.

It follows from this that H0(K) ∼= Z. Indeed this result is a consquence of
the fact that the polyhedron |K| of the simplicial complex K is connected.

7.3 The Homology Groups of the Boundary of a Sim-
plex

Proposition 7.1 Let K be the simplicial complex consisting of all the proper
faces of an (n+ 1)-dimensional simplex σ, where n > 0. Then

H0(K) ∼= Z, Hn(K) ∼= Z, Hq(K) = 0 when q 6= 0, n.
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Proof Let M be the simplicial complex consisting of the (n+1)-dimensional
simplex σ, together with all its faces. Then K is a subcomplex of M , and
Cq(K) = Cq(M) when q ≤ n.

It follows from Proposition 6.4 that H0(M) ∼= Z and Hq(M) = 0 when
q > 0. (Here 0 denotes the zero group.) Now Zq(K) = Zq(M) when q ≤ n,
and Bq(K) = Bq(M) when q < n. It follows that Hq(K) = Hq(M) when
q < n. Thus H0(K) ∼= Z and Hq(K) = 0 when 0 < q < n. Also Hq(K) = 0
when q > n, since the simplicial complex K is of dimension n. Thus, to
determine the homology of the complex K, it only remains to find Hn(K).

Let the (n+1)-dimensional simplex σ have vertices v0,v1, . . . ,vn+1. Then

Cn+1(M) = {n〈v0,v1, . . . ,vn+1〉 : n ∈ Z}.

and therefore Bn(M) = {nz : n ∈ Z}, where

z = ∂n+1 (〈v0,v1, . . . ,vn+1〉) .

Now Hn(M) = 0 (Proposition 6.4). It follows that Zn(M) = Bn(M). But
Zn(K) = Zm(M), since Cn(K) = Cn(M) and the definition of the boundary
homomorphism on Cn(K) is consistent with the definition of the boundary
homomorphism on Cn(M). Also Bn(K) = 0, because the simplicial com-
plex K is of dimension n, and therefore has no non-zero n-boundaries. It
follows that

Hn(K) ∼= Zn(K) = Zn(M) = Bn(M) ∼= Z.

Indeed Hn(K) = {n[z] : n ∈ Z}, where [z] denotes the homology class of the
n-cycle z of K defined above.

Remark Note that the n-cycle z is an n-cycle of the simplicial complex K,
since it is a linear combination, with integer coefficients, of oriented n-
simplices of K. The n-cycle z is an n-boundary of the large simplicial com-
plex M . However it is not an n-boundary of K. Indeed the n-dimensional
simplicial complex K has no non-zero (n + 1)-chains, therefore has no non-
zero n-boundaries. Therefore z represents a non-zero homology class [z] of
Hn(K). This homology class generates the homology group Hn(K).

Remark The boundary of a 1-simplex consists of two points. Thus if K
is the simplicial complex representing the boundary of a 1-simplex then
H0(K) ∼= Z⊕ IZ (Corollary 6.9), and Hq(K) = 0 when q > 0.
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