3 Covering Maps and the Monodromy Theorem

3.1 Covering Maps

Definition Let X and \tilde{X} be topological spaces and let $p: \tilde{X} \to X$ be a continuous map. An open subset U of X is said to be evenly covered by the map p if and only if $p^{-1}(U)$ is a disjoint union of open sets of \tilde{X} each of which is mapped homeomorphically onto U by p. The map $p: \tilde{X} \to X$ is said to be a covering map if $p: \tilde{X} \to X$ is surjective and in addition every point of X is contained in some open set that is evenly covered by the map p.

If $p: \tilde{X} \to X$ is a covering map, then we say that \tilde{X} is a covering space of X.

Example Let S^1 be the unit circle in \mathbb{R}^2. Then the map $p: \mathbb{R} \to S^1$ defined by
\[p(t) = (\cos 2\pi t, \sin 2\pi t) \]
is a covering map. Indeed let n be a point of S^1. Consider the open set U in S^1 containing n defined by $U = S^1 \setminus \{-n\}$. Now $n = (\cos 2\pi t_0, \sin 2\pi t_0)$ for some $t_0 \in \mathbb{R}$. Then $p^{-1}(U)$ is the union of the disjoint open sets J_n for all integers n, where
\[J_n = \{ t \in \mathbb{R} : t_0 + n - \frac{1}{2} < t < t_0 + n + \frac{1}{2} \}. \]
Each of the open sets J_n is mapped homeomorphically onto U by the map p. This shows that $p: \mathbb{R} \to S^1$ is a covering map.

Example The map $p: \mathbb{C} \to \mathbb{C} \setminus \{0\}$ defined by $p(z) = \exp(z)$ is a covering map. Indeed, given any $\theta \in [-\pi, \pi]$ let us define
\[U_\theta = \{ z \in \mathbb{C} \setminus \{0\} : \arg(-z) \neq \theta \}. \]
Then $p^{-1}(U_\theta)$ is the disjoint union of the open sets
\[\{ z \in \mathbb{C} : |\Im z - \theta - 2\pi n| < \pi \}, \]
for all integers n, and p maps each of these open sets homeomorphically onto U_θ. Thus U_θ is evenly covered by the map p.

Example Consider the map $\alpha: (-2, 2) \to S^1$, where $\alpha(t) = (\cos 2\pi t, \sin 2\pi t)$ for all $t \in (-2, 2)$. It can easily be shown that there is no open set U containing the point $(1, 0)$ that is evenly covered by the map α. Indeed
suppose that there were to exist such an open set \(U \). Then there would exist some \(\delta \) satisfying \(0 < \delta < \frac{1}{2} \) such that \(U_\delta \subset U \), where

\[
U_\delta = \{(\cos 2\pi t, \sin 2\pi t) : -\delta < t < \delta\}.
\]

The open set \(U_\delta \) would then be evenly covered by the map \(\alpha \). However the connected components of \(\alpha^{-1}(U_\delta) \) are \((-2, -2 + \delta), (-1 - \delta, -1 + \delta), (-\delta, \delta), (1 - \delta, 1 + \delta) \) and \((2 - \delta, 2)\), and neither \((-2, -2 + \delta)\) nor \((2 - \delta, 2)\) is mapped homeomorphically onto \(U_\delta \) by \(\alpha \).

Lemma 3.1 Let \(p: \tilde{X} \to X \) be a covering map. Then \(p(V) \) is open in \(X \) for every open set \(V \) in \(\tilde{X} \). In particular, a covering map \(p: \tilde{X} \to X \) is a homeomorphism if and only if it is a bijection.

Proof Let \(V \) be open in \(\tilde{X} \), and let \(x \in p(V) \). Then \(x = p(v) \) for some \(v \in V \). Now there exists an open set \(U \) containing the point \(x \) which is evenly covered by the covering map \(p \). Then \(p^{-1}(U) \) is a disjoint union of open sets, each of which is mapped homeomorphically onto \(U \) by the covering map \(p \). One of these open sets contains \(v \); let \(\tilde{U} \) be this open set, and let \(N_x = p(V \cap \tilde{U}) \). Now \(N_x \) is open in \(X \), since \(V \cap \tilde{U} \) is open in \(\tilde{U} \) and \(p|\tilde{U} \) is a homeomorphism from \(\tilde{U} \) to \(U \). Also \(x \in N_x \) and \(N_x \subset p(V) \). It follows that \(p(V) \) is the union of the open sets \(N_x \) as \(x \) ranges over all points of \(p(V) \), and thus \(p(V) \) is itself an open set, as required. The result that a bijective covering map is a homeomorphism then follows directly from the fact that a continuous bijection is a homeomorphism if and only if it maps open sets to open sets.

