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3 Covering Maps and the Monodromy The-
orem

3.1 Covering Maps

Definition Let X and X be topological spaces and let p:f( — X be a
continuous map. An open subset U of X is said to be evenly covered by the
map p if and only if p~1(U) is a disjoint union of open sets of X each of which
is mapped homeomorphically onto U by p. The map p: X — X is said to be
a covering map if p: X — X is surjective and in addition every point of X is
contained in some open set that is evenly covered by the map p.

Ifp:X > Xisa covering map, then we say that Xisa covering space of X.

Example Let S! be the unit circle in R?. Then the map p: R — S defined
by
p(t) = (cos 27t sin 27t)

is a covering map. Indeed let n be a point of S*. Consider the open set U
in S containing n defined by U = S'\ {—n}. Now n = (cos 27y, sin 27t)
for some ¢ty € R. Then p~!(U) is the union of the disjoint open sets .J, for
all integers n, where

Jo={teR:tg+n—Li<t<toy+n+i}.

Each of the open sets J,, is mapped homeomorphically onto U by the map p.
This shows that p: R — S! is a covering map.

Example The map p:C — C\ {0} defined by p(z) = exp(z) is a covering
map. Indeed, given any 0 € [—m, 7| let us define

Ug={z € C\ {0} : arg(—=2) # 0}.
Then p~!(Up) is the disjoint union of the open sets
{z€eC:|lmz—-0—-2mn| <7},

for all integers n, and p maps each of these open sets homeomorphically onto
Uy. Thus Uy is evenly covered by the map p.

Example Consider the map a: (—2,2) — S, where a(t) = (cos 2t, sin 27t)

for all ¢ € (—2,2). It can easily be shown that there is no open set U
containing the point (1,0) that is evenly covered by the map «. Indeed
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suppose that there were to exist such an open set U. Then there would exist
some ¢ satisfying 0 < § < % such that Us C U, where

Us = {(cos 2mt,sin 2wt) : —§ <t < d}.

The open set Us would then be evenly covered by the map o. However the
connected components of a~!(Us) are (—2,—2+14), (=1 —40,—1+4), (—4,0),
(1-6,1+6) and (2—9,2), and neither (—2, -2+ ) nor (2 —6,2) is mapped
homeomorphically onto Us by «.

Lemma 3.1 Let p: X — X be a covering map. Then p(V) is open in X
for every open set V in X. In particular, a covering map p: X — X is a
homeomorphism if and only if it is a bijection.

Proof Let V be open in X, and let = € p(V). Then = p(v) for some
v € V. Now there exists an open set U containing the point x which is
evenly covered by the covering map p. Then p~!(U) is a disjoint union of
open sets, each of which is mapped homeomorphically onto U by the covering
map p. One of these open sets contains v; let U be this open set, and let
N, = p(VNU). Now N, is open in X, since VN U is open in U and p|U is a
homeomorphism from U to U. Also z € N, and N, C p(V). It follows that
p(V) is the union of the open sets IV, as x ranges over all points of p(V),
and thus p(V') is itself an open set, as required. The result that a bijective
covering map is a homeomorphism then follows directly from the fact that a
continuous bijection is a homeomorphism if and only if it maps open sets to
open sets. |}

3.2 Path Lifting and the Monodromy Theorem

Let p: X — X be a covering map over a topological space X. Let Z be a
topological space, and let f: Z — X be a continuous map from Z to X. A
continuous map f:Z — X is said to be a lift of the map f:Z — X if and
only if po f = f. We shall prove various results concerning the existence and
uniqueness of such lifts.

Proposition 3.2 Let p: X — X be a covering map, let Z be a connected
topological space, and let g:Z — X and h: Z — X be continuous maps.
Suppose that po g = poh and that g(z) = h(z) for some z € Z. Then g = h.

Proof Let Zy = {z € Z : g(2) = h(z)}. Note that Z; is non-empty, by
hypothesis. We show that Z; is both open and closed in Z.
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Let z be a point of Z. There exists an open set U in X containing the
point p(g(z)) which is evenly covered by the covering map p. Then p~!(U)
is a disjoint union of open sets, each of which is mapped homeomorphically
onto U by the covering map p. One of these open sets contains g(z); let this
set be denoted by U. Also one of these open sets contains h(z); let this open
set be denoted by V. Let N, = g-(U) N h~*(V). Then N, is an open set
in Z containing z.

Consider the case when z € Zy. Then g(z) = h(z), and therefore V = U.
It follows from this that both ¢ and A map the open set N, into U. But
pog=poh,and p[U: U — U is a homeomorphism. Therefore g|N. = h|N,,
and thus N, C Z;. We have thus shown that, for each z € Z,, there exists
an open set N, such that z € N, and N, C Z;. We conclude that Z; is open.

