6 Simplicial Homology Groups

6.1 The Chain Groups of a Simplicial Complex

Let K be a simplicial complex. For each non-negative integer q, let $\Delta_q(K)$ be the additive group consisting of all formal sums of the form

$$n_1(v^1_0, v^1_1, \ldots, v^1_q) + n_2(v^2_0, v^2_1, \ldots, v^2_q) + \cdots + n_s(v^s_0, v^s_1, \ldots, v^s_q),$$

where n_1, n_2, \ldots, n_s are integers and $v^r_0, v^r_1, \ldots, v^r_q$ are (not necessarily distinct) vertices of K that span a simplex of K for $r = 1, 2, \ldots, s$. (In more formal language, the group $\Delta_q(K)$ is the free Abelian group generated by the set of all $(q+1)$-tuples of the form (v_0, v_1, \ldots, v_q), where v_0, v_1, \ldots, v_q span a simplex of K.)

We recall some basic facts concerning permutations. A permutation of a set S is a bijection mapping S onto itself. The set of all permutations of some set S is a group; the group multiplication corresponds to composition of permutations. A transposition is a permutation of a set S which interchanges two elements of S, leaving the remaining elements of the set fixed. If S is finite and has more than one element then any permutation of S can be expressed as a product of transpositions. In particular any permutation of the set $\{0, 1, \ldots, q\}$ can be expressed as a product of transpositions $(j-1, j)$ that interchange $j-1$ and j for some j.

Associated to any permutation π of a finite set S is a number ϵ_π, known as the parity or signature of the permutation, which can take on the values ± 1. If π can be expressed as the product of an even number of transpositions, then $\epsilon_\pi = +1$; if π can be expressed as the product of an odd number of transpositions then $\epsilon_\pi = -1$. The function $\pi \mapsto \epsilon_\pi$ is a homomorphism from the group of permutations of a finite set S to the multiplicative group $\{+1, -1\}$ (i.e., $\epsilon_{\pi \rho} = \epsilon_\pi \epsilon_\rho$ for all permutations π and ρ of the set S). Note in particular that the parity of any transposition is -1.

Definition The qth chain group $C_q(K)$ of the simplicial complex K is defined to be the quotient group $\Delta_q(K)/\Delta_0^q(K)$, where $\Delta_0^q(K)$ is the subgroup of $\Delta_q(K)$ generated by elements of the form (v_0, v_1, \ldots, v_q) where v_0, v_1, \ldots, v_q are not all distinct, and by elements of the form

$$(v_{\pi(0)}, v_{\pi(1)}, \ldots, v_{\pi(q)}) - \epsilon_\pi(v_0, v_1, \ldots, v_q)$$

where π is some permutation of $\{0, 1, \ldots, q\}$ with parity ϵ_π. For convenience, we define $C_q(K) = \{0\}$ when $q < 0$ or $q > \dim K$, where $\dim K$ is the dimension of the simplicial complex K. An element of the chain group $C_q(K)$ is referred to as q-chain of the simplicial complex K.

63
We denote by \(\langle v_0, v_1, \ldots, v_q \rangle \) the element \(\Delta^0_q(K) + \langle v_0, v_1, \ldots, v_q \rangle \) of \(C_q(K) \) corresponding to \((v_0, v_1, \ldots, v_q) \). The following results follow immediately from the definition of \(C_q(K) \).

Lemma 6.1 Let \(v_0, v_1, \ldots, v_q \) be vertices of a simplicial complex \(K \) that span a simplex of \(K \). Then

- \(\langle v_0, v_1, \ldots, v_q \rangle = 0 \) if \(v_0, v_1, \ldots, v_q \) are not all distinct,
- \(\langle v_{\pi(0)}, v_{\pi(1)}, \ldots, v_{\pi(q)} \rangle = \epsilon_\pi \langle v_0, v_1, \ldots, v_q \rangle \) for any permutation \(\pi \) of the set \(\{0, 1, \ldots, q\} \).