3.2 Path Lifting and the Monodromy Theorem

Let \(p: \tilde{X} \to X \) be a covering map over a topological space \(X \). Let \(Z \) be a topological space, and let \(f: Z \to X \) be a continuous map from \(Z \) to \(X \). A continuous map \(\tilde{f}: Z \to \tilde{X} \) is said to be a lift of the map \(f: Z \to X \) if and only if \(p \circ \tilde{f} = f \). We shall prove various results concerning the existence and uniqueness of such lifts.

Proposition 3.2 Let \(p: \tilde{X} \to X \) be a covering map, let \(Z \) be a connected topological space, and let \(g: Z \to \tilde{X} \) and \(h: Z \to \tilde{X} \) be continuous maps. Suppose that \(p \circ g = p \circ h \) and that \(g(z) = h(z) \) for some \(z \in Z \). Then \(g = h \).

Proof Let \(Z_0 = \{z \in Z : g(z) = h(z)\} \). Note that \(Z_0 \) is non-empty, by hypothesis. We show that \(Z_0 \) is both open and closed in \(Z \).
Let \(z \) be a point of \(Z \). There exists an open set \(U \) in \(X \) containing the point \(p(g(z)) \) which is evenly covered by the covering map \(p \). Then \(p^{-1}(U) \) is a disjoint union of open sets, each of which is mapped homeomorphically onto \(U \) by the covering map \(p \). One of these open sets contains \(g(z) \); let this set be denoted by \(\tilde{U} \). Also one of these open sets contains \(h(z) \); let this open set be denoted by \(\tilde{V} \). Let \(N_z = g^{-1}(\tilde{U}) \cap h^{-1}(\tilde{V}) \). Then \(N_z \) is an open set in \(Z \) containing \(z \).

Consider the case when \(z \in Z_0 \). Then \(g(z) = h(z) \), and therefore \(\tilde{V} = \tilde{U} \). It follows from this that both \(g \) and \(h \) map the open set \(N_z \) into \(\tilde{U} \). But \(p \circ g = p \circ h \), and \(p(\tilde{U}) : \tilde{U} \to U \) is a homeomorphism. Therefore \(g|_{N_z} = h|_{N_z} \), and thus \(N_z \subset Z_0 \). We have thus shown that, for each \(z \in Z_0 \), there exists an open set \(N_z \) such that \(z \in N_z \) and \(N_z \subset Z_0 \). We conclude that \(Z_0 \) is open.

Next consider the case when \(z \in Z \setminus Z_0 \). In this case \(\tilde{U} \cap \tilde{V} = \emptyset \), since \(g(z) \neq h(z) \). But \(g(N_z) \subset \tilde{U} \) and \(h(N_z) \subset \tilde{V} \). Therefore \(g(z') \neq h(z') \) for all \(z' \in N_z \), and thus \(N_z \subset Z \setminus Z_0 \). We have thus shown that, for each \(z \in Z \setminus Z_0 \), there exists an open set \(N_z \) such that \(z \in N_z \) and \(N_z \subset Z \setminus Z_0 \). We conclude that \(Z \setminus Z_0 \) is open.

The subset \(Z_0 \) of \(Z \) is therefore both open and closed. Also \(Z_0 \) is non-empty by hypothesis. We deduce that \(Z_0 = Z \), since \(Z \) is connected. Thus \(g = h \), as required.

Lemma 3.3 Let \(p : \tilde{X} \to X \) be a covering map, let \(Z \) be a topological space, let \(A \) be a connected subset of \(Z \), and let \(f : Z \to X \) and \(g : A \to \tilde{X} \) be continuous maps with the property that \(p \circ g = f|A \). Suppose that \(f(Z) \subset U \), where \(U \) is an open subset of \(X \) that is evenly covered by the covering map \(p \). Then there exists a continuous map \(\tilde{f} : Z \to \tilde{X} \) such that \(\tilde{f}|A = g \) and \(p \circ \tilde{f} = f \).

