Course 421: Algebraic Topology
Section 7: Homology Calculations

David R. Wilkins
Copyright (¢©) David R. Wilkins 1988-2008

Contents

7 Homology Calculations
7.1 The Homology Groups of an Octohedron . . . . . . . ... ..
7.2 Another Homology Example . . . . . . ... ... ... ... ..
7.3 The Homology Groups of the Boundary of a Simplex . . . . .



7 Homology Calculations

7.1 The Homology Groups of an Octohedron

Let K be the simplicial complex consisting of the triangular faces, edges and
vertices of an octohedron in R? with vertices P;, Py, Py, Py, Ps and Ps, where

Pl:(O?()?l)? P2:(1a070)7 P3:(07170)7

P4:(_17070)7 P5:(Oa_170)7 P6:(0707_1)

This octohedron consists of the four triangular faces P, P, P3, Py P3P, PP, P;
and P, PsP, of the pyramid whose base is the square P, P3P, P; and whose
apex is Pp, together with the four triangular faces Py Py P3, PsP3Py, PsPyPs
and PsP5P, of the pyramid whose base is P, P3P, P5 and whose apex is Fg.

A typical 2-chain ¢y of K is a linear combination, with integer coeffi-
cients, of eight oriented 2-simplices that represent the triangular faces of the
octohedron. Thus we can write

8
szznﬂi,
i=1
where n; € Z fort=1,2,...,8 and
o1 =(P1, P, P3), 09=(P,P3,Py), o03=(P,P,F;),

o4 =(P1,P5, P5), 05= (P, P3, ), 0¢=(Fs, Py Ps),
0'7:<P67P57P4>7 08:<P67P27P5>-

(The orientation on each of these triangles has been chosen such that the
vertices of the triangle are listed in anticlockwise order when viewed from a
point close to the centre of triangle that lies outside the octohedron.)
Similarly a typical 1-chain ¢; of K is a linear combination, with integer
coefficients, of twelve 1-simplices that represent the edges of the octohedron.

Thus we can write
12
C1 = E m;pyg,
j=1

where m; € Z for j =1,2,...,12 and
P1 = <P1aP2>> P2 = <P1aP3>7 pP3 = <P1aP4>7 P4 = <P1,P5>7

P5=<P2,P3>, 06=<P3,P4>, p7=<P4,P5>, 08=<P5,P2>,

73



po = (P2, Fs), pio= (P, Fs), pu=(Ps,Fs), pr2=(P5Fs),
A typical O-chain ¢y takes the form

Co = ZT}C<P]€>,

k=1

where r, € Z for k =1,2,...,6.
We now calculate the boundary of a 2-chain. It follows from the definition
of the boundary homomorphism 0, that

Oa01 = O2(P1, Py, P3) = (PaPs) — (PLPs) + (PyP2) = ps — pa + p1.

Similarly
820'2 - 82<P17P37P4>:p6_p3+p27
820'3 = 62<P17P47P5>:p7_p4+p35
Ohoy = Oo(Pr, Ps, P2) = ps — p1 + pa,
Os05 = 09(Fs, P3, Po) = —p5 + pg — pro,
Os06 = 02(Fs, Py, P3) = —ps + p1o — p11,
Osor = 09(Fs, P5, Py) = —p7 + p11 — 12,
Osos = 09(Fs, P, P5) = —ps + p12 — po.

Thus

8202 = 82 (7110'1 + NoO9 + Nn3os -+ N404 -+ N505 —+ NgOg -+ Nn7o7 -+ TlgO'g)

= n10x01 + NoOa0g + N3da03 + NyOa0y
+ 150205 + Ne0206 + N70z07 + ng0a0sg
= (n1 —ng)pr + (n2 — m)p2 + (n3 — n2)p3 + (14 — n3) pa
+ (n1 — ns)ps + (n2 — ne)ps + (N3 — n7)pr + (na — ng)ps
+ (ns — ng)po + (16 — n5)p10 + (7 — ng) p11 + (N8 — n7) P12

It follows that dsco = 0 if and only if
Ny =MNg = N3 =Ny = Ny = Ng = N7 = Ng.