Example If \(v_0 \) and \(v_1 \) are the endpoints of some line segment then

\[
\langle v_0, v_1 \rangle = -\langle v_1, v_0 \rangle.
\]

If \(v_0, v_1 \) and \(v_2 \) are the vertices of a triangle in some Euclidean space then

\[
\begin{align*}
\langle v_0, v_1, v_2 \rangle &= \langle v_1, v_2, v_0 \rangle = \langle v_2, v_0, v_1 \rangle = -\langle v_2, v_1, v_0 \rangle \\
&= -\langle v_0, v_2, v_1 \rangle = -\langle v_1, v_0, v_2 \rangle.
\end{align*}
\]

Definition An *oriented q-simplex* is an element of the chain group \(C_q(K) \) of the form \(\pm \langle v_0, v_1, \ldots, v_q \rangle \), where \(v_0, v_1, \ldots, v_q \) are distinct and span a simplex of \(K \).

An oriented simplex of \(K \) can be thought of as consisting of a simplex of \(K \) (namely the simplex spanned by the prescribed vertices), together with one of two possible ‘orientations’ on that simplex. Any ordering of the vertices determines an orientation of the simplex; any even permutation of the ordering of the vertices preserves the orientation on the simplex, whereas any odd permutation of this ordering reverses orientation.

Any q-chain of a simplicial complex \(K \) can be expressed as a sum of the form

\[
n_1\sigma_1 + n_2\sigma_2 + \cdots + n_s\sigma_s
\]

where \(n_1, n_2, \ldots, n_s \) are integers and \(\sigma_1, \sigma_2, \ldots, \sigma_s \) are oriented q-simplices of \(K \). If we reverse the orientation on one of these simplices \(\sigma_i \) then this reverses the sign of the corresponding coefficient \(n_i \). If \(\sigma_1, \sigma_2, \ldots, \sigma_s \) represent distinct simplices of \(K \) then the coefficients \(n_1, n_2, \ldots, n_s \) are uniquely determined.

Example Let \(v_0, v_1 \) and \(v_2 \) be the vertices of a triangle in some Euclidean space. Let \(K \) be the simplicial complex consisting of this triangle, together
with its edges and vertices. Every 0-chain of \(K \) can be expressed uniquely in the form

\[
 n_0(v_0) + n_1(v_1) + n_2(v_2)
\]

for some \(n_0, n_1, n_2 \in \mathbb{Z} \). Similarly any 1-chain of \(K \) can be expressed uniquely in the form

\[
 m_0(v_1, v_2) + m_1(v_2, v_0) + m_2(v_0, v_1)
\]

for some \(m_0, m_1, m_2 \in \mathbb{Z} \), and any 2-chain of \(K \) can be expressed uniquely as \(n(v_0, v_1, v_2) \) for some integer \(n \).

Lemma 6.2 Let \(K \) be a simplicial complex, and let \(A \) be an additive group. Suppose that, to each \((q + 1)\)-tuple \((v_0, v_1, \ldots, v_q)\) of vertices spanning a simplex of \(K \), there corresponds an element \(\alpha(v_0, v_1, \ldots, v_q) \) of \(A \), where

- \(\alpha(v_0, v_1, \ldots, v_q) = 0 \) unless \(v_0, v_1, \ldots, v_q \) are all distinct,
- \(\alpha(v_0, v_1, \ldots, v_q) \) changes sign on interchanging any two adjacent vertices \(v_j \) with \(v_j \) for all \(j \),
- \(\sum_r n_r(v_0, v_1, \ldots, v_q) \) is well-defined in \(A \).

Then there exists a well-defined homomorphism from \(C_q(K) \) to \(A \) which sends \((v_0, v_1, \ldots, v_q)\) to \(\alpha(v_0, v_1, \ldots, v_q) \) whenever \(v_0, v_1, \ldots, v_q \) span a simplex of \(K \). This homomorphism is uniquely determined.