Proof The open set \(U \) is evenly covered by the covering map \(p \), and therefore \(p^{-1}(U) \) is a disjoint union of open sets, each of which is mapped homeomorphically onto \(U \) by the covering map \(p \). One of these open sets contains \(g(a) \) for some \(a \in A \); let this set be denoted by \(\tilde{U} \). Let \(\sigma : U \to \tilde{U} \) be the inverse of the homeomorphism \(p(\tilde{U}) : \tilde{U} \to U \), and let \(\tilde{f} = \sigma \circ f \). Then \(p \circ \tilde{f} = f \). Also \(p \circ \tilde{f}|A = p \circ g \) and \(\tilde{f}(a) = g(a) \). It follows from Proposition 3.2 that \(\tilde{f}|A = g \), since \(A \) is connected. Thus \(\tilde{f} : Z \to \tilde{X} \) is the required map.

Theorem 3.4 (Path Lifting Theorem) Let \(p : \tilde{X} \to X \) be a covering map, let \(\gamma : [0, 1] \to X \) be a continuous path in \(X \), and let \(w \) be a point of \(\tilde{X} \) satisfying \(p(w) = \gamma(0) \). Then there exists a unique continuous path \(\tilde{\gamma} : [0, 1] \to \tilde{X} \) such that \(\tilde{\gamma}(0) = w \) and \(p \circ \tilde{\gamma} = \gamma \).
Proof The map $p: \tilde{X} \to X$ is a covering map; therefore there exists an open cover U of X such that each open set U belonging to X is evenly covered by the map p. Now the collection consisting of the preimages $\gamma^{-1}(U)$ of the open sets U belonging to U is an open cover of the interval $[0, 1]$. But $[0, 1]$ is compact, by the Heine-Borel Theorem. It follows from the Lebesgue Lemma that there exists some $\delta > 0$ such that every subinterval of length less than δ is evenly covered by the covering map p. Partition the interval $[0, 1]$ into subintervals $[t_{i-1}, t_i]$, where $0 = t_0 < t_1 < \cdots < t_{n-1} < t_n = 1$, and where the length of each subinterval is less than δ. Then each subinterval $[t_{i-1}, t_i]$ is mapped by γ into some open set in X that is evenly covered by the map p. It follows from Lemma 3.3 that once $\tilde{\gamma}(t_{i-1})$ has been determined, we can extend $\tilde{\gamma}$ continuously over the ith subinterval $[t_{i-1}, t_i]$. Thus by extending $\tilde{\gamma}$ successively over $[t_0, t_1]$, $[t_1, t_2]$, ..., $[t_{n-1}, t_n]$, we can lift the path $\gamma:[0, 1] \to X$ to a path $\tilde{\gamma}:[0, 1] \to \tilde{X}$ starting at w. The uniqueness of $\tilde{\gamma}$ follows from Proposition 3.2.

Theorem 3.5 (The Monodromy Theorem) Let $p: \tilde{X} \to X$ be a covering map, let $H: [0, 1] \times [0, 1] \to X$ be a continuous map, and let w be a point of X satisfying $p(w) = H(0, 0)$. Then there exists a unique continuous map $\tilde{H}: [0, 1] \times [0, 1] \to \tilde{X}$ such that $\tilde{H}(0, 0) = w$ and $p \circ \tilde{H} = H$.

Proof The unit square $[0, 1] \times [0, 1]$ is compact. By applying the Lebesgue Lemma to an open cover of the square by preimages of evenly covered open sets in X (as in the proof of Theorem 3.4), we see that there exists some $\delta > 0$ with the property that any square contained in $[0, 1] \times [0, 1]$ whose sides have length less than δ is mapped by H into some open set in X which is evenly covered by the covering map p. It follows from Lemma 3.3 that if the lift \tilde{H} of H has already been determined over a corner, or along one side, or along two adjacent sides of a square whose sides have length less than δ, then \tilde{H} can be extended over the whole of that square. Thus if we subdivide $[0, 1] \times [0, 1]$ into squares $S_{j,k}$, where

$$S_{j,k} = \left\{ (s, t) \in [0, 1] \times [0, 1] : \frac{j-1}{n} \leq s \leq \frac{j}{n} \text{ and } \frac{k-1}{n} \leq t \leq \frac{k}{n} \right\},$$

and $1/n < \delta$, then we can construct a lift \tilde{H} of H by defining $\tilde{H}(0, 0) = w$, and then successively extending \tilde{H} in turn over each of these smaller squares. (Indeed the map \tilde{H} can be extended successively over the squares $S_{1,1}, S_{1,2}, \ldots, S_{1,n}, S_{2,1}, S_{2,2}, \ldots, S_{2,n}, S_{3,1}, \ldots, S_{n-1,n}, \ldots, S_{n,1}, S_{n,2}, \ldots, S_{n,n}$.) The uniqueness of \tilde{H} follows from Proposition 3.2.
3.3 The Fundamental Group of the Circle

Theorem 3.6 $\pi_1(S^1, b) \cong \mathbb{Z}$ for any $b \in S^1$.

