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4 Covering Maps and Discontinuous Group

Actions

4.1 Covering Maps and Induced Homomorphisms of
the Fundamental Group

Proposition 4.1 Let p: X̃ → X be a covering map over a topological space
X, let α: [0, 1]→ X and β: [0, 1]→ X be paths in X, where α(0) = β(0) and
α(1) = β(1), and let α̃: [0, 1]→ X̃ and β̃: [0, 1]→ X̃ be paths in X̃ such that
p ◦ α̃ = α and p ◦ β̃ = β. Suppose that α̃(0) = β̃(0) and that α ' β rel {0, 1}.
Then α̃(1) = β̃(1) and α̃ ' β̃ rel {0, 1}.

Proof Let x0 and x1 be the points of X given by

x0 = α(0) = β(0), x1 = α(1) = β(1).

Now α ' β rel {0, 1}, and therefore there exists a homotopy F : [0, 1]×[0, 1]→
X such that

F (t, 0) = α(t) and F (t, 1) = β(t) for all t ∈ [0, 1],

F (0, τ) = x0 and F (1, τ) = x1 for all τ ∈ [0, 1].

It then follows from the Monodromy Theorem (Theorem 3.5) that there
exists a continuous map G: [0, 1] × [0, 1] → X̃ such that p ◦ G = F and
G(0, 0) = α̃(0). Then p(G(0, τ)) = x0 and p(G(1, τ)) = x1 for all τ ∈ [0, 1].
A straightforward application of Proposition 3.2 shows that any continuous
lift of a constant path must itself be a constant path. Therefore G(0, τ) = x̃0

and G(1, τ) = x̃1 for all τ ∈ [0, 1], where

x̃0 = G(0, 0) = α̃(0), x̃1 = G(1, 0).

However
G(0, 0) = G(0, 1) = x̃0 = α̃(0) = β̃(0),

p(G(t, 0)) = F (t, 0) = α(t) = p(α̃(t))

and
p(G(t, 1)) = F (t, 1) = β(t) = p(β̃(t))

for all t ∈ [0, 1]. Now Proposition 3.2 ensures that the lifts α̃ and β̃ of the
paths α and β are uniquely determined by their starting points. It follows
that G(t, 0) = α̃(t) and G(t, 1) = β̃(t) for all t ∈ [0, 1]. In particular,

α̃(1) = G(0, 1) = x̃1 = G(1, 1) = β̃(1).
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Moreover the map G: [0, 1] × [0, 1] → X̃ is a homotopy between the paths
α̃ and β̃ which satisfies G(0, τ) = x̃0 and G(1, τ) = x̃1 for all τ ∈ [0, 1]. It
follows that α̃ ' β̃ rel {0, 1}, as required.

Corollary 4.2 Let p: X̃ → X be a covering map over a topological space X,
and let x̃0 be a point of X̃. Then the homomorphism

p#: π1(X̃, x̃0)→ π1(X, p(x̃0))

of fundamental groups induced by the covering map p is injective.

Proof Let σ0 and σ1 be loops in X̃ based at the point x̃0, representing ele-
ments [σ0] and [σ1] of π1(X̃, x̃0). Suppose that p#[σ0] = p#[σ1]. Then p◦σ0 '
p ◦ σ1 rel {0, 1}. Also σ0(0) = x̃0 = σ1(0). Therefore σ0 ' σ1 rel {0, 1}, by
Proposition 4.1, and thus [σ0] = [σ1]. We conclude that the homomorphism
p#: π1(X̃, x̃0)→ π1(X, p(x̃0)) is injective.

Corollary 4.3 Let p: X̃ → X be a covering map over a topological space X,
let x̃0 be a point of X̃, and let γ be a loop in X based at p(x̃0). Then
[γ] ∈ p#(π1(X̃, x̃0)) if and only if there exists a loop γ̃ in X̃, based at the
point x̃0, such that p ◦ γ̃ = γ.

Proof If γ = p ◦ γ̃ for some loop γ̃ in X̃ based at x̃0 then [γ] = p#[γ̃], and
therefore [γ] ∈ p#(π1(X̃, x̃0)).

Conversely suppose that [γ] ∈ p#(π1(X̃, x̃0)). We must show that there
exists some loop γ̃ in X̃ based at x̃0 such that γ = p ◦ γ̃. Now there exists
a loop σ in X̃ based at the point x̃0 such that [γ] = p#([σ]) in π1(X, p(x̃0)).
Then γ ' p ◦ σ rel {0, 1}. It follows from the Path Lifting Theorem for
covering maps (Theorem 3.4) that there exists a unique path γ̃: [0, 1] → X̃
in X̃ for which γ̃(0) = x̃0 and p ◦ γ̃ = γ. It then follows from Proposition 4.1
that γ̃(1) = σ(1) and γ̃ ' σ rel {0, 1}. But σ(1) = x̃0. Therefore the path γ̃
is the required loop in X̃ based the point x̃0 which satisfies p ◦ γ̃ = γ.

Corollary 4.4 Let p: X̃ → X be a covering map over a topological space X,
let w0 and w1 be points of X̃ satisfying p(w0) = p(w1), and let α: [0, 1]→ X̃
be a path in X̃ from w0 to w1. Suppose that [p ◦ α] ∈ p#(π1(X̃, w0)). Then
the path α is a loop in X̃, and thus w0 = w1.

Proof It follows from Corollary 4.3 that there exists a loop β based at w0

satisfying p ◦ β = p ◦ α. Then α(0) = β(0). Now Proposition 3.2 ensures
that the lift to X̃ of any path in X is uniquely determined by its starting
point. It follows that α = β. But then the path α must be a loop in X̃, and
therefore w0 = w1, as required.
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Corollary 4.5 Let p: X̃ → X be a covering map over a topological space X.
Let α: [0, 1]→ X and β: [0, 1]→ X be paths in X such that α(0) = β(0) and
α(1) = β(1), and let α.β−1 be the loop in X defined such that

(α.β−1)(t) =

{
α(2t) if 0 ≤ t ≤ 1

2
;

β(2− 2t) if 1
2
≤ t ≤ 1.

Let α̃: [0, 1] → X̃ and β̃: [0, 1] → X̃ be the unique paths in X̃ such that
p ◦ α̃ = α, and p ◦ β̃ = β. Suppose that α̃(0) = β̃(0). Then α̃(1) = β̃(1) if
and only if [α.β−1] ∈ p#(π1(X̃, x̃0)), where x̃0 = α̃(0) = β̃(0).

Proof Suppose that α̃(1) = β̃(1). Then the concatenation α̃.β̃−1 is a loop
in X̃ based at x̃0, and [α.β−1] = p#([α̃.β̃−1]), and therefore [α.β−1] ∈
p#(π1(X̃, x̃0)).

Conversely suppose that α̃ and β̃ are paths in X̃ satisfying p ◦ α̃ = α,
p ◦ β̃ = β and α̃(0) = β̃(0) = x̃0, and that [α.β−1] ∈ p#(π1(X̃, x̃0)). We must
show that α̃(1) = β̃(1). Let γ: [0, 1] → X be the loop based at p(x̃0) given
by γ = α.β−1. Thus

γ(t) =

{
α(2t) if 0 ≤ t ≤ 1

2
;

β(2− 2t) if 1
2
≤ t ≤ 1.