Proof The given function defined on \((q + 1)\)-tuples of vertices of \(K \) extends to a well-defined homomorphism \(\alpha: \Delta_q(K) \rightarrow A \) given by

\[
 \alpha \left(\sum_{r=1}^s n_r(v_0^r, v_1^r, \ldots, v_q^r) \right) = \sum_{r=1}^s n_r \alpha(v_0^r, v_1^r, \ldots, v_q^r)
\]

for all \(\sum_{r=1}^s n_r(v_0^r, v_1^r, \ldots, v_q^r) \in \Delta_q(K) \). Moreover \((v_0, v_1, \ldots, v_q) \in \ker \alpha \) unless \(v_0, v_1, \ldots, v_q \) are all distinct. Also

\[
 (v_{\pi(0)}, v_{\pi(1)}, \ldots, v_{\pi(q)}) - \varepsilon_\pi(v_0, v_1, \ldots, v_q) \in \ker \alpha
\]

for all permutations \(\pi \) of \(\{0, 1, \ldots, q\} \), since the permutation \(\pi \) can be expressed as a product of transpositions \((j - 1, j) \) that interchange \(j - 1 \) with \(j \) for some \(j \) and leave the rest of the set fixed, and the parity \(\varepsilon_\pi \) of \(\pi \) is given by \(\varepsilon_\pi = +1 \) when the number of such transpositions is even, and by \(\varepsilon_\pi = -1 \) when the number of such transpositions is odd. Thus the generators of \(\Delta_0^0(K) \) are contained in \(\ker \alpha \), and hence \(\Delta_0^0(K) \subset \ker \alpha \). The required homomorphism \(\tilde{\alpha}: C_q(K) \rightarrow A \) is then defined by the formula

\[
 \tilde{\alpha} \left(\sum_{r=1}^s n_r(v_0^r, v_1^r, \ldots, v_q^r) \right) = \sum_{r=1}^s n_r \alpha(v_0^r, v_1^r, \ldots, v_q^r).
\]
6.2 Boundary Homomorphisms

Let K be a simplicial complex. We introduce below boundary homomorphisms $\partial_q: C_q(K) \rightarrow C_{q-1}(K)$ between the chain groups of K. If σ is an oriented q-simplex of K then $\partial_q(\sigma)$ is a $(q-1)$-chain which is a formal sum of the $(q-1)$-faces of σ, each with an orientation determined by the orientation of σ.

Let σ be a q-simplex with vertices v_0, v_1, \ldots, v_q. For each integer j between 0 and q we denote by $\langle v_0, \ldots, \hat{v}_j, \ldots, v_q \rangle$ the oriented $(q-1)$-face
\[
\langle v_0, \ldots, v_{j-1}, v_{j+1}, \ldots, v_q \rangle
\]
of the simplex σ obtained on omitting v_j from the set of vertices of σ. In particular
\[
\langle \hat{v}_0, v_1, \ldots, v_q \rangle \equiv \langle v_1, \ldots, v_q \rangle, \quad \langle v_0, \ldots, v_{q-1}, \hat{v}_q \rangle \equiv \langle v_0, \ldots, v_{q-1} \rangle.
\]
Similarly if j and k are integers between 0 and q, where $j < k$, we denote by
\[
\langle v_0, \ldots, \hat{v}_j, \ldots, \hat{v}_k, \ldots, v_q \rangle
\]
the oriented $(q-2)$-face $\langle v_0, \ldots, v_{j-1}, v_{j+1}, \ldots, v_{k-1}, v_{k+1}, \ldots, v_q \rangle$ of the simplex σ obtained on omitting v_j and v_k from the set of vertices of σ.

We now define a ‘boundary homomorphism’ $\partial_q: C_q(K) \rightarrow C_{q-1}(K)$ for each integer q. Define $\partial_q = 0$ if $q \leq 0$ or $q > \dim K$. (In this case one or other of the groups $C_q(K)$ and $C_{q-1}(K)$ is trivial.) Suppose then that $0 < q \leq \dim K$. Given vertices v_0, v_1, \ldots, v_q spanning a simplex of K, let
\[
\alpha(v_0, v_1, \ldots, v_q) = \sum_{j=0}^{q} (-1)^j \langle v_0, \ldots, \hat{v}_j, \ldots, v_q \rangle.
\]
Inspection of this formula shows that $\alpha(v_0, v_1, \ldots, v_q)$ changes sign whenever two adjacent vertices v_{i-1} and v_i are interchanged.

