
Course 421: Algebraic Topology
Section 3: Covering Maps and the Monodromy

Theorem

David R. Wilkins

Copyright c© David R. Wilkins 1988–2008

Contents

3 Covering Maps and the Monodromy Theorem 29
3.1 Covering Maps . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2 Path Lifting and the Monodromy Theorem . . . . . . . . . . . 30
3.3 The Fundamental Group of the Circle . . . . . . . . . . . . . . 33

i



3 Covering Maps and the Monodromy The-

orem

3.1 Covering Maps

Definition Let X and X̃ be topological spaces and let p: X̃ → X be a
continuous map. An open subset U of X is said to be evenly covered by the
map p if and only if p−1(U) is a disjoint union of open sets of X̃ each of which
is mapped homeomorphically onto U by p. The map p: X̃ → X is said to be
a covering map if p: X̃ → X is surjective and in addition every point of X is
contained in some open set that is evenly covered by the map p.

If p: X̃ → X is a covering map, then we say that X̃ is a covering space of X.

Example Let S1 be the unit circle in R2. Then the map p: R→ S1 defined
by

p(t) = (cos 2πt, sin 2πt)

is a covering map. Indeed let n be a point of S1. Consider the open set U
in S1 containing n defined by U = S1 \ {−n}. Now n = (cos 2πt0, sin 2πt0)
for some t0 ∈ R. Then p−1(U) is the union of the disjoint open sets Jn for
all integers n, where

Jn = {t ∈ R : t0 + n− 1
2
< t < t0 + n+ 1

2
}.

Each of the open sets Jn is mapped homeomorphically onto U by the map p.
This shows that p: R→ S1 is a covering map.

Example The map p: C → C \ {0} defined by p(z) = exp(z) is a covering
map. Indeed, given any θ ∈ [−π, π] let us define

Uθ = {z ∈ C \ {0} : arg(−z) 6= θ}.

Then p−1(Uθ) is the disjoint union of the open sets

{z ∈ C : |Im z − θ − 2πn| < π} ,

for all integers n, and p maps each of these open sets homeomorphically onto
Uθ. Thus Uθ is evenly covered by the map p.

Example Consider the map α: (−2, 2)→ S1, where α(t) = (cos 2πt, sin 2πt)
for all t ∈ (−2, 2). It can easily be shown that there is no open set U
containing the point (1, 0) that is evenly covered by the map α. Indeed
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suppose that there were to exist such an open set U . Then there would exist
some δ satisfying 0 < δ < 1

2
such that Uδ ⊂ U , where

Uδ = {(cos 2πt, sin 2πt) : −δ < t < δ}.

The open set Uδ would then be evenly covered by the map α. However the
connected components of α−1(Uδ) are (−2,−2 + δ), (−1− δ,−1 + δ), (−δ, δ),
(1− δ, 1 + δ) and (2− δ, 2), and neither (−2,−2 + δ) nor (2− δ, 2) is mapped
homeomorphically onto Uδ by α.

Lemma 3.1 Let p: X̃ → X be a covering map. Then p(V ) is open in X
for every open set V in X̃. In particular, a covering map p: X̃ → X is a
homeomorphism if and only if it is a bijection.

Proof Let V be open in X̃, and let x ∈ p(V ). Then x = p(v) for some
v ∈ V . Now there exists an open set U containing the point x which is
evenly covered by the covering map p. Then p−1(U) is a disjoint union of
open sets, each of which is mapped homeomorphically onto U by the covering
map p. One of these open sets contains v; let Ũ be this open set, and let
Nx = p(V ∩ Ũ). Now Nx is open in X, since V ∩ Ũ is open in Ũ and p|Ũ is a
homeomorphism from Ũ to U . Also x ∈ Nx and Nx ⊂ p(V ). It follows that
p(V ) is the union of the open sets Nx as x ranges over all points of p(V ),
and thus p(V ) is itself an open set, as required. The result that a bijective
covering map is a homeomorphism then follows directly from the fact that a
continuous bijection is a homeomorphism if and only if it maps open sets to
open sets.

3.2 Path Lifting and the Monodromy Theorem

Let p: X̃ → X be a covering map over a topological space X. Let Z be a
topological space, and let f :Z → X be a continuous map from Z to X. A
continuous map f̃ :Z → X̃ is said to be a lift of the map f :Z → X if and
only if p◦ f̃ = f . We shall prove various results concerning the existence and
uniqueness of such lifts.