Then [γ] ∈ p#(π1(X̃, x̃0)). It follows from Corollary 4.3 that there exists
a loop γ̃ in X̃ based at x̃0 such that p ◦ γ̃ = γ. Let α̂: [0, 1] → X̃ and
Let β̂: [0, 1] → X̃ be the paths in X̃ defined such that α̂(t) = γ̃(1

2
t) and

β̂(t) = γ̃(1− 1
2
t) for all t ∈ [0, 1]. Then

α̃(0) = α̂(0) = β̃(0) = β̂(0) = x̃0,

p ◦ α̂ = α = p ◦ α̃ and p ◦ β̂ = β = p ◦ β̃. But Proposition 3.2 ensures that
the lift to X̃ of any path in X is uniquely determined by its starting point.
Therefore α̃ = α̂ and β̃ = β̂. It follows that

α̃(1) = α̂(1) = γ̃(1
2
) = β̂(1) = β̃(1),

as required.

Theorem 4.6 Let p: X̃ → X be a covering map over a topological space X.
Suppose that X̃ is path-connected and that X is simply-connected. Then the
covering map p: X̃ → X is a homeomorphism.
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Proof We show that the map p: X̃ → X is a bijection. This map is surjective
(since covering maps are by definition surjective). We must show that it is
injective. Let w0 and w1 be points of X̃ with the property that p(w0) = p(w1).
Then there exists a path α: [0, 1]→ X̃ with α(0) = w0 and α(1) = w1, since
X̃ is path-connected. Then p ◦α is a loop in X based at the point x0, where
x0 = p(w0). However π1(X, p(w0)) is the trivial group, since X is simply-
connected. It follows from Corollary 4.4 that the path α is a loop in X̃
based at w0, and therefore w0 = w1. This shows that the the covering map
p: X̃ → X is injective. Thus the map p: X̃ → X is a bijection, and thus
has a well-defined inverse p−1:X → X̃. It now follows from Lemma 3.1 that
p: X̃ → X is a homeomorphism, as required.

Let p: X̃ → X be a covering map over some topological space X, and
let x0 be some chosen basepoint of X. We shall investigate the dependence
of the subgroup p#(π1(X̃, x̃)) of π1(X, x0) on the choice of the point x̃ in X̃,
where x̃ is chosen such that p(x̃) = x0. We first introduce some concepts
from group theory.

Let G be a group, and let H be a subgroup of G. Given any g ∈ G, let
gHg−1 denote the subset of G defined by

gHg−1 = {g′ ∈ G : g′ = ghg−1 for some h ∈ H}.

It is easy to verify that gHg−1 is a subgroup of G.

Definition Let G be a group, and let H and H ′ be subgroups of G. We say
that H and H ′ are conjugate if and only if there exists some g ∈ G for which
H ′ = gHg−1.

Note that if H ′ = gHg−1 then H = g−1H ′g. The relation of conjugacy is
an equivalence relation on the set of all subgroups of the group G. Moreover
conjugate subgroups of G are isomorphic, since the homomorphism sending
h ∈ H to ghg−1 is an isomorphism from H to gHg−1 whose inverse is the
homorphism sending h′ ∈ gHg−1 to g−1h′g.

A subgroup H of a group G is said to be a normal subgroup of G if
ghg−1 ∈ H for all h ∈ H and g ∈ G. If H is a normal subgroup of G then
gHg−1 ⊂ H for all g ∈ G. But then g−1Hg ⊂ H and H = g(g−1Hg)g−1 for
all g ∈ G, and therefore H ⊂ gHg−1 for all g ∈ G. It follows from this that
a subgroup H of G is a normal subgroup if and only if gHg−1 = H for all
g ∈ G. Thus a subgroup H of G is a normal subgroup if and only if there is
no other subgroup of G conjugate to H.
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Lemma 4.7 Let p: X̃ → X be a covering map over a topological space X.
Let x0 be a point of X, and let w0 and w1 be points of X̃ for which p(w0) =
x0 = p(w1). Let H0 and H1 be the subgroups of π1(X, x0) defined by

H0 = p#(π1(X̃, w0)), H1 = p#(π1(X̃, w1)).

Suppose that the covering space X̃ is path-connected. Then the subgroups
H0 and H1 of π1(X, x0) are conjugate. Moreover if H is any subgroup
of π1(X, x0) which is conjugate to H0 then there exists an element w of X̃
for which p(w) = x and p#(π1(X̃, w)) = H.

Proof Let α: [0, 1]→ X̃ be a path in X̃ for which α(0) = w0 and α(1) = w1.
(Such a path exists since X̃ is path-connected.) Then each loop σ in X̃ based
at w1 determines a corresponding loop α.σ.α−1 in X̃ based at w0, where

(α.σ.α−1)(t) ≡


α(3t) if 0 ≤ t ≤ 1

3
;

σ(3t− 1) if 1
3
≤ t ≤ 2

3
;

α(3− 3t) if 2
3
≤ t ≤ 1.

(This loop traverses the path α from w0 to w1, then continues round the
loop σ, and traverses the path α in the reverse direction in order to return
from w1 to w0.) Let η: [0, 1] → X be the loop in X based at the point x0

given by η = p ◦α, and let ϕ: π1(X, x0)→ π1(X, x0) be the automorphism of
the group π1(X, x0) defined such that ϕ([γ]) = [η][γ][η]−1 for all loops γ in
X based at the point x0. Then p ◦ (α.σ.α−1) = η.(p ◦ σ).η−1, and therefore
p#([α.σ.α−1]) = [η]p#([σ])[η]−1 = ϕ(p#([σ])) in π1(X, x0). It follows that
ϕ(H1) ⊂ H0. Similarly ϕ−1(H0) ⊂ H1, where ϕ−1([γ]) = [η]−1[γ][η] for all
loops γ in X based at the point x0. It follows that ϕ(H1) = H0, and thus
the subgroups H0 and H1 are conjugate

Now let H be a subgroup of π1(X, x0) which is conjugate to H0. Then
H0 = [η]H[η]−1 for some loop η in X based at the point x0. It follows from
the Path Lifting Theorem for covering maps (Theorem 3.4) that there exists
a path α: [0, 1]→ X̃ in X̃ for which α(0) = w0 and p ◦ α = η. Let w = α(1).
Then

p#(π1(X̃, w)) = [η]−1H0[η] = H,

as required.

4.2 Discontinuous Group Actions

Definition Let G be a group, and let X be a set. The group G is said to act
on the set X (on the left) if each element g of G determines a corresponding
function θg:X → X from the set X to itself, where
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(i) θgh = θg ◦ θh for all g, h ∈ G;

(ii) the function θe determined by the identity element e of G is the identity
function of X.

Let G be a group acting on a set X. Given any element x of X, the orbit
[x]G of x (under the group action) is defined to be the subset {θg(x) : g ∈ G}
of X, and the stabilizer of x is defined to the the subgroup {g ∈ G : θg(x) =
x} of the group G. Thus the orbit of an element x of X is the set consisting
of all points of X to which x gets mapped under the action of elements of the
group G. The stabilizer of x is the subgroup of G consisting of all elements
of this group that fix the point x. The group G is said to act freely on X if
θg(x) 6= x for all x ∈ X and g ∈ G satisfying g 6= e. Thus the group G acts
freely on X if and only if the stabilizer of every element of X is the trivial
subgroup of G.

Let e be the identity element of G. Then x = θe(x) for all x ∈ X, and
therefore x ∈ [x]G for all x ∈ X, where [x]G = {θg(x) : g ∈ G}.