Suppose that $v_j = v_k$ for some j and k satisfying $j < k$. Then
\[
\alpha(v_0, v_1, \ldots, v_q) = (-1)^j \langle v_0, \ldots, \hat{v}_j, \ldots, v_q \rangle + (-1)^k \langle v_0, \ldots, \hat{v}_k, \ldots, v_q \rangle,
\]
since the remaining terms in the expression defining $\alpha(v_0, v_1, \ldots, v_q)$ contain both v_j and v_k. However $(v_0, \ldots, \hat{v}_k, \ldots, v_q)$ can be transformed to $(v_0, \ldots, \hat{v}_j, \ldots, v_q)$ by making $k-j-1$ transpositions which interchange v_j successively with the vertices $v_{j+1}, v_{j+2}, \ldots, v_{k-1}$. Therefore
\[
\langle v_0, \ldots, \hat{v}_k, \ldots, v_q \rangle = (-1)^{k-j-1} \langle v_0, \ldots, \hat{v}_j, \ldots, v_q \rangle.
\]
Thus \(\alpha(v_0, v_1, \ldots, v_q) = 0 \) unless \(v_0, v_1, \ldots, v_q \) are all distinct. It now follows immediately from Lemma 6.2 that there is a well-defined homomorphism \(\partial_q: C_q(K) \rightarrow C_{q-1}(K) \), characterized by the property that

\[
\partial_q (\langle v_0, v_1, \ldots, v_q \rangle) = \sum_{j=0}^{q} (-1)^j \langle v_0, \ldots, \hat{v}_j, \ldots, v_q \rangle
\]

whenever \(v_0, v_1, \ldots, v_q \) span a simplex of \(K \).

Lemma 6.3 \(\partial_{q-1} \circ \partial_q = 0 \) for all integers \(q \).

Proof The result is trivial if \(q < 2 \), since in this case \(\partial_{q-1} = 0 \). Suppose that \(q \geq 2 \). Let \(v_0, v_1, \ldots, v_q \) be vertices spanning a simplex of \(K \). Then

\[
\partial_{q-1} \partial_q (\langle v_0, v_1, \ldots, v_q \rangle) = \sum_{j=0}^{q} (-1)^j \partial_{q-1} (\langle v_0, \ldots, \hat{v}_j, \ldots, v_q \rangle)
\]

\[
= \sum_{j=0}^{q} \sum_{k=0}^{j-1} (-1)^{j+k} \langle v_0, \ldots, \hat{v}_k, \ldots, v_j, \ldots, v_q \rangle
\]

\[
+ \sum_{j=0}^{q} \sum_{k=j+1}^{q} (-1)^{j+k-1} \langle v_0, \ldots, \hat{v}_j, \ldots, \hat{v}_k, \ldots, v_q \rangle
\]

\[
= 0
\]

(since each term in this summation over \(j \) and \(k \) cancels with the corresponding term with \(j \) and \(k \) interchanged). The result now follows from the fact that the homomorphism \(\partial_{q-1} \circ \partial_q \) is determined by its values on all oriented \(q \)-simplices of \(K \). \(\Box \)