Proof We regard S^1 as the unit circle in \mathbb{R}^2. Without loss of generality, we can take $b = (1, 0)$. Now the map $p: \mathbb{R} \to S^1$ which sends $t \in \mathbb{R}$ to $(\cos 2\pi t, \sin 2\pi t)$ is a covering map, and $b = p(0)$. Moreover $p(t_1) = p(t_2)$ if and only if $t_1 - t_2$ is an integer; in particular $p(t) = b$ if and only if t is an integer.

Let α and β be loops in S^1 based at b, and let $\tilde{\alpha}$ and $\tilde{\beta}$ be paths in \mathbb{R} that satisfy $p \circ \tilde{\alpha} = \alpha$ and $p \circ \tilde{\beta} = \beta$. Suppose that α and β represent the same element of $\pi_1(S^1, b)$. Then there exists a homotopy $F: [0, 1] \times [0, 1] \to S^1$ such that $F(t, 0) = \alpha(t)$ and $F(t, 1) = \beta(t)$ for all $t \in [0, 1]$, and $F(0, \tau) = F(1, \tau) = b$ for all $\tau \in [0, 1]$. It follows from the Monodromy Theorem (Theorem 3.5) that this homotopy lifts to a continuous map $\tilde{G}: [0, 1] \times [0, 1] \to \mathbb{R}$ satisfying $p \circ \tilde{G} = F$. Moreover $G(0, \tau)$ and $G(1, \tau)$ are integers for all $\tau \in [0, 1]$, since $p(G(0, \tau)) = b = p(G(1, \tau))$. Also $G(t, 0) - \tilde{\alpha}(t)$ and $G(t, 1) - \tilde{\beta}(t)$ are integers for all $t \in [0, 1]$, since $p(G(t, 0)) = \alpha(t) = p(\tilde{\alpha}(t))$ and $p(G(t, 1)) = \beta(t) = p(\tilde{\beta}(t))$. Now any continuous integer-valued function on $[0, 1]$ is constant, by the Intermediate Value Theorem. In particular the functions sending $\tau \in [0, 1]$ to $G(0, \tau)$ and $G(1, \tau)$ are constant, as are the functions sending $t \in [0, 1]$ to $G(t, 0) - \tilde{\alpha}(t)$ and $G(t, 1) - \tilde{\beta}(t)$. Thus

\[
G(0, 0) = G(0, 1), \quad G(1, 0) = G(1, 1),
\]

\[
G(1, 0) - \tilde{\alpha}(1) = G(0, 0) - \tilde{\alpha}(0), \quad G(1, 1) - \tilde{\beta}(1) = G(0, 1) - \tilde{\beta}(0).
\]

On combining these results, we see that

\[
\tilde{\alpha}(1) - \tilde{\alpha}(0) = G(1, 0) - G(0, 0) = G(1, 1) - G(0, 1) = \tilde{\beta}(1) - \tilde{\beta}(0).
\]

We conclude from this that there exists a well-defined function $\lambda: \pi_1(S^1, b) \to \mathbb{Z}$ characterized by the property that $\lambda([\alpha]) = \tilde{\alpha}(1) - \tilde{\alpha}(0)$ for all loops α based at b, where $\tilde{\alpha}: [0, 1] \to \mathbb{R}$ is any path in \mathbb{R} satisfying $p \circ \tilde{\alpha} = \alpha$.