Next consider the case when 2z € Z'\ Zy. In this case UNV =, since
g(z) # h(2). But g(N,) € U and h(N,) C V. Therefore g(2') # h(Z') for all
2 € N, and thus N, C Z\ Zy. We have thus shown that, for each z € Z\ Zy,
there exists an open set N, such that z € N, and N, C Z\ Z,. We conclude
that Z \ Zy is open.

The subset Z; of Z is therefore both open and closed. Also Z; is non-
empty by hypothesis. We deduce that Z; = Z, since Z is connected. Thus
g = h, as required. |}

Lemma 3.3 Let p: X — X be a covering map, let Z be a topological space,
let A be a connected subset of Z, and let f:Z — X and g:A — X be
continuous maps with the property that po g = f|A. Suppose that f(Z) C U,
where U is an open subset of X that is evenly covered by the covering map p.
Then there ezists a continuous map f:Z — X such that f|A —gandpof =

f.

Proof The open set U is evenly covered by the covering map p, and therefore
p~}(U) is a disjoint union of open sets, each of which is mapped homeomor-
phically onto U by the covering map p. One of these open sets contains g(a)
for some a € A; let this set be denoted by U. Let 0: U — U be the inverse
of the homeomorphism p[U U—U,andlet f =cof. Thenpo f = f.
Also po fl[A=pogand f(a) = g(a ). It follows from Proposition 3.2 that
f |A = g, since A is connected. Thus f:Z — X is the required map. |

Theorem 3.4 (Path Lifting Theorem) Let p: X — X be a covering map, let
v:10,1] — X be a continuous path in X, and let w be a point of X satisfying
p(w) = 7(0). Then there exists a unique continuous path 7:[0,1] — X such
that ¥(0) =w and poy = 7.
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Proof The map p: X — X is a covering map; therefore there exists an open
cover U of X such that each open set U belonging to X is evenly covered
by the map p. Now the collection consisting of the preimages v~ (U) of the
open sets U belonging to U is an open cover of the interval [0, 1]. But [0, 1] is
compact, by the Heine-Borel Theorem. It follows from the Lebesgue Lemma
that there exists some 0 > 0 such that every subinterval of length less than ¢
is mapped by  into one of the open sets belonging to U. Partition the interval
[0, 1] into subintervals [t;_1,t;], where 0 =ty <t; < --- <t,1 <t, =1, and
where the length of each subinterval is less than 6. Then each subinterval
[ti—1,t;] is mapped by 7 into some open set in X that is evenly covered by the
map p. It follows from Lemma 3.3 that once 7(¢;_;) has been determined,
we can extend 4 continuously over the ith subinterval [¢t;_i,%;]. Thus by
extending 4 successively over [to, t1], [t1,t2],. - -, [tn_1, tn], we can lift the path
7:[0,1] — X to a path 4:[0,1] — X starting at w. The uniqueness of
follows from Proposition 3.2. |

Theorem 3.5 (The Monodromy Theorem) Let p: X — X be a covering
map, let H:[0,1] x [0,1] — X be a continuous map, and let w be a point
of X satisfying p(w) = H(0,0). Then there exists a unique continuous map
H:[0,1] x [0,1] — X such that H(0,0) =w andpo H = H.

Proof The unit square [0, 1] x [0, 1] is compact. By applying the Lebesgue
Lemma to an open cover of the square by preimages of evenly covered open
sets in X (as in the proof of Theorem 3.4), we see that there exists some
d > 0 with the property that any square contained in [0, 1] x [0, 1] whose
sides have length less than ¢ is mapped by H into some open set in X which
is evenly covered by the covering map p. It follows from Lemma 3.3 that if
the lift H of H has already been determined over a corner, or along one side,
or along two adjacent sides of a square whose sides have length less than ¢,
then H can be extended over the whole of that square. Thus if we subdivide
[0,1] x [0,1] into squares S;, where

7g—1

' k—1 k
Sj,k:{(s,t)e[o,l]x[(),l]: <s<Zand §1§<—}7
n n n

n

and 1/n < §, then we can construct a lift H of H by defining H(0,0) = w,
and then successively extending H in turn over each of these smaller squares.
(Indeed the map H can be extended successively over the squares

Sl,lv 51,27 SR Sl,na SQ,la SQ,Qa s 782,na S3,1a ) Sn—l,na ER) Sn,h Sn,2a ER) Sn,n)

The uniqueness of H follows from Proposition 3.2. |
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3.3 The Fundamental Group of the Circle
Theorem 3.6 m(S',b) 2 Z for any b € S*.