6.3 The Homology Groups of a Simplicial Complex

Let \(K \) be a simplicial complex. A \(q \)-chain \(z \) is said to be a \(q \)-cycle if \(\partial_q z = 0 \). A \(q \)-chain \(b \) is said to be a \(q \)-boundary if \(b = \partial_{q+1} c' \) for some \((q+1) \)-chain \(c' \). The group of \(q \)-cycles of \(K \) is denoted by \(Z_q(K) \), and the group of \(q \)-boundaries of \(K \) is denoted by \(B_q(K) \). Thus \(Z_q(K) \) is the kernel of the boundary homomorphism \(\partial_q: C_q(K) \rightarrow C_{q-1}(K) \), and \(B_q(K) \) is the image of the boundary homomorphism \(\partial_{q+1}: C_{q+1}(K) \rightarrow C_q(K) \). However \(\partial_q \circ \partial_{q+1} = 0 \), by Lemma 6.3. Therefore \(B_q(K) \subset Z_q(K) \). But these groups are subgroups of the Abelian group \(C_q(K) \). We can therefore form the quotient group \(H_q(K) \), where \(H_q(K) = Z_q(K) / B_q(K) \). The group \(H_q(K) \) is referred to as the \(q \)th homology group of the simplicial complex \(K \). Note that \(H_q(K) = 0 \) if \(q < 0 \).
or \(q > \dim K \) (since \(Z_q(K) = 0 \) and \(B_q(K) = 0 \) in these cases). It can be shown that the homology groups of a simplicial complex are topological invariants of the polyhedron of that complex.

The element \([z] \in H_q(K)\) of the homology group \(H_q(K)\) determined by \(z \in Z_q(K) \) is referred to as the homology class of the \(q\)-cycle \(z \). Note that \([z_1 + z_2] = [z_1] + [z_2]\) for all \(z_1, z_2 \in Z_q(K)\), and \([z_1] = [z_2]\) if and only if \(z_1 - z_2 = \partial_{q+1} c\) for some \((q + 1)\)-chain \(c\).

Proposition 6.4 Let \(K \) be a simplicial complex. Suppose that there exists a vertex \(w \) of \(K \) with the following property:

- if vertices \(v_0, v_1, \ldots, v_q \) span a simplex of \(K \) then so do \(w, v_0, v_1, \ldots, v_q \).

Then \(H_0(K) \cong \mathbb{Z} \), and \(H_q(K) \) is the zero group for all \(q > 0 \).

Proof Using Lemma 6.2, we see that there is a well-defined homomorphism \(D_q: C_q(K) \to C_{q+1}(K)\) characterized by the property that

\[
D_q(\langle v_0, v_1, \ldots, v_q \rangle) = \langle w, v_0, v_1, \ldots, v_q \rangle
\]

whenever \(v_0, v_1, \ldots, v_q \) span a simplex of \(K \). Now \(\partial_1(D_0(v)) = v - w \) for all vertices \(v \) of \(K \). It follows that

\[
\sum_{r=1}^{s} n_r \langle v_r \rangle - \left(\sum_{r=1}^{s} n_r \right) \langle w \rangle = \sum_{r=1}^{s} n_r (\langle v_r \rangle - \langle w \rangle) \in B_0(K)
\]

for all \(\sum_{r=1}^{s} n_r \langle v_r \rangle \in C_0(K) \). But \(Z_0(K) = C_0(K) \) (since \(\partial_0 = 0 \) by definition), and thus \(H_0(K) = C_0(K) / B_0(K) \). It follows that there is a well-defined surjective homomorphism from \(H_0(K) \) to \(\mathbb{Z} \) induced by the homomorphism from \(C_0(K) \) to \(\mathbb{Z} \) that sends \(\sum_{r=1}^{s} n_r \langle v_r \rangle \in C_0(K) \) to \(\sum_{r=1}^{s} n_r \). Moreover this induced homomorphism is an isomorphism from \(H_0(K) \) to \(\mathbb{Z} \).

Now let \(q > 0 \). Then

\[
\partial_{q+1}(D_q(\langle v_0, v_1, \ldots, v_q \rangle)) = \partial_{q+1}(\langle w, v_0, v_1, \ldots, v_q \rangle)
\]

\[
= \langle v_0, v_1, \ldots, v_q \rangle + \sum_{j=0}^{q} (-1)^{j+1} \langle w, v_0, \ldots, \hat{v}_j, \ldots, v_q \rangle
\]

\[
= \langle v_0, v_1, \ldots, v_q \rangle - D_{q-1}(\partial_q(\langle v_0, v_1, \ldots, v_q \rangle))
\]

68
whenever \(v_0, v_1, \ldots, v_q \) span a simplex of \(K \). Thus
\[
\partial_{q+1}(D_q(c)) + D_{q-1}(\partial_q(c)) = c
\]
for all \(c \in C_q(K) \). In particular \(z = \partial_{q+1}(D_q(z)) \) for all \(z \in Z_q(K) \), and hence \(Z_q(K) = B_q(K) \). It follows that \(H_q(K) \) is the zero group for all \(q > 0 \), as required.