Let x and y be elements of G for which [x]G ∩ [y]G is non-empty, and
let z ∈ [x]G ∩ [y]G. Then there exist elements h and k of G such that
z = θh(x) = θk(y). Then θg(z) = θgh(x) = θgk(y), θg(x) = θgh−1(z) and
θg(y) = θgk−1(z) for all g ∈ G, and therefore [x]G = [z]G = [y]G. It follows
from this that the group action partitions the set X into orbits, so that each
element of X determines an orbit which is the unique orbit for the action of
G on X to which it belongs. We denote by X/G the set of orbits for the
action of G on X.

Now suppose that the group G acts on a topological space X. Then
there is a surjective function q:X → X/G, where q(x) = [x]G for all x ∈ X.
This surjective function induces a quotient topology on the set of orbits: a
subset U of X/G is open in this quotient topology if and only if q−1(U) is
an open set in X (see Lemma 1.9). We define the orbit space X/G for the
action of G on X to be the topological space whose underlying set is the set
of orbits for the action of G on X, the topology on X/G being the quotient
topology induced by the function q:X → X/G. This function q:X → X/G
is then an identification map: we shall refer to it as the quotient map from
X to X/G.

We shall be concerned here with situations in which a group action on a
topological space gives rise to a covering map. The relevant group actions
are those where the group acts freely and properly discontinuously on the
topological space.

Definition Let G be a group with identity element e, and let X be a topo-
logical space. The group G is said to act freely and properly discontinuously
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on X if each element g of G determines a corresponding continuous map
θg:X → X, where the following conditions are satisfied:

(i) θgh = θg ◦ θh for all g, h ∈ G;

(ii) the continuous map θe determined by the identity element e of G is the
identity map of X;

(iii) given any point x of X, there exists an open set U in X such that
x ∈ U and θg(U) ∩ U = ∅ for all g ∈ G satisfying g 6= e.

Let G be a group which acts freely and properly discontinuously on a
topological space X. Given any element g of G, the corresponding continuous
function θg:X → X determined by X is a homeomorphism. Indeed it follows
from conditions (i) and (ii) in the above definition that θg−1 ◦ θg and θg ◦ θg−1

are both equal to the identity map of X, and therefore θg:X → X is a
homeomorphism with inverse θg−1 :X → X.

Remark The terminology ‘freely and properly discontinuously’ is tradi-
tional, but is hardly ideal. The adverb ‘freely’ refers to the requirement
that θg(x) 6= x for all x ∈ X and for all g ∈ G satisfying g 6= e. The adverb
‘discontinuously’ refers to the fact that, given any point x of G, the elements
of the orbit {θg(x) : g ∈ G} of x are separated; it does not signify that the
functions defining the action are in any way discontinuous or badly-behaved.
The adverb ‘properly’ refers to the fact that, given any compact subset K
of X, the number of elements of g for which K ∩ θg(K) 6= ∅ is finite. More-
over the definitions of properly discontinuous actions in textbooks and in
sources of reference are not always in agreement: some say that an action of
a group G on a topological space X (where each group element determines a
corresponding homeomorphism of the topological space) is properly discon-
tinuous if, given any x ∈ X, there exists an open set U in X such that the
number of elements g of the group for which g(U)∩U 6= ∅ is finite; others say
that the action is properly discontinuous if it satisfies the conditions given in
the definition above for a group acting freely and properly discontinuously
on the set. William Fulton, in his textbook Algebraic topology: a first course
(Springer, 1995), introduced the term ‘evenly’ in place of ‘freely and prop-
erly discontinuously’, but this change in terminology does not appear to have
been generally adopted.

Proposition 4.8 Let G be a group acting freely and properly discontinuously
on a topological space X. Then the quotient map q:X → X/G from X to
the corresponding orbit space X/G is a covering map.
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Proof The quotient map q:X → X/G is surjective. Let V be an open set
in X. Then q−1(q(V )) is the union

⋃
g∈G θg(V ) of the open sets θg(V ) as g

ranges over the group G, since q−1(q(V )) is the subset of X consisting of all
elements of X that belong to the orbit of some element of V . But any union
of open sets in a topological space is an open set. We conclude therefore that
if V is an open set in X then q(V ) is an open set in X/G.

Let x be a point of X. Then there exists an open set U in X such that
x ∈ U and θg(U) ∩ U = ∅ for all g ∈ G satisfying g 6= e. Now q−1(q(U)) =⋃
g∈G θg(U). We claim that the sets θg(U) are disjoint. Let g and h be

elements of G. Suppose that θg(U)∩ θh(U) 6= ∅. Then θh−1(θg(U)∩ θh(U)) 6=
∅. But θh−1 :X → X is a bijection, and therefore

θh−1(θg(U) ∩ θh(U)) = θh−1(θg(U)) ∩ θh−1(θh(U)) = θh−1g(U) ∩ U,

and therefore θh−1g(U) ∩ U 6= ∅. It follows that h−1g = e, where e denotes
the identity element of G, and therefore g = h. Thus if g and h are elements
of g, and if g 6= h, then θg(U) ∩ θh(U) = ∅. We conclude therefore that the
preimage q−1(q(U)) of q(U) is the disjoint union of the sets θg(U) as g ranges
over the group G. Moreover each these sets θg(U) is an open set in X.

Now U ∩ [u]G = {u} for all u ∈ U , since [u]G = {θg(u) : g ∈ G} and
U ∩ θg(U) = ∅ when g 6= e. Thus if u and v are elements of U , and if q(u) =
q(v) then [u]G = [v]G and therefore u = v. It follows that the restriction
q|U :U → X/G of the quotient map q to U is injective, and therefore q
maps U bijectively onto q(U). But q maps open sets onto open sets, and any
continuous bijection that maps open sets onto open sets is a homeomorphism.
We conclude therefore that the restriction of q:X → X/G to the open set U
maps U homeomorphically onto q(U). Moreover, given any element g of G,
the quotient map q satisfies q = q ◦ θg−1 , and the homeomorphism θg−1 maps
θg(U) homeomorphically onto U . It follows that the quotient map q maps
θg(U) homeomorphically onto q(U) for all g ∈ U . We conclude therefore that
q(U) is an evenly covered open set in X/G whose preimage q−1(q(U)) is the
disjoint union of the open sets θg(U) as g ranges over the group G. It follows
that the quotient map q:X → X/G is a covering map, as required.

Theorem 4.9 Let G be a group acting freely and properly discontinuously
on a path-connected topological space X, let q:X → X/G be the quotient
map from X to the orbit space X/G, and let x0 be a point of X. Then there
exists a surjective homomorphism λ: π1(X/G, q(x0)) → G with the property
that γ̃(1) = θλ([γ])(x0) for any loop γ in X/G based at q(x0), where γ̃ denotes
the unique path in X for which γ̃(0) = x0 and q ◦ γ̃ = γ. The kernel of this
homomorphism is the subgroup q#(π1(X, x0)) of π1(X/G, q(x0)).
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Proof Let γ: [0, 1] → X/G be a loop in the orbit space with γ(0) = γ(1) =
q(x0). It follows from the Path Lifting Theorem for covering maps (Theo-
rem 3.4) that there exists a unique path γ̃: [0, 1] → X for which γ̃(0) = x0

and q ◦ γ̃ = γ. Now γ̃(0) and γ̃(1) must belong to the same orbit, since
q(γ̃(0)) = γ(0) = γ(1) = q(γ̃(1)). Therefore there exists some element g of
G such that γ̃(1) = θg(x0). This element g is uniquely determined, since
the group G acts freely on X. Moreover the value of g is determined by the
based homotopy class [γ] of γ in π1(X, q(x0)). Indeed it follows from Propo-
sition 4.1 that if σ is a loop in X/G based at q(x0), if σ̃ is the lift of σ starting
at x0 (so that q ◦ σ̃ = σ and σ̃(0) = x0), and if [γ] = [σ] in π1(X/G, q(x0)) (so
that γ ' σ rel {0, 1}), then γ̃(1) = σ̃(1). We conclude therefore that there
exists a well-defined function

λ: π1(X/G, q(x0))→ G,

which is characterized by the property that γ̃(1) = θλ([γ])(x0) for any loop γ
in X/G based at q(x0), where γ̃ denotes the unique path in X for which
γ̃(0) = x0 and q ◦ γ̃ = γ.