Proposition 3.2 Let p: X̃ → X be a covering map, let Z be a connected
topological space, and let g:Z → X̃ and h:Z → X̃ be continuous maps.
Suppose that p ◦ g = p ◦h and that g(z) = h(z) for some z ∈ Z. Then g = h.

Proof Let Z0 = {z ∈ Z : g(z) = h(z)}. Note that Z0 is non-empty, by
hypothesis. We show that Z0 is both open and closed in Z.
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Let z be a point of Z. There exists an open set U in X containing the
point p(g(z)) which is evenly covered by the covering map p. Then p−1(U)
is a disjoint union of open sets, each of which is mapped homeomorphically
onto U by the covering map p. One of these open sets contains g(z); let this
set be denoted by Ũ . Also one of these open sets contains h(z); let this open
set be denoted by Ṽ . Let Nz = g−1(Ũ) ∩ h−1(Ṽ ). Then Nz is an open set
in Z containing z.

Consider the case when z ∈ Z0. Then g(z) = h(z), and therefore Ṽ = Ũ .
It follows from this that both g and h map the open set Nz into Ũ . But
p ◦ g = p ◦ h, and p|Ũ : Ũ → U is a homeomorphism. Therefore g|Nz = h|Nz,
and thus Nz ⊂ Z0. We have thus shown that, for each z ∈ Z0, there exists
an open set Nz such that z ∈ Nz and Nz ⊂ Z0. We conclude that Z0 is open.

Next consider the case when z ∈ Z \ Z0. In this case Ũ ∩ Ṽ = ∅, since
g(z) 6= h(z). But g(Nz) ⊂ Ũ and h(Nz) ⊂ Ṽ . Therefore g(z′) 6= h(z′) for all
z′ ∈ Nz, and thus Nz ⊂ Z \Z0. We have thus shown that, for each z ∈ Z \Z0,
there exists an open set Nz such that z ∈ Nz and Nz ⊂ Z \Z0. We conclude
that Z \ Z0 is open.

The subset Z0 of Z is therefore both open and closed. Also Z0 is non-
empty by hypothesis. We deduce that Z0 = Z, since Z is connected. Thus
g = h, as required.

Lemma 3.3 Let p: X̃ → X be a covering map, let Z be a topological space,
let A be a connected subset of Z, and let f :Z → X and g:A → X̃ be
continuous maps with the property that p ◦ g = f |A. Suppose that f(Z) ⊂ U ,
where U is an open subset of X that is evenly covered by the covering map p.
Then there exists a continuous map f̃ :Z → X̃ such that f̃ |A = g and p◦ f̃ =
f .

Proof The open set U is evenly covered by the covering map p, and therefore
p−1(U) is a disjoint union of open sets, each of which is mapped homeomor-
phically onto U by the covering map p. One of these open sets contains g(a)
for some a ∈ A; let this set be denoted by Ũ . Let σ:U → Ũ be the inverse
of the homeomorphism p|Ũ : Ũ → U , and let f̃ = σ ◦ f . Then p ◦ f̃ = f .
Also p ◦ f̃ |A = p ◦ g and f̃(a) = g(a). It follows from Proposition 3.2 that
f̃ |A = g, since A is connected. Thus f̃ :Z → X̃ is the required map.

Theorem 3.4 (Path Lifting Theorem) Let p: X̃ → X be a covering map, let
γ: [0, 1]→ X be a continuous path in X, and let w be a point of X̃ satisfying
p(w) = γ(0). Then there exists a unique continuous path γ̃: [0, 1] → X̃ such
that γ̃(0) = w and p ◦ γ̃ = γ.
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Proof The map p: X̃ → X is a covering map; therefore there exists an open
cover U of X such that each open set U belonging to X is evenly covered
by the map p. Now the collection consisting of the preimages γ−1(U) of the
open sets U belonging to U is an open cover of the interval [0, 1]. But [0, 1] is
compact, by the Heine-Borel Theorem. It follows from the Lebesgue Lemma
that there exists some δ > 0 such that every subinterval of length less than δ
is mapped by γ into one of the open sets belonging to U . Partition the interval
[0, 1] into subintervals [ti−1, ti], where 0 = t0 < t1 < · · · < tn−1 < tn = 1, and
where the length of each subinterval is less than δ. Then each subinterval
[ti−1, ti] is mapped by γ into some open set in X that is evenly covered by the
map p. It follows from Lemma 3.3 that once γ̃(ti−1) has been determined,
we can extend γ̃ continuously over the ith subinterval [ti−1, ti]. Thus by
extending γ̃ successively over [t0, t1], [t1, t2],. . ., [tn−1, tn], we can lift the path
γ: [0, 1] → X to a path γ̃: [0, 1] → X̃ starting at w. The uniqueness of γ̃
follows from Proposition 3.2.