Example The hypotheses of the proposition are satisfied for the complex \(K_\sigma \) consisting of a simplex \(\sigma \) together with all of its faces: we can choose \(w \) to be any vertex of the simplex \(\sigma \).

6.4 Simplicial Maps and Induced Homomorphisms

Any simplicial map \(\varphi: K \to L \) between simplicial complexes \(K \) and \(L \) induces well-defined homomorphisms \(\varphi_q: C_q(K) \to C_q(L) \) of chain groups, where
\[
\varphi_q([v_0, v_1, \ldots, v_q]) = [\varphi(v_0), \varphi(v_1), \ldots, \varphi(v_q)]
\]
whenever \(v_0, v_1, \ldots, v_q \) span a simplex of \(K \). (The existence of these induced homomorphisms follows from a straightforward application of Lemma 6.2.) Note that \(\varphi_q([v_0, v_1, \ldots, v_q]) = 0 \) unless \(\varphi(v_0), \varphi(v_1), \ldots, \varphi(v_q) \) are all distinct.

Now \(\varphi_{q-1} \circ \partial_q = \partial_q \circ \varphi_q \) for each integer \(q \). Therefore \(\varphi_q(Z_q(K)) \subset Z_q(L) \) and \(\varphi_q(B_q(K)) \subset B_q(L) \) for all integers \(q \). It follows that any simplicial map \(\varphi: K \to L \) induces well-defined homomorphisms \(\varphi_*: H_q(K) \to H_q(L) \) of homology groups, where \(\varphi_*([z]) = [\varphi_q(z)] \) for all \(q \)-cycles \(z \in Z_q(K) \). It is a trivial exercise to verify that if \(K, L \) and \(M \) are simplicial complexes and if \(\varphi: K \to L \) and \(\psi: L \to M \) are simplicial maps then the induced homomorphisms of homology groups satisfy \((\psi \circ \varphi)_* = \psi_* \circ \varphi_* \).

6.5 Connectedness and \(H_0(K) \)

Lemma 6.5 Let \(K \) be a simplicial complex. Then \(K \) can be partitioned into pairwise disjoint subcomplexes \(K_1, K_2, \ldots, K_r \) whose polyhedra are the connected components of the polyhedron \(|K| \) of \(K \).

Proof Let \(X_1, X_2, \ldots, X_r \) be the connected components of the polyhedron of \(K \), and, for each \(j \), let \(K_j \) be the collection of all simplices \(\sigma \) of \(K \) for which \(\sigma \subset X_j \). If a simplex belongs to \(K_j \) for all \(j \) then so do all its faces. Therefore \(K_1, K_2, \ldots, K_r \) are subcomplexes of \(K \). These subcomplexes are pairwise disjoint since the connected components \(X_1, X_2, \ldots, X_r \) of \(|K| \) are
expressed uniquely as a sum of the form $c = \sum H^r$, since $r = K$, pairwise disjoint. Moreover, if $\sigma \in K$ then $\sigma \subset X_j$ for some j, since σ is a connected subset of $|K|$, and any connected subset of a topological space is contained in some connected component. But then $\sigma \in K_j$. It follows that $K = K_1 \cup K_2 \cup \cdots \cup K_r$ and $|K| = |K_1| \cup |K_2| \cup \cdots \cup |K_r|$, as required.