Now let α: [0, 1] → X/G and β: [0, 1] → X/G be loops in X/G based at
x0, and let α̃: [0, 1]→ X and β̃: [0, 1]→ X be the lifts of α and β respectively
starting at x0, so that q ◦ α̃ = α, q ◦ β̃ = β and α̃(0) = β̃(0) = x0. Then
α̃(1) = θλ([α])(x0) and β̃(1) = θλ([β])(x0). Then the path θλ([α]) ◦ β̃ is also a
lift of the loop β, and is the unique lift of β starting at α̃(1). Let α.β be the
concatenation of the loops α and β, where

(α.β)(t) =

{
α(2t) if 0 ≤ t ≤ 1

2
;

β(2t− 1) if 1
2
≤ t ≤ 1.

Then the unique lift of α.β to X starting at x0 is the path σ: [0, 1] → X,
where

σ(t) =

{
α̃(2t) if 0 ≤ t ≤ 1

2
;

θλ([α])(β̃(2t− 1)) if 1
2
≤ t ≤ 1.

It follows that

θλ([α][β])(x0) = θλ([α.β])(x0) = σ(1) = θλ([α])(β̃(1))

= θλ([α])(θλ([β])(x0)) = θλ([α])λ([β])(x0)

and therefore λ([α][β]) = λ([α])λ([β]). Therefore the function

λ: π1(X/G, q(x0))→ G

is a homomorphism.
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Let g ∈ G. Then there exists a path α in X from x0 to θg(x0), since the
space X is path-connected. Then q ◦ α is a loop in X/G based at q(x0), and
g = λ([q ◦ α]). This shows that the homomorphism λ is surjective.

Let γ: [0, 1] → X/G be a loop in X/G based at q(x0). Suppose that
[γ] ∈ kerλ. Then γ̃(1) = θe(x0) = x0, and therefore γ̃ is a loop in X based
at x0. Moreover [γ] = q#[γ̃], and therefore [γ] ∈ q#(π1(X, x0)). On the other
hand, if [γ] ∈ q#(π1(X, x0)) then γ = q ◦ γ̃ for some loop γ̃ in X based
at x0 (see Corollary 4.3). But then x0 = γ̃(1) = θλ([γ])(x0), and therefore
λ([γ]) = e, where e is the identity element of G. Thus kerλ = q#(π1(X, x0)),
as required.

Corollary 4.10 Let G be a group acting freely and properly discontinuously
on a path-connected topological space X, let q:X → X/G be the quotient
map from X to the orbit space X/G, and let x0 be a point of X. Then
q#(π1(X, x0)) is a normal subgroup of the fundamental group π1(X/G, q(x0))
of the orbit space, and

π1(X/G, q(x0))

q#(π1(X, x0))
∼= G.

Proof The subgroup q#(π1(X, x0)) is the kernel of the homomorphism

λ: π1(X/G, q(x0))→ G

described in the statement of Theorem 4.9. It is therefore a normal sub-
group of π1(X/G, q(x0)), since the kernel of any homomorphism is a normal
subgroup. The homomorphism λ is surjective, and the image of any group
homomorphism is isomorphism of the quotient of its domain by its kernel.
The result follows.

Corollary 4.11 Let G be a group acting freely and properly discontinuously
on a simply-connected topological space X, let q:X → X/G be the quotient
map from X to the orbit space X/G, and let x0 be a point of X. Then
π1(X/G, q(x0)) ∼= G.

Proof This is a special case of Corollary 4.10.

Example The group Z of integers under addition acts freely and properly
discontinuously on the real line R. Indeed each integer n determines a cor-
responding homeomorphism θn: R → R, where θn(x) = x + n for all x ∈ R.
Moreover θm ◦ θn = θm+n for all m,n ∈ Z, and θ0 is the identity map of R. If
U = (−1

2
, 1

2
) then θn(U) ∩ U = ∅ for all non-zero integers n. The real line R

is simply-connected. It follows from Corollary 4.11 that π1(R/Z, b) ∼= Z for
any point b of R/Z.
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Now the orbit space R/Z is homeomorphic to a circle. Indeed let q: R→
R/Z be the quotient map. Then the surjective function p: R → S1 which
sends t ∈ R to (cos 2πt, sin 2πt) induces a continuous map h: R/Z → S1

defined on the orbit space which satisfies h ◦ q = p, since the quotient map q
is an identification map. Moreover real numbers t1 and t2 satisfy p(t1) = p(t2)
if and only if q(t1) = q(t2). It follows that the induced map h: R/Z → S1 is
a bijection. This map also maps open sets to open sets, for if W is any open
set in the orbit space R/Z then q−1(W ) is an open set in R, and therefore
p(q−1(W )) is an open set in S1, since the covering map p: R→ S1 maps open
sets to open sets (Lemma 3.1). But p(q−1(W )) = h(W ) for all open sets W
in R/Z. Thus the continuous bijection h: R/Z→ S1 maps open sets to open
sets, and is therefore a homeomorphism. Thus Corollary 4.11 generalizes the
result of Theorem 3.6.

Example The group Zn of ordered n-tuples of integers under addition acts
freely and properly discontinuously on Rn, where

θ(m1,m2,...,mn)(x1, x2, . . . , xn) = (x1 +m1, x2 +m2, . . . , xn +mn)

for all (m1,m2, . . . ,mn) ∈ Zn and (x1, x2, . . . , xn) ∈ Rn. The orbit space
Rn/Zn is an n-dimensional torus, homeomorphic to the product of n cir-
cles. It follows from Corollary 4.11 that the fundamental group of this n-
dimensional torus is isomorphic to the group Zn.

Example Let C2 be the cyclic group of order 2. Then C2 = {e, a} where
e is the identity element, a 6= e, a2 = e. Then the group C2 acts freely
and properly discontinuously on the n-dimensional sphere Sn for each non-
negative integer n. We represent Sn as the unit sphere centred on the origin
in Rn+1. The homeomorphism θe determined by the identity element e of
C2 is the identity map of Sn; the homeomorphism θa determined by the
element a of C2 is the antipodal map that sends each point x of Sn to −x.
The orbit space Sn/C2 is homeomorphic to real projective n-dimensional
space RP n. The n-dimensional sphere is simply-connected if n > 1. It follows
from Corollary 4.11 that the fundamental group of RP n is isomorphic to the
cyclic group C2 when n > 1.

Note that S0 is a pair of points, and RP 0 is a single point. Also S1 is a
circle (which is not simply-connected) and RP 1 is homeomorphic to a circle.
Moreover, for any b ∈ S1, the homomorphism q#: π1(S

1, b) → π1(RP 1, q(b))
corresponds to the homomorphism from Z to Z that sends each integer n to
2n. This is consistent with the conclusions of Corollary 4.10 in this example.