Next we show that λ is a homomorphism. Let α and β be any loops based at b, and let $\tilde{\alpha}$ and $\tilde{\beta}$ be lifts of α and β. The element $[\alpha][\beta]$ of $\pi_1(S^1, b)$ is represented by the product path $\alpha \beta$, where

\[
(\alpha \beta)(t) = \begin{cases}
\alpha(2t) & \text{if } 0 \leq t \leq \frac{1}{2}; \\
\beta(2t - 1) & \text{if } \frac{1}{2} \leq t \leq 1.
\end{cases}
\]

Define a continuous path $\sigma: [0, 1] \to \mathbb{R}$ by

\[
\sigma(t) = \begin{cases}
\tilde{\alpha}(2t) & \text{if } 0 \leq t \leq \frac{1}{2}; \\
\tilde{\beta}(2t - 1) + \tilde{\alpha}(1) - \tilde{\beta}(0) & \text{if } \frac{1}{2} \leq t \leq 1.
\end{cases}
\]
(Note that $\sigma(t)$ is well-defined when $t = \frac{1}{2}$.) Then $p \circ \sigma = \alpha \cdot \beta$ and thus
\[
\lambda([\alpha][\beta]) = \lambda([\alpha \cdot \beta]) = \sigma(1) - \sigma(0) = \tilde{\alpha}(1) - \tilde{\alpha}(0) + \tilde{\beta}(1) - \tilde{\beta}(0) = \lambda([\alpha]) + \lambda([\beta]).
\]
Thus $\lambda : \pi_1(S^1, b) \to \mathbb{Z}$ is a homomorphism.

Now suppose that $\lambda([\alpha]) = \lambda([\beta])$. Let $F : [0, 1] \times [0, 1] \to S^1$ be the homotopy between α and β defined by
\[
F(t, \tau) = p\left(1 - \tau\right)\tilde{\alpha}(t) + \tau \tilde{\beta}(t),
\]
where $\tilde{\alpha}$ and $\tilde{\beta}$ are the lifts of α and β respectively starting at 0. Now $\tilde{\beta}(1) = \lambda([\beta]) = \lambda([\alpha]) = \tilde{\alpha}(1)$, and $\tilde{\beta}(0) = \tilde{\alpha}(0) = 0$. Therefore $F(0, \tau) = b = p(\tilde{\alpha}(1)) = F(1, \tau)$ for all $\tau \in [0, 1]$. Thus $\alpha \simeq \beta$ rel $\{0, 1\}$, and therefore $[\alpha] = [\beta]$. This shows that $\lambda : \pi_1(S^1, b) \to \mathbb{Z}$ is injective.

The homomorphism λ is surjective, since $n = \lambda([\gamma_n])$ for all $n \in \mathbb{Z}$, where the loop $\gamma_n : [0, 1] \to S^1$ is given by $\gamma_n(t) = p(nt) = (\cos 2\pi nt, \sin 2\pi nt)$ for all $t \in [0, 1]$. We conclude that $\lambda : \pi_1(S^1, b) \to \mathbb{Z}$ is an isomorphism. □

We now show that every continuous map from the closed disk D to itself has at least one fixed point. This is the two-dimensional version of the Brouwer Fixed Point Theorem.

Theorem 3.7 Let $f : D \to D$ be a continuous map which maps the closed disk D into itself. Then $f(x_0) = x_0$ for some $x_0 \in D$.

Proof Let ∂D denote the boundary circle of D. The inclusion map $i : \partial D \hookrightarrow D$ induces a corresponding homomorphism $i_# : \pi_1(\partial D, b) \to \pi_1(D, b)$ of fundamental groups for any $b \in \partial D$.

Suppose that it were the case that the map f has no fixed point in D. Then one could define a continuous map $r : D \to \partial D$ as follows: for each $x \in D$, let $r(x)$ be the point on the boundary ∂D of D obtained by continuing the line segment joining $f(x)$ to x beyond x until it intersects ∂D at the point $r(x)$. Note that $r|\partial D$ is the identity map of ∂D.

Let $r_# : \pi_1(D, b) \to \pi_1(\partial D, b)$ be the homomorphism of fundamental groups induced by $r : D \to \partial D$. Now $(r \circ i)_# : \pi_1(\partial D, b) \to \pi_1(\partial D, b)$ is the identity isomorphism of $\pi_1(\partial D, b)$, since $r \circ i : \partial D \to \partial D$ is the identity map. But it follows directly from the definition of induced homomorphisms that $(r \circ i)_# = r_# \circ i_#$. Therefore $i_# : \pi_1(\partial D, b) \to \pi_1(D, b)$ is injective, and $r_# : \pi_1(D, b) \to \pi_1(\partial D, b)$ is surjective. But this is impossible, since $\pi_1(\partial D, b) \cong \mathbb{Z}$ (Theorem 3.6) and $\pi_1(D, b)$ is the trivial group. This contradiction shows that the continuous map $f : D \to D$ must have at least one fixed point. □