Theorem 3.5 (The Monodromy Theorem) Let p: X̃ → X be a covering
map, let H: [0, 1] × [0, 1] → X be a continuous map, and let w be a point
of X̃ satisfying p(w) = H(0, 0). Then there exists a unique continuous map
H̃: [0, 1]× [0, 1]→ X̃ such that H̃(0, 0) = w and p ◦ H̃ = H.

Proof The unit square [0, 1] × [0, 1] is compact. By applying the Lebesgue
Lemma to an open cover of the square by preimages of evenly covered open
sets in X (as in the proof of Theorem 3.4), we see that there exists some
δ > 0 with the property that any square contained in [0, 1] × [0, 1] whose
sides have length less than δ is mapped by H into some open set in X which
is evenly covered by the covering map p. It follows from Lemma 3.3 that if
the lift H̃ of H has already been determined over a corner, or along one side,
or along two adjacent sides of a square whose sides have length less than δ,
then H̃ can be extended over the whole of that square. Thus if we subdivide
[0, 1]× [0, 1] into squares Sj,k, where

Sj,k =

{
(s, t) ∈ [0, 1]× [0, 1] :

j − 1

n
≤ s ≤ j

n
and

k − 1

n
≤ t ≤ k

n

}
,

and 1/n < δ, then we can construct a lift H̃ of H by defining H̃(0, 0) = w,
and then successively extending H̃ in turn over each of these smaller squares.
(Indeed the map H̃ can be extended successively over the squares

S1,1, S1,2, . . . , S1,n, S2,1, S2,2, . . . , S2,n, S3,1, . . . , Sn−1,n, . . . , Sn,1, Sn,2, . . . , Sn,n.)

The uniqueness of H̃ follows from Proposition 3.2.
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3.3 The Fundamental Group of the Circle

Theorem 3.6 π1(S
1, b) ∼= Z for any b ∈ S1.

Proof We regard S1 as the unit circle in R2. Without loss of generality,
we can take b = (1, 0). Now the map p: R → S1 which sends t ∈ R to
(cos 2πt, sin 2πt) is a covering map, and b = p(0). Moreover p(t1) = p(t2) if
and only if t1 − t2 is an integer; in particular p(t) = b if and only if t is an
integer.

Let α and β be loops in S1 based at b, and let α̃ and β̃ be paths in R that
satisfy p ◦ α̃ = α and p ◦ β̃ = β. Suppose that α and β represent the same
element of π1(S

1, b). Then there exists a homotopy F : [0, 1] × [0, 1] → S1

such that F (t, 0) = α(t) and F (t, 1) = β(t) for all t ∈ [0, 1], and F (0, τ) =
F (1, τ) = b for all τ ∈ [0, 1]. It follows from the Monodromy Theorem
(Theorem 3.5) that this homotopy lifts to a continuous map G: [0, 1]×[0, 1]→
R satisfying p ◦ G = F . Moreover G(0, τ) and G(1, τ) are integers for all
τ ∈ [0, 1], since p(G(0, τ)) = b = p(G(1, τ)). Also G(t, 0)− α̃(t) and G(t, 1)−
β̃(t) are integers for all t ∈ [0, 1], since p(G(t, 0)) = α(t) = p(α̃(t)) and
p(G(t, 1)) = β(t) = p(β̃(t)). Now any continuous integer-valued function
on [0, 1] is constant, by the Intermediate Value Theorem. In particular the
functions sending τ ∈ [0, 1] to G(0, τ) and G(1, τ) are constant, as are the
functions sending t ∈ [0, 1] to G(t, 0)− α̃(t) and G(t, 1)− β̃(t). Thus

G(0, 0) = G(0, 1), G(1, 0) = G(1, 1),

G(1, 0)− α̃(1) = G(0, 0)− α̃(0), G(1, 1)− β̃(1) = G(0, 1)− β̃(0).