Example Given a pair (m,n) of integers, let θm,n: R2 → R2 be the homeo-
morphism of the plane R2 defined such that θm,n(x, y) = (x+m, (−1)my+n)
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for all (x, y) ∈ R2. Let (m1, n1) and (m2, n2) be ordered pairs of integers.
Then θm1,n1 ◦θm2,n2 = θm1+m2,n1+(−1)m1n2 . Let Γ be the group whose elements
are represented as ordered pairs of integers, where the group operation # on
Γ is defined such that

(m1, n1)#(m2, n2) = (m1 +m2, n1 + (−1)m1n2)

for all (m1, n1), (m2, n2) ∈ Γ. The group Γ is non-Abelian, and its identity
element is (0, 0). This group acts on the plane R2: given (m,n) ∈ Γ the
corresponding symmetry θm,n is a translation if m is even, and is a glide
reflection if m is odd. Given a pair (m,n) of integers, the corresponding
homeomorphism θm,n maps an open disk about the point (x, y) onto an open
disk of the same radius about the point θ(m,n)(x, y). It follows that if D
is the open disk of radius 1

2
about the point (x, y), and if D ∩ θm,n(D) is

non-empty, then (m,n) = (0, 0). Thus the group Γ maps freely and properly
discontinuously on the plane R2.

The orbit space R2/Γ is homeomorphic to a Klein bottle. To see this,
note each orbit intersects the closed unit square S, where S = [0, 1]× [0, 1].
If 0 < x < 1 and 0 < y < 1 then the orbit of (x, y) intersects the square S
in one point, namely the point (x, y). If 0 < x < 1, then the orbit of (x, 0)
intersects the square in two points (x, 0) and (x, 1). If 0 < y < 1 then the
orbit of (0, y) intersects the square S in the two points (0, y) and (1, 1− y).
(Note that (1, 1−y) = θ1,1(0, y).) And the orbit of any corner of the square S
intersects the square in the four corners of the square. The restriction q|S of
the quotient map q: R2 → R2/Γ to the square S is a continuous surjection
defined on the square: one can readily verify that it is an identification map.
It follows that the orbit space R2/Γ is homeomorphic to the identification
space obtained from the closed square S by identifying together the points
(x, 0) and (x, 1) where the real number x satisfies 0 < x < 1, identifying
together the points (0, y) and (1, 1 − y) where the real number y satisfies
0 < y < 1, and identifying together the four corners of the square: this
identification space is the Klein bottle.

The plane R2 is simply-connected. It follows from Corollary 4.11 that the
fundamental group of the Klein bottle is isomorphic to the group Γ defined
above.

4.3 Deck Transformations

Definition Let p: X̃ → X be a covering map over a topological space X. A
deck transformation of the covering space X̃ is a homeomorphism g: X̃ → X̃
of X̃ with the property that p ◦ g = p.

46



Let p: X̃ → X be a covering map over some topological space X. The
deck transformations of the covering space X̃ constitute a group of home-
omorphisms of that covering space (where the group operation is the usual
operation of composition of homeomorphisms). We shall denote this group
by Deck(X̃|X).

Lemma 4.12 Let p: X̃ → X be a covering map, where the covering space X̃
is connected. Let g ∈ Deck(X̃|X) be a deck transformation that is not equal
to the identity map. Then g(w) 6= w for all w ∈ X̃.

Proof The result follows immediately on applying Proposition 3.2.

Proposition 4.13 Let p: X̃ → X be a covering map, where the covering
space X̃ is connected. Then the group Deck(X̃|X) of deck transformations
acts freely and properly discontinuously on the covering space X̃.

Proof Let w be a point of the covering space X̃. Then there exists an
evenly-covered open set U in X such that p(w) ∈ U . Then the preimage
p−1(U) of U in X̃ is a disjoint union of open subsets, where each of these
open subsets is mapped homeomorphically onto U by the covering map.
One of these subsets contains the point w: let this open set be Ũ . Let
g: X̃ → X̃ be a deck transformation. Suppose that Ũ ∩ g(Ũ) is non-empty.
Then there exist w1, w2 ∈ Ũ such that g(w1) = w2. But then p(w2) =
p(g(w1)) = p(w1), and therefore w2 = w1, since the covering map p maps Ũ
homeomorphically and thus injectively onto U . Thus g(w1) = w1. It then
follows from Lemma 4.12 that the deck transformation g is the identity map.
We conclude that Ũ ∩ g(Ũ) = ∅ for all deck transformations g other than
the identity map of X̃. This shows that Deck(X̃|X) acts freely and properly
discontinuously on X̃, as required.

4.4 Local Topological Properties and Local Homeo-
morphisms

Definition A topological space X is said to be locally connected if, given
any point x of X, and given any open set U in X with x ∈ U , there exists
some connected open set V in X such that x ∈ V and V ⊂ U .

Definition A topological space X is said to be locally path-connected if,
given any point x of X, and given any open set U in X with x ∈ U , there
exists some path-connected open set V in X such that x ∈ V and V ⊂ U .
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Definition A topological space X is said to be locally simply-connected if,
given any point x of X, and given any open set U in X with x ∈ U , there
exists some simply-connected open set V in X such that x ∈ V and V ⊂ U .

Definition A topological space X is said to be contractible if the identity
map of X is homotopic to a constant map that sends the whole of X to a
single point of X.

Definition A topological space X is said to be locally contractible if, given
any point x of X, and given any open set U in X with x ∈ U , there exists
some contractible open set V in X such that x ∈ V and V ⊂ U .

Definition A topological space X is said to be locally Euclidean of dimen-
sion n if, given any point x of X, there exists some open set V such that
x ∈ V and V is homeomorphic to some open set in n-dimensional Euclidean
space Rn.

Note that every locally Euclidean topological space is locally contractible,
every locally contractible topological space is locally simply-connected, ev-
ery locally simply-connected topological space is locally path-connected, and
every locally path-connected topological space is locally connected.

Remark A connected topological space need not be locally connected; a
locally connected topological space need not be connected. A standard ex-
ample is the comb space. This space is the subset of the plane R2 consisting
of the line segment joining (0, 0) to (1, 0), the line segment joining (0, 0) to
(0, 1), and the line segments joining (1/n, 0) to (1/n, 1) for each positive inte-
ger n. This space is contractible, and thus simply-connected, path-connected
and connected. However there is no connected open subset that contains the
point (0, 1) and is contained within the open disk of radius 1 about this point,
and therefore the space is not locally connected, locally path-connected, lo-
cally simply-connected or locally contractible.

Proposition 4.14 Let X be a connected, locally path-connected topological
space. Then X is path-connected.

Proof Choose a point x0 of X. Let Z be the subset of X consisting of all
points x of X with the property that x can be joined to x0 by a path. We
show that the subset Z is both open and closed in X.

Now, given any point x of X there exists a path connected open set Nx

in X such that x ∈ Nx. We claim that if x ∈ Z then Nx ⊂ Z, and if x 6∈ Z
then Nx ∩ Z = ∅.
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Suppose that x ∈ Z. Then, given any point x′ of Nx, there exists a path
in Nx from x′ to x. Moreover it follows from the definition of the set Z that
there exists a path in X from x to x0. These two paths can be concatenated
to yield a path in X from x′ to x0, and therefore x′ ∈ Z. This shows that
Nx ⊂ Z whenever x ∈ Z.