The direct sum $A_1 \oplus A_2 \oplus \cdots \oplus A_r$ of additive Abelian groups A_1, A_2, \ldots, A_r is defined to be the additive group consisting of all r-tuples (a_1, a_2, \ldots, a_r) with $a_i \in A_i$ for $i = 1, 2, \ldots, r$, where

$$(a_1, a_2, \ldots, a_r) + (b_1, b_2, \ldots, b_r) \equiv (a_1 + b_1, a_2 + b_2, \ldots, a_r + b_r).$$

Lemma 6.6 Let K be a simplicial complex. Suppose that $K = K_1 \cup K_2 \cup \cdots \cup K_r$, where K_1, K_2, \ldots, K_r are pairwise disjoint. Then

$$H_q(K) \cong H_q(K_1) \oplus H_q(K_2) \oplus \cdots \oplus H_q(K_r)$$

for all integers q.

Proof We may restrict our attention to the case when $0 \leq q \leq \dim K$, since $H_q(K) = \{0\}$ if $q < 0$ or $q > \dim K$. Now any q-chain c of K can be expressed uniquely as a sum of the form $c = c_1 + c_2 + \cdots + c_r$, where c_j is a q-chain of K_j for $j = 1, 2, \ldots, r$. It follows that

$$C_q(K) \cong C_q(K_1) \oplus C_q(K_2) \oplus \cdots \oplus C_q(K_r).$$

Now let z be a q-cycle of K (i.e., $z \in C_q(K)$ satisfies $\partial_q(z) = 0$). We can express z uniquely in the form $z = z_1 + z_2 + \cdots + z_r$, where z_j is a q-chain of K_j for $j = 1, 2, \ldots, r$. Now

$$0 = \partial_q(z) = \partial_q(z_1) + \partial_q(z_2) + \cdots + \partial_q(z_r),$$

and $\partial_q(z_j)$ is a $(q-1)$-chain of K_j for $j = 1, 2, \ldots, r$. It follows that $\partial_q(z_j) = 0$ for $j = 1, 2, \ldots, r$. Hence each z_j is a q-cycle of K_j, and thus

$$Z_q(K) \cong Z_q(K_1) \oplus Z_q(K_2) \oplus \cdots \oplus Z_q(K_r).$$

Now let b be a q-boundary of K. Then $b = \partial_q(c)$ for some $(q + 1)$-chain c of K. Moreover $c = c_1 + c_2 + \cdots + c_r$, where $c_j \in C_{q+1}(K_j)$. Thus $b = b_1 + b_2 + \cdots + b_r$, where $b_j \in B_q(K_j)$ is given by $b_j = \partial_{q+1} c_j$ for $j = 1, 2, \ldots, r$. We deduce that

$$B_q(K) \cong B_q(K_1) \oplus B_q(K_2) \oplus \cdots \oplus B_q(K_r).$$

It follows from these observations that there is a well-defined isomorphism

$$\nu: H_q(K_1) \oplus H_q(K_2) \oplus \cdots \oplus H_q(K_r) \rightarrow H_q(K)$$

which maps $([z_1], [z_2], \ldots, [z_r])$ to $[z_1 + z_2 + \cdots + z_r]$, where $[z_j]$ denotes the homology class of a q-cycle z_j of K_j for $j = 1, 2, \ldots, r$.

70
Let K be a simplicial complex, and let y and z be vertices of K. We say that y and z can be joined by an edge path if there exists a sequence \(v_0, v_1, \ldots, v_m \) of vertices of K with $v_0 = y$ and $v_m = z$ such that the line segment with endpoints v_{j-1} and v_j is an edge belonging to K for $j = 1, 2, \ldots, m$.

Lemma 6.7 The polyhedron $|K|$ of a simplicial complex K is a connected topological space if and only if any two vertices of K can be joined by an edge path.

Proof It is easy to verify that if any two vertices of K can be joined by an edge path then $|K|$ is path-connected and is thus connected. (Indeed any two points of $|K|$ can be joined by a path made up of a finite number of straight line segments.)

We must show that if $|K|$ is connected then any two vertices of K can be joined by an edge path. Choose a vertex v_0 of K. It suffices to verify that every vertex of K can be joined to v_0 by an edge path.