Therefore

8
Zy(K) =ker0y = {nu :n € Z}, where u = Zai.

i=1
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Now C3(K) = 0, and thus By(K) = 0 (where 0 here denotes the zero group),
since the complex K has no 3-simplices. Therefore Hy(K) = Zy(K) = Z.

Next we calculate the boundary of a 1-chain. It follows from the definition
of the boundary homomorphism 0; that

12
e = O (ijpj)
j=1

= ma((Py) — (P) +ma(Ps) — (P1))

+ma((Py) — (1)) + ma((B5) — (1))
+ms((Ps) — () + me((P1) — (P3))
+m7((Fs) — (Pa)) + ms((P2) — (P5))
+ mgo((Fs) — (P2)) + mio({Fs) — (F3))

(P
+ ma((Fs) — (Pa)) + ma2((Fs) — (F5))
= —(my 4+ mo+mg+my)(P) + (mqg —ms +mg — mg)(Ps)
+ (mg +ms — me — mao)(Ps) + (mg + me — m7 — my)(Fy)
) +

+ (TTL4 + my —mg — m12)<P5 (mg -+ mio +mq + m12)<P6)

It follows that the 1-chain ¢; is a 1-cycle if and only if
m1+m2+m3+m4:0, ml—m5+mg—m9:0,

mg +ms —mg —myg =0, mz+meg—mz —my =0,
m4+m7—m8—m12:0 and m9+m10+m11+m12:0.

On examining the structure of these equations, we see that, when ¢; is a 1-
cycle, it is possible to eliminate five of the integer quantities m;, expressing
them in terms of the remaining quantities. For example, we can eliminate
my, Mg, M7, mg and mys, expressing these quantities in terms of my, mo, ms,
ms, Mg Mmyo and my; by means of the equations

my = —M1 — My — M3,

me = Mgy — Mo+ Ms,

my = Mg+ M3 — M — M1 + Ms,
mg = —MmMy + Mg + ms,

mi2 = —Mg — My — M1

It follows that

ZQ(K) = {m121 + Moz9 + M3z3 + M52y + MgZg + M1g210 + mnzn},
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where

21 = p1— ps— pg = —0hoy,

Zy = pa— pa+ps+ pr =002+ 03),

23 = p3— pa+pr = 0hos,

zs = ps+pe+ pr+ps = Oo(01 + 09 + 03+ 04),

z9g = ps+ pg— pr2 = —0h0s,

zi0 = —pe — p7+ pro — p12 = (o + 07),

zi1 = pu— pr— pr2 = 0r07.
From these equations, we see that the generators z1, 29, 23, 25, 29, 210 and 213
of the group Z;(K) of 1-cycles all belong to the group By (K) of 1-boundaries.

It follows that Z;(K) = By(K), and therefore H;(K) = 0.
In order to determine Hy(K) it suffices to note that the 0-chains

() = (P1), (Bs) —(P), (Py)—(P), (B5)—(P) and (Fs)— ()

are O-boundaries. Indeed
(P2) = (P1) = 0ip1, (Ps) — (P1) = Oipa,  (Pa) — (Pr) = Oips,

(P5) = (P1) = 0ips and  (Fs) — (P1) = 01(p1 + po).
Therefore ) .
Zrk<Pk'> — (ZTk> <P1> - Bo(K)

for all integers 11, 79, 73, 74, r5 and rg. It follows that By(K) = kere, where
e:Co(K) — Z is the homomorphism defined such that

€ (ZT‘HPQ) = ZT‘k

for all integers r, (k = 1,2,...,6). Now Zy(K) = Cy(K) since the homo-
morphism 0y: Cy(K) — C_1(K) is the zero homomorphism mapping Cy(K)
to the zero group. It follows that

Ho(K) = Co(K)/Bo(K> = Oo(K)/keI'€ = 7.