Next suppose that x 6∈ Z. Let x′ ∈ Nx. If it were the case that x′ ∈ Z,
then we would be able to concatenate a path in Nx from x to x′ with a path
in X from x′ to x0 in order to obtain a path in X from x to x0. But this is
impossible, as x 6∈ Z. Therefore Nx ∩ Z = ∅ whenever x 6∈ Z.

Now the set Z is the union of the open sets Nx as x ranges over all points
of Z. It follows that Z is itself an open set. Similarly X \ Z is the union of
the open sets Nx as x ranges over all points of X \Z, and therefore X \Z is
itself an open set. It follows that Z is a subset of X that is both open and
closed. Moreover x0 ∈ Z, and therefore Z is non-empty. But the only subsets
of X that are both open and closed are ∅ and X itself, since X is connected.
Therefore Z = X, and thus every point of X can be joined to the point x0

by a path in X. We conclude that X is path-connected, as required.

Let P be some property that topological spaces may or may not possess.
Suppose that the following conditions are satisfied:—

(i) if a topological space has property P then every topological space home-
omorphic to the given space has property P ;

(ii) if a topological space has property P then open subset of the given
space has property P ;

(iii) if a topological space has a covering by open sets, where each of these
open sets has property P , then the topological space itself has prop-
erty P .

Examples of properties satisfying these conditions are the property of being
locally connected, the property of being locally path-connected, the property
of being locally simply-connected, the property of being locally contractible,
and the property of being locally Euclidean.

Properties of topological spaces satisfying conditions (i), (ii) and (iii)
above are topological properties that describe the local character of the topo-
logical space. Such a property is satisfied by the whole topological space if
and only if it is satisfied around every point of that topological space.

Definition Let f :X → Y be a continuous map between topological spaces
X and Y . The map f is said to be a local homeomorphism if, given any
point x of X, there exists some open set U in X with x ∈ U such that the
function f maps U homeomorphically onto an open set f(U) in Y .

49



Lemma 4.15 Every covering map is a local homeomorphism.

Proof Let p: X̃ → X be a covering map, and let w be a point of X̃. Then
p(w) ∈ U for some evenly-covered open set U in X. Then p−1(U) is a disjoint
union of open sets, where each of these open sets is mapped homeomorphi-
cally onto U . One of these open sets contains the point w: let that open set
be Ũ . Then p maps Ũ homeomorphically onto the open set U . Thus the
covering map is a local homeomorphism.

Example Not all local homeomorphisms are covering maps. Let S1 denote
the unit circle in R2, and let α: (−2, 2)→ S1 denote the continuous map that
sends t ∈ (−2, 2) to (cos 2πt, sin 2πt). Then the map α is a local homeomor-
phism. But it is not a covering map, since the point (1, 0) does not belong
to any evenly covered open set in S1.

Let f :X → Y be a local homeomorphism between topological spaces
X and Y , and let P be some property of topological spaces that satisfies
conditions (i), (ii) and (iii) above. We claim that X has property P if and
only if f(X) has property P . Now there exists an open cover U of X by open
sets, where the local homeomorphism f maps each open set U belonging to U
homeomorphically onto an open set f(U) in Y . Then the collection of open
sets of the form f(U), as U ranges over U constitutes an open cover of f(X).
Now if X has property P , then each open set U in the open cover U of X has
property P (by condition (ii)). But then set f(U) has property P for each
open set U belonging to U (by condition (i)). But then f(X) itself must
have property P (by condition (iii)). Conversely if f(X) has property P ,
then f(U) has property P for each open set U in the open cover U of X. But
then each open set U belonging to the open cover U has property P (as U is
homeomorphic to f(U)). But then X has property P (by condition (iii)).

A covering map p: X̃ → X between topological spaces is a surjective local
homeomorphism. Let P be some property of topological spaces satisfying
conditions (i), (ii) and (iii) above. Then the covering space X̃ has property P
if and only if the base space X has property P . A number of instances of
this principle are collected together in the following proposition.

Proposition 4.16 Let p: X̃ → X be a covering map. Then the following are
true:

(i) X̃ is locally connected if and only if X is locally connected;

(ii) X̃ is locally path-connected if and only if X is locally path-connected;
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(iii) X̃ is locally simply-connected if and only if X is locally simply-con-
nected;

(iv) X̃ is locally contractible if and only if X is locally contractible;

(v) X̃ is locally Euclidean if and only if X is locally Euclidean.

Corollary 4.17 Let X be a locally path-connected topological space, and let
p: X̃ → X be a covering map over X. Suppose that the covering space X̃ is
connected. Then X̃ is path-connected.

Proof The covering space X̃ is locally path-connected, by Proposition 4.16.
It follows from Proposition 4.14 that X̃ is path-connected.

4.5 Lifting of Continuous Maps Into Covering Spaces

Let p: X̃ → X be a covering map over a topological space X. Let f :Z → X
be a continuous map from some topological space Z into X. If the topolog-
ical space Z is locally path-connected then one can formulate a criterion to
determine whether or not there exists a map f̃ :Z → X̃ for which p ◦ f̃ = f
(see Theorem 4.19 and Corollary 4.20). This criterion is stated in terms of
the homomorphisms of fundamental groups induced by the continuous maps
f :Z → X and p: X̃ → X. We shall use this criterion in order to derive a nec-
essary and sufficient condition for two covering maps over a connected and
locally path-connected topological space to be topologically equivalent (see
Corollary 4.22). We shall also study the deck transformations of a covering
space over some connected and locally path-connected topological space.

Lemma 4.18 Let p: X̃ → X be a covering map over a topological space X,
let Z be a locally path-connected topological space, and let g:Z → X̃ be a
function from Z to X̃. Suppose that p ◦ g:Z → X is continuous, and that
g ◦ γ: [0, 1] → X̃ is continuous for all paths γ: [0, 1] → Z in Z. Then the
function g is continuous.

Proof Let f :Z → X be the composition function p◦g. Then the function f
is a continuous map from Z to X.

Let z be a point of Z. Then there exists an open neighbourhood V of f(z)
in X which is evenly covered by the map p. The inverse image p−1(V ) of V
in the covering space X̃ is a disjoint union of open sets, each of which is
mapped homeomorphically onto V by p. One of these open sets contains the
point g(z), since f(z) = p(g(z)). Let us denote this open set by Ṽ . Then
g(z) ∈ Ṽ , and Ṽ is mapped homeomorphically onto V by the map p. Let
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s:V → Ṽ denote the inverse of the restriction (p|Ṽ ): Ṽ → V of the covering
map p to Ṽ . Then the map s is continuous, and p(s(v)) = v for all v ∈ V .