Let K_0 be the collection of all of the simplices of K having the property that one (and hence all) of the vertices of that simplex can be joined to v_0 by an edge path. If σ is a simplex belonging to K_0 then every vertex of σ can be joined to v_0 by an edge path, and therefore every face of σ belongs to K_0. Thus K_0 is a subcomplex of K. Clearly the collection K_1 of all simplices of K which do not belong to K_0 is also a subcomplex of K. Thus $K = K_0 \cup K_1$, where $K_0 \cap K_1 = \emptyset$, and hence $|K| = |K_0| \cup |K_1|$, where $|K_0| \cap |K_1| = \emptyset$. But the polyhedra $|K_0|$ and $|K_1|$ of K_0 and K_1 are closed subsets of $|K|$. It follows from the connectedness of $|K|$ that either $|K_0| = \emptyset$ or $|K_1| = \emptyset$. But $v_0 \in K_0$. Thus $K_1 = \emptyset$ and $K_0 = K$, showing that every vertex of K can be joined to v_0 by an edge path, as required.

Theorem 6.8 Let K be a simplicial complex. Suppose that the polyhedron $|K|$ of K is connected. Then $H_0(K) \cong \mathbb{Z}$.

Proof Let u_1, u_2, \ldots, u_r be the vertices of the simplicial complex K. Every 0-chain of K can be expressed uniquely as a formal sum of the form

$$n_1\langle u_1 \rangle + n_2\langle u_2 \rangle + \cdots + n_r\langle u_r \rangle$$

for some integers n_1, n_2, \ldots, n_r. It follows that there is a well-defined homomorphism $\varepsilon : C_0(K) \to \mathbb{Z}$ defined by

$$\varepsilon \left(n_1\langle u_1 \rangle + n_2\langle u_2 \rangle + \cdots + n_r\langle u_r \rangle \right) = n_1 + n_2 + \cdots + n_r.$$
Now \(\varepsilon(\partial_1(\langle y,z \rangle)) = \varepsilon(\langle z \rangle - \langle y \rangle) = 0 \) whenever \(y \) and \(z \) are endpoints of an edge of \(K \). It follows that \(\varepsilon \circ \partial_1 = 0 \), and hence \(B_0(K) \subset \ker \varepsilon \).

Let \(v_0, v_1, \ldots, v_m \) be vertices of \(K \) determining an edge path. Then
\[
\langle v_m \rangle - \langle v_0 \rangle = \partial_1 \left(\sum_{j=1}^{m} \langle v_{j-1}, v_j \rangle \right) \in B_0(K).
\]

Now \(|K| \) is connected, and therefore any pair of vertices of \(K \) can be joined by an edge path (Lemma 6.7). We deduce that \(\langle z \rangle - \langle y \rangle \in B_0(K) \) for all vertices \(y \) and \(z \) of \(K \). Thus if \(c \in \ker \varepsilon \), where \(c = \sum_{j=1}^{r} n_j \langle u_j \rangle \), then \(\sum_{j=1}^{r} n_j = 0 \), and hence \(c = \sum_{j=2}^{r} n_j (\langle u_j \rangle - \langle u_1 \rangle) \). But \(\langle u_j \rangle - \langle u_1 \rangle \in B_0(K) \). It follows that \(c \in B_0(K) \). We conclude that \(\ker \varepsilon \subset B_0(K) \), and hence \(\ker \varepsilon = B_0(K) \).

Now the homomorphism \(\varepsilon : C_0(K) \to \mathbb{Z} \) is surjective and its kernel is \(B_0(K) \). Therefore it induces an isomorphism from \(C_0(K)/B_0(K) \) to \(\mathbb{Z} \). However \(\mathbb{Z}_0(K) = C_0(K) \) (since \(\partial_0 = 0 \) by definition). Thus \(H_0(K) \cong C_0(K)/B_0(K) \cong \mathbb{Z} \), as required.

On combining Theorem 6.8 with Lemmas 6.5 and 6.6 we obtain immediately the following result.

Corollary 6.9 Let \(K \) be a simplicial complex. Then
\[
H_0(K) \cong \mathbb{Z} \oplus \mathbb{Z} \oplus \cdots \oplus \mathbb{Z} \quad (r \text{ times}),
\]
where \(r \) is the number of connected components of \(|K| \).