On combining these results, we see that

α̃(1)− α̃(0) = G(1, 0)−G(0, 0) = G(1, 1)−G(0, 1) = β̃(1)− β̃(0).

We conclude from this that there exists a well-defined function λ: π1(S
1, b)→

Z characterized by the property that λ([α]) = α̃(1)−α̃(0) for all loops α based
at b, where α̃: [0, 1]→ R is any path in R satisfying p ◦ α̃ = α.

Next we show that λ is a homomorphism. Let α and β be any loops based
at b, and let α̃ and β̃ be lifts of α and β. The element [α][β] of π1(S

1, b) is
represented by the product path α.β, where

(α.β)(t) =

{
α(2t) if 0 ≤ t ≤ 1

2
;

β(2t− 1) if 1
2
≤ t ≤ 1.

Define a continuous path σ: [0, 1]→ R by

σ(t) =

{
α̃(2t) if 0 ≤ t ≤ 1

2
;

β̃(2t− 1) + α̃(1)− β̃(0) if 1
2
≤ t ≤ 1.
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(Note that σ(t) is well-defined when t = 1
2
.) Then p ◦ σ = α.β and thus

λ([α][β]) = λ([α.β]) = σ(1)− σ(0) = α̃(1)− α̃(0) + β̃(1)− β̃(0)

= λ([α]) + λ([β]).

Thus λ: π1(S
1, b)→ Z is a homomorphism.

Now suppose that λ([α]) = λ([β]). Let F : [0, 1] × [0, 1] → S1 be the
homotopy between α and β defined by

F (t, τ) = p
(

(1− τ)α̃(t) + τ β̃(t)
)
,

where α̃ and β̃ are the lifts of α and β respectively starting at 0. Now
β̃(1) = λ([β]) = λ([α]) = α̃(1), and β̃(0) = α̃(0) = 0. Therefore F (0, τ) =
b = p(α̃(1)) = F (1, τ) for all τ ∈ [0, 1]. Thus α ' β rel {0, 1}, and therefore
[α] = [β]. This shows that λ: π1(S

1, b)→ Z is injective.
The homomorphism λ is surjective, since n = λ([γn]) for all n ∈ Z, where

the loop γn: [0, 1] → S1 is given by γn(t) = p(nt) = (cos 2πnt, sin 2πnt) for
all t ∈ [0, 1]. We conclude that λ: π1(S

1, b)→ Z is an isomorphism.

We now show that every continuous map from the closed disk D to itself
has at least one fixed point. This is the two-dimensional version of the
Brouwer Fixed Point Theorem.

Theorem 3.7 Let f :D → D be a continuous map which maps the closed
disk D into itself. Then f(x0) = x0 for some x0 ∈ D.

Proof Let ∂D denote the boundary circle of D. The inclusion map i: ∂D ↪→
D induces a corresponding homomorphism i#: π1(∂D,b)→ π1(D,b) of fun-
damental groups for any b ∈ ∂D.

Suppose that it were the case that the map f has no fixed point in D.
Then one could define a continuous map r:D → ∂D as follows: for each
x ∈ D, let r(x) be the point on the boundary ∂D of D obtained by continuing
the line segment joining f(x) to x beyond x until it intersects ∂D at the point
r(x). Note that r|∂D is the identity map of ∂D.

Let r#: π1(D,b) → π1(∂D,b) be the homomorphism of fundamental
groups induced by r:D → ∂D. Now (r ◦ i)#: π1(∂D,b) → π1(∂D,b) is
the identity isomorphism of π1(∂D,b), since r ◦ i: ∂D → ∂D is the identity
map. But it follows directly from the definition of induced homomorphisms
that (r ◦ i)# = r# ◦ i#. Therefore i#: π1(∂D,b) → π1(D,b) is injective,
and r#: π1(D,b) → π1(∂D,b) is surjective. But this is impossible, since
π1(∂D,b) ∼= Z (Theorem 3.6) and π1(D,b) is the trivial group. This con-
tradiction shows that the continuous map f :D → D must have at least one
fixed point.
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