Now f−1(V ) is an open set in Z containing the point z. But the topologi-
cal space Z is locally path-connected. Therefore there exists a path-connected
open set Nz in Z such that z ∈ Nz and Nz ⊂ f−1(V ). We claim that
g(Nz) ⊂ Ṽ . Let z′ be a point of Nz. Then there exists a path γ: [0, 1]→ Nz

in N from z to z′. Moreover f(γ([0, 1])) ⊂ V . Let η: [0, 1]→ X̃ be the path
in X̃ defined such that η(t) = s(f(γ(t))) for all t ∈ [0, 1]. Then η([0, 1]) ⊂ Ṽ ,
and η is the unique path in X̃ for which η(0) = g(z) and p◦η = f ◦γ. But the
composition function g◦γ is a path in X̃, g(γ(0)) = g(z) and p◦g◦γ = f ◦γ.
Therefore g ◦γ = η. It follows that g(γ([0, 1])) ⊂ Ṽ , and therefore g(z′) ∈ Ṽ .
This proves that g(Nz) ⊂ Ṽ . Moreover g(z′) = s(f(z′)) for all z′ ∈ Nz, and
therefore the restriction g|Nz:Nz → X̃ of the function g to the open set Nz

is continuous.
We have now shown that, given any point z of Z, there exists an open

set Nz in Z such that z ∈ Nz and the restriction g|Nz of g:Z → X̃ to Nz

is continuous. It follows from this that the function g is continuous on Z.
Indeed let U be an open set in X̃. Then g−1(U) ∩ Nz is an open set for all
z ∈ Z, since g|Nz is continuous. Moreover g−1(U) is the union of the open
sets g−1(U) ∩ Nz as z ranges over all points of Z. It follows that g−1(U) is
itself an open set in Z. Thus g:Z → X̃ is continuous, as required.

Theorem 4.19 Let p: X̃ → X be a covering map over a topological space X,
and let f :Z → X be a continuous map from some topological space Z
into X. Suppose that the topological space Z is both connected and locally
path-connected. Suppose also that

f# (π1(Z, z0)) ⊂ p#(π1(X̃, x̃0)),

where z0 and x̃0 are points of Z and X̃ respectively which satisfy f(z0) =
p(x̃0). Then there exists a unique continuous map f̃ :Z → X̃ for which
f̃(z0) = x̃0 and p ◦ f̃ = f .

Proof Let P denote the set of all ordered pairs (α, ρ), where α: [0, 1] → Z
is a path in Z with α(0) = z0, ρ: [0, 1] → X̃ is a path in X̃ with ρ(0) = x̃0,
and f ◦ α = p ◦ ρ. We claim that there is a well-defined function f̃ :Z → X̃
characterized by the property that f̃(α(1)) = ρ(1) for all (α, ρ) ∈ P .

The topological space Z is path-connected, by Proposition 4.14. There-
fore, given any point z of Z, there exists a path α in Z from z0 to z. More-
over it follows from the Path Lifting Theorem (Theorem 3.4) that, given any
path α in Z from z0 to z there exists a unique path ρ in X̃ for which ρ(0) = x̃0
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and p◦ρ = f ◦α. It follows that, given any element z of Z, there exists some
element (α, ρ) of P for which α(1) = z.

Let (α, ρ) and (β, σ) be elements of P . Suppose that α(1) = β(1). Then
[(f ◦α).(f ◦β)−1] = f#[α.β−1]. But f#(π1(Z, z0)) ⊂ p#(π1(X̃, x̃0). Therefore
[(f ◦α).(f ◦ β)−1] ∈ p#(π1(X̃, x̃0)). It follows from Corollary 4.5 that ρ(1) =
σ(1). We conclude therefore that if (α, ρ) and (β, σ) are elements of P , and
if α(1) = β(1), then ρ(1) = σ(1). This establishes the existence of a unique
function f̃ :Z → X̃ characterized by the property that f̃(α(1)) = ρ(1) for all
(α, ρ) ∈ P . Now p(ρ(1)) = f(α(1)) for all (α, ρ) ∈ P , and therefore p◦ f̃ = f .
Also f̃(z0) = x̃0, since (εz0 , εx̃0) ∈ P , where εz0 denotes the constant path
in Z based at z0 and εx̃0 denotes the constant path in X̃ based at x̃0. Thus
it only remains to show that the map f̃ :Z → X̃ is continuous. In view of
Lemma 4.18, it suffices to show that f̃ maps paths in Z to paths in X̃.

Let γ: [0, 1]→ Z be a path in Z. We claim that the composition function
f̃ ◦ γ is continuous, and is thus a path in X̃. Let α be a path in Z from
z0 to γ(0), let ρ: [0, 1] → X̃ be the unique path in X̃ satisfying ρ(0) = x̃0

and p ◦ ρ = f ◦ α, and let σ: [0, 1] → X̃ be the unique path in X̃ satisfying
σ(0) = ρ(1) and p ◦ σ = f ◦ γ. Now, for each τ ∈ [0, 1], there is a path
ατ : [0, 1]→ Z from z0 to γ(τ) defined such that

ατ (t) =

{
α(2t) if 0 ≤ t ≤ 1

2
;

γ((2t− 1)τ) if 1
2
≤ t ≤ 1.

Then f ◦ατ (t) = p ◦ ρτ (t) for all t ∈ [0, 1] where ρτ : [0, 1]→ X̃ is the path in
X̃ from x̃0 to σ(τ) defined such that

ρτ (t) =

{
ρ(2t) if 0 ≤ t ≤ 1

2
;

σ((2t− 1)τ) if 1
2
≤ t ≤ 1.

It follows that (ατ , ρτ ) ∈ P , for all τ ∈ [0, 1], and therefore

f̃(γ(τ)) = f̃(ατ (1)) = ρτ (1) = σ(τ)

for all τ ∈ [0, 1]. Thus f̃ ◦ γ = σ. We conclude that f̃ ◦ γ is a path in X̃
for any path γ in Z. It then follows from Lemma 4.18 that the function
f̃ :Z → X̃ is a continuous map from Z to X̃ with the required properties.
The uniqueness of this map follows on applying Proposition 3.2.

Corollary 4.20 Let p: X̃ → X be a covering map over a topological space X,
and let f :Z → X be a continuous map from some topological space Z into X.
Suppose that the covering space X̃ is path-connected and that the topological
space Z is both connected and locally path-connected. Let z0 and w0 be points
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of Z and X̃ respectively for which f(z0) = p(w0). Then there exists a map
f̃ :Z → X̃ satisfying p ◦ f̃ = f if and only if there exists a subgroup H of
π1(X, p(w0)) such that H is conjugate to p#(π1(X̃, w0)) and f#(π1(Z, z0)) ⊂
H.

Proof Suppose that there exists a map f̃ :Z → X̃ for which p ◦ f̃ = f .
Then f#(π1(Z, z0)) ⊂ H, where H = p#(π1(X̃, f̃(z0))). Moreover it fol-
lows from Lemma 4.7 that the subgroup H of π1(X, p(w0)) is conjugate to
p#(π1(X̃, w0)) in π1(X, p(w0)).

Conversely suppose that f#(π1(Z, z0)) ⊂ H, where H is a subgroup of
π1(X, p(w0)) that is conjugate to p#(π1(X̃, w0)). It follows from Lemma 4.7
that there exists a point x̃ of X̃ for which p(x̃) = p(w0) and p#(π1(X̃, x̃)) =
H. Then

f# (π1(Z, z0)) ⊂ p#(π1(X̃, x̃)).

It then follows from Theorem 4.19 that there exists a continuous map f̃ :Z →
X̃ for which p ◦ f̃ = f , as required.

4.6 Isomorphisms of Covering Maps

Definition Let p1: X̃1 → X and p2: X̃2 → X be covering maps over some
topological space X. We say that the covering maps p1: X̃1 → X and
p2: X̃2 → X are topologically isomorphic if there exists a homeomorphism
h: X̃1 → X̃2 from the covering space X̃1 to the covering space X̃2 with the
property that p1 = p2 ◦ h.

We can apply Theorem 4.19 in order to derive a criterion for determin-
ing whether or not two covering maps over some connected locally path-
connected topological space are isomorphic.