(Here we are using the result that the image of a homomorphism is isomorphic
to the quotient of the domain of the homomorphism by the kernel of the
homomorphism.)
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We have thus shown that
Hy(K)=7Z, H{(K)=0, HyK)=Z.

One can show that Z;(K) = B;(K) by employing an alternative approach
12

to that used above. An element z of Z; (K) is of the form z = ) m;p;, where
j=1

mi +mg +m3+myg =0, my—ms+mg—mg=0,

mo +ms —mg —myg =0,  mg+meg —mg —my =0,
My +my—mg —mpp =0 and mg -+ mqg+ mq + ma = 0.
The 1-cycle z belongs to the group B;(K) if and only if there exists some

2-chain ¢y such that z = Oycy. It follows that z € By(K) if and only if there
exist integers ni, ng, ..., ng such that

mp =mny —Nyg, Ma2="MNg—"N1, M3=MnN3— N2, My ="y — N3,

ms =mn1 —nNs, Mg="Ng—MNg, M7=mnN3—N7, Mg="N4g—Ng,
mg =nN5 —Ng, Mip="Neg — N5, Mi1 = N7 —Ng, M1z ="Ng — N7.

The integers nq,no, ..., ng solving the above equations are not uniquely de-
termined, since, given one collection of integers nq, ns, ..., ng satisfying these
equations, another solution can be obtained by adding some fixed integer to
each of nq,nq, ..., ng. It follows from this that if there exists some collection
ni,ne,...,ng of integers that solves the above equations, then there exists a
solution which satisfies the extra condition ny = 0. We then find that

ny =0, na=my, nNz3=mgp+mg, ng=-—"m,

ng = —Ms, Ng = Mg — Mg, N7 =Mo+M3— Mz, Ng=—M3 —Msg.

On substituting ni, noe, . .., ng into the relevant equations, and making use of
the constraints on the values of mq, ma, ..., mqo, we find that we do indeed
have a solution to the equations that express the integers m; in terms of
the integers n;. It follows that every 1-cycle of K is a 1-boundary. Thus
Z1(K) = B1(K), and therefore H;(K) = 0.
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7.2 Another Homology Example

Let P, P, P3, P,, P; and Fs be the vertices of a regular hexagon in the
plane, listed in cyclic order, and let K be simplicial complex consisting of
the triangles P, P, P;, P3P, Ps and P5FP;P;, together with all the edges and
vertices of these triangles. Then

CQ(K) = {anl + NoTo + N3T3 : N1, N9, N3 - Z},

where
T =(PiPyPs), 1= (P3sP,Ps) and 73 = (PsFPsP).
Also
9
Ci1(K) = {ijpj :my; € Z for j = 1,2,...,9} :
j=1
where

p1 = (FsP1), p2=(PiPs), ps=(PaPs), ps=(PsPy), ps=(PiP5),
p6:<P5P6>7 p7:(P5P1>, 08:<P1P3> and P9:<P3P5>,

and

6
CO(K): {Zrk<Pl€> mkEZfOI'k:LQ,,6}

k=1

Also
OoT1 = p3 — ps + p2, OaTo = ps — pg + pa, 02Ty = p1 — p7 + P,
Now

Gg(nlﬁ + NoTo -+ N3T3)

= Ngp1 + nip2 +N1p3 + Neps + Neps + Ngpe — NgpP7 — N1Pg — N2 Pg.

The simplicial complex K has no non-zero 2-cycles, and therefore Z5(K) = 0.
It follows that Ho(K) = 0.
Let

9
cl = Z m;p;.
j=1
Then

et = (my—mg+mz —mg)(Pr) + (mg — m3)(P2)
-+ (m3 — My + mg — mg)<P3> + (m4 — m5)<P4>
+ (m5 — Mg +m9 — m7)(P5) + (m(; — m1)<P6>
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It follows that ¢y is a 1-cycle of K if and only if
Mg =Mmg, My ="Ms, Mg =11

and
mi + my = mg + mg = My + My.