Theorem 4.21 Let X be a topological space which is both connected and
locally path-connected, let X̃1 and X̃2 be connected topological spaces, and let
p1: X̃1 → X and p2: X̃2 → X be covering maps over X. Let w1 and w2 be
points of X̃1 and X̃2 respectively for which p1(w1) = p2(w2). Then there exists
a homeomorphism h: X̃1 → X̃2 from the covering space X̃1 to the covering
space X̃2 satisfying p2 ◦ h = p1 and h(w1) = w2 if and only if the subgroups
p1#(π1(X̃1, w1)) and p2#(π1(X̃2, w2)) of π1(X, p1(w1)) coincide.

Proof Suppose that there exists a homeomorphism h: X̃1 → X̃2 from the
covering space X̃1 to the covering space X̃2 for which p2◦h = p1 and h(w1) =
w2. Then h#(π1(X̃1, w1)) = π1(X̃2, w2), and therefore

p1#(π1(X̃1, w1)) = p2#

(
h#(π1(X̃1, w1))

)
= p2#(π1(X̃2, w2)).
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Conversely suppose that p1#(π1(X̃1, w1)) = p2#(π1(X̃2, w2)). It follows
from Proposition 4.16 that the covering spaces X̃1 and X̃2 are both locally
path-connected, since X is a locally path-connected topological space. But
X̃1 and X̃2 are also connected. It follows from Theorem 4.19 that there exist
unique continuous maps h: X̃1 → X̃2 and k: X̃2 → X̃1 for which p2 ◦ h = p1,
p1 ◦ k = p2, h(w1) = w2 and k(w2) = w1. But then p1 ◦ k ◦ h = p1 and
(k ◦ h)(w1) = w1. It follows from this that the composition map k ◦ h is
the identity map of X̃1 (since a straightforward application of Theorem 4.19
shows that any continuous map j: X̃1 → X̃1 which satisfies p1 ◦ j = p1 and
j(w1) = w1 must be the identity map of X̃1). Similarly the composition map
h◦k is the identity map of X̃2. Thus h: X̃1 → X̃2 is a homeomorphism whose
inverse is k. Moreover p2 ◦ h = p2. Thus h: X̃1 → X̃2 is a homeomorphism
with the required properties.

Corollary 4.22 Let X be a topological space which is both connected and
locally path-connected, let X̃1 and X̃2 be connected topological spaces, and let
p1: X̃1 → X and p2: X̃2 → X be covering maps over X. Let w1 and w2 be
points of X̃1 and X̃2 respectively for which p1(w1) = p2(w2). Then the cov-
ering maps p1: X̃1 → X and p2: X̃2 → X are topologically isomorphic if and
only if the subgroups p1#(π1(X̃1, w1)) and p2#(π1(X̃2, w2)) of π1(X, p1(w1))
are conjugate.

Proof Suppose that the covering maps p1: X̃1 → X and p2: X̃2 → X are
topologically isomorphic. Let h: X̃1 → X̃2 be a homeomorphism for which
p2 ◦ h = p1. Then

p1#(π1(X̃1, w1)) = p2#(π1(X̃2, h(w1))).

It follows immediately from Lemma 4.7 that the subgroups p1#(π1(X̃1, w1))
and p2#(π1(X̃2, w2)) of π1(X, p1(w1)) are conjugate.

Conversely, suppose that the subgroups

p1#(π1(X̃1, w1)) and p2#(π1(X̃2, w2))

of π1(X, p1(w1)) are conjugate. The covering space X̃2 is both locally path-
connected (Proposition 4.16) and connected, and is therefore path-connected
(Corollary 4.17). It follows from Lemma 4.7 that there exists a point w of X̃2

for which p2(w) = p2(w2) = p1(w1) and

p2#(π1(X̃2, w)) = p1#(π1(X̃1, w1)).

Theorem 4.21 now ensures that there exists a homeomorphism h: X̃1 → X̃2

from X̃1 to X̃2 such that p2 ◦ h = p1 and h(w1) = w. It follows that the
covering maps are topologically isomorphic, as required.
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4.7 Deck Transformations of Locally Path-Connected
Coverings

Proposition 4.23 Let X be a topological space which is connected and lo-
cally path-connected, let X̃ be a connected topological space, let p: X̃ → X be
a covering map over X, and let w1 and w2 be points of the covering space X̃.
Then there exists a deck transformation h: X̃ → X̃ sending w1 to w2 if and
only if p#(π1(X̃, w1)) = p#(π1(X̃, w2)), in which case the deck transforma-
tion sending w1 to w2 is uniquely determined.

Proof The proposition follows immediately on applying Theorem 4.21.

Corollary 4.24 Let X be a topological space which is connected and locally
path-connected, let p: X̃ → X be a covering map over X, where the cov-
ering space X̃ is connected. Suppose that p#(π1(X̃, w1)) is a normal sub-
group of π1(X, p(w1)). Then, given any points w1 and w2 of the covering
space X̃ satisfying p(w1) = p(w2), there exists a unique deck transformation
h: X̃ → X̃ satisfying h(w1) = w2.

Proof The covering space X̃ is both locally path-connected (by Proposi-
tion 4.16) and connected, and is therefore path-connected (by Corollary 4.17).
It follows that p#(π1(X̃, w1)) and p#(π1(X̃, w2)) are conjugate subgroups of
π1(X, p(w1)) (Lemma 4.7). But then p#(π1(X̃, w1)) = p#(π1(X̃, w2)), since
p#(π1(X̃, w1)) is a normal subgroup of π1(X, p(w1)). The result now follows
from Proposition 4.23.

Theorem 4.25 Let p: X̃ → X be a covering map over some topological
space X which is both connected and locally path-connected, and let x0 and
x̃0 be points of X and X̃ respectively satisfying p(x̃0) = x0. Suppose that
X̃ is connected and that p#(π1(X̃, x̃0)) is a normal subgroup of π1(X, x0).
Then the group Deck(X̃|X) of deck transformations is isomorphic to the cor-
responding quotient group π1(X, x0)/p#(π1(X̃, x̃0)).

Proof Let G be the group Deck(X̃|X) of deck transformations of X̃. Then
the group G acts freely and properly discontinuously on X̃ (Proposition 4.13).
Let q:X → X̃/G be the quotient map onto the orbit spaceX/G. Elements w1

and w2 of X̃ satisfy w2 = g(w1) for some g ∈ G if and only if p(w1) = p(w2).
It follows that there is a continuous map h: X̃/G → X for which h ◦ q = p.
This map h is a bijection. Moreover it maps open sets to open sets, for if
W is some open set in X̃/G then q−1(W ) is an open set in X̃, and therefore
p(q−1(W )) is an open set in X, since any covering map maps open sets to
open sets (Lemma 3.1). But p(q−1(W )) = h(W ). Thus h: X̃/G → X is
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a continuous bijection that maps open sets to open sets, and is therefore a
homeomorphism. The fundamental group of the topological space X is thus
isomorphic to that of the orbit space X̃/G. It follows from Proposition 4.9
that there exists a surjective homomorphism from π1(X, x0) to the group G of
deck transformations of the covering space. The kernel of this homomorphism
is p#(π1(X̃, x̃0)). The result then follows directly from the fact that the image
of a group homomorphism is isomorphic to the quotient of the domain by
the kernel of the homomorphism.

Corollary 4.26 Let p: X̃ → X be a covering map over some topological
space X which is both connected and locally path-connected, and let x0 be
a point of X. Suppose that X̃ is simply-connected. Then Deck(X̃|X) ∼=
π1(X, x0).

57