Moreover ¢y is a 1-boundary of K if and only if
Mgy = M3 = —Mg, My =My = —Mg, Mg=1MmM3 = —Mr.
We see from this that not every 1-cycle of K is a 1-boundary of K. Indeed
Z1(K) = {n10sm1 + no0ame 4+ n30a73 + Nz : ny,ng,ng,n € L},

where z = p7 + ps + po. Let 0: Z1(K) — Z be the homomorphism defined
such that
0 (nlﬁgﬁ + n28272 + n38273 + nz) =N

for all ny,ng, nz,n € Z. Now
TllaQTl + ngang + n3827'3 +nz e Bl (K) if and only if n=0.

It follows that By(K) = kerd. Therefore the homomorphism 6 induces an
isomorphism from H;(K) to Z, where Hy(K) = Z;(K)/Bi(K). Indeed
H(K) = {nlz] : n € Z}, where z = p; + ps + po and [z] denotes the
homology class of the 1-cycle z.

It is a straightforward exercise to verify that

6 6
By(K) = {Zrk<Pk> cry € Zfor k=1,2,...,6 and Zrk :0}_
k=1 k=1

It follows from this that Ho(K) = Z. Indeed this result is a consquence of
the fact that the polyhedron |K| of the simplicial complex K is connected.

7.3 The Homology Groups of the Boundary of a Sim-
plex

Proposition 7.1 Let K be the simplicial complex consisting of all the proper
faces of an (n + 1)-dimensional simplex o, where n > 0. Then

Hy(K)=Z, H,K)=Z, Hy/(K)=0 whenq#0,n.
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Proof Let M be the simplicial complex consisting of the (n+1)-dimensional
simplex o, together with all its faces. Then K is a subcomplex of M, and
Cy(K) = Cy(M) when ¢ <n.

It follows from Proposition 6.4 that Hy(M) = Z and H,(M) = 0 when
q > 0. (Here 0 denotes the zero group.) Now Z,(K) = Z,(M) when ¢q < n,
and B,(K) = By(M) when ¢ < n. It follows that H,(K) = H,(M) when
q <n. Thus Hy(K) = Z and H,(K) =0 when 0 < ¢ < n. Also Hy(K) =0
when ¢ > n, since the simplicial complex K is of dimension n. Thus, to
determine the homology of the complex K, it only remains to find H, (K).

Let the (n+1)-dimensional simplex o have vertices v, vy, ..., Vy1. Then

Cri1 (M) ={n{vo,v1,...,Vpy1) : n € Z}.
and therefore B, (M) = {nz : n € Z}, where

z = an“ (<V0,V1, . 7Vn+1>) .

Now H,(M) = 0 (Proposition 6.4). It follows that Z,(M) = B,(M). But
Zn(K) = Z, (M), since C,(K) = C,(M) and the definition of the boundary
homomorphism on C,(K) is consistent with the definition of the boundary
homomorphism on C,(M). Also B,(K) = 0, because the simplicial com-
plex K is of dimension n, and therefore has no non-zero n-boundaries. It
follows that

Ho(K) 22 Zy(K) = Zy(M) = B, (M) = Z.

Indeed H, (K) = {n[z] : n € Z}, where [z] denotes the homology class of the
n-cycle z of K defined above. |}

Remark Note that the n-cycle z is an n-cycle of the simplicial complex K,
since it is a linear combination, with integer coefficients, of oriented n-
simplices of K. The n-cycle z is an n-boundary of the large simplicial com-
plex M. However it is not an n-boundary of K. Indeed the n-dimensional
simplicial complex K has no non-zero (n + 1)-chains, therefore has no non-
zero n-boundaries. Therefore z represents a non-zero homology class [z] of
H,(K). This homology class generates the homology group H, (K).

Remark The boundary of a 1-simplex consists of two points. Thus if K

is the simplicial complex representing the boundary of a 1-simplex then
Hy(K)=7Z® IZ (Corollary 6.9), and H,(K) = 0 when ¢ > 0.
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