Proof We regard S! as the unit circle in R%. Without loss of generality,
we can take b = (1,0). Now the map p:R — S! which sends ¢t € R to
(cos 27t,sin 27t) is a covering map, and b = p(0). Moreover p(t;) = p(ts) if
and only if ¢, — 5 is an integer; in particular p(t) = b if and only if ¢ is an
integer.

Let o and 3 be loops in S* based at b, and let & and B be paths in R that
satisfy pod = o and po 3 = 5. Suppose that o and 8 represent the same
element of (S, b). Then there exists a homotopy F:[0,1] x [0,1] — S!
such that F(¢,0) = «(t) and F(t,1) = §(¢t) for all t € [0,1], and F(0,7) =
F(,7) = b for all 7 € [0,1]. It follows from the Monodromy Theorem
(Theorem 3.5) that this homotopy lifts to a continuous map G: [0, 1] x [0, 1] —
R satisfying p o G = F. Moreover G(0,7) and G(1,7) are integers for all
7 € [0,1], since p(G(0,7)) = b= p(G(1,7)). Also G(t,0) —a&(t) and G(t,1) —
B(t) are integers for all t € [0, 1], since p(G(t,0)) = «a(t) = p(a(t)) and
p(G(t,1)) = B(t) = p(B(t)). Now any continuous integer-valued function
on [0, 1] is constant, by the Intermediate Value Theorem. In particular the
functions sending 7 € [0,1] to G(0,7) and G(1,7) are constant, as are the

functions sending t € [0, 1] to G(t,0) — &(t) and G(t,1) — B(t). Thus
G(0,0) = G(0,1), G(1,0) = G(1,1),
G(1,0) — &(1) = G(0,0) — &(0),  G(1,1) = B(1) = G(0,1) — 3(0).

On combining these results, we see that

a(1) —a(0) = G(1,0) — G(0,0) = G(1,1) — G(0,1) = 3(1) — 5(0).

We conclude from this that there exists a well-defined function \: 7y (S*,b) —
Z characterized by the property that A([a]) = &(1)—a(0) for all loops a based
at b, where &:[0,1] — R is any path in R satisfying po & = «a.

Next we show that A is a homomorphism. Let oo and (3 be any loops based
at b, and let & and £ be lifts of o and 3. The element [a][3] of (S, b) is
represented by the product path «.(3, where

Define a continuous path o:[0,1] — R by

a(2t) if 0 <t<3;
oft) = {5(215— D +a(l) - p0) if5<t<1.
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(Note that o(t) is well-defined when ¢ = 3.) Then po o = a.3 and thus

Mlal[8]) = Aa.B) = o(1) = 0(0) = &(1) — a(0) + (1) — 5(0)
= Aled) + A6

Thus A: 7, (S, b) — Z is a homomorphism.
Now suppose that A([a]) = A([3]). Let F:[0,1] x [0,1] — S* be the
homotopy between o and 3 defined by

Ft,r) =p ((1=7)a) +r80)) .

where @ and B are the lifts of « and (3 respectively starting at 0. Now
B(1) = A([f]) = AM[a]) = a(1), and B(0) = @(0) = 0. Therefore F(0,7) =
b=p(a(l)) = F(1,7) for all 7 € [0,1]. Thus a ~ [ rel {0,1}, and therefore
[a] = [8]. This shows that \:7(S',b) — Z is injective.

The homomorphism A is surjective, since n = \([7,]) for all n € Z, where
the loop 7,:[0,1] — S! is given by 7,(t) = p(nt) = (cos2mnt, sin 27nt) for
all t € [0,1]. We conclude that \: 7 (S?,b) — Z is an isomorphism. [

We now show that every continuous map from the closed disk D to itself
has at least one fixed point. This is the two-dimensional version of the
Brouwer Fixzed Point Theorem.

Theorem 3.7 Let f:D — D be a continuous map which maps the closed
disk D into itself. Then f(x¢) = X for some xq € D.

Proof Let 0D denote the boundary circle of D. The inclusion map i: 9D —
D induces a corresponding homomorphism iy: 7 (0D, b) — w1 (D, b) of fun-
damental groups for any b € 9D.

Suppose that it were the case that the map f has no fixed point in D.
Then one could define a continuous map r: D — 0D as follows: for each
x € D, let r(x) be the point on the boundary 9D of D obtained by continuing
the line segment joining f(x) to x beyond x until it intersects 9D at the point
r(x). Note that r|0D is the identity map of 9D.

Let ryg:m(D,b) — m(0D,b) be the homomorphism of fundamental
groups induced by D — 0D. Now (r oi)y:m(0D,b) — m(0D,b) is
the identity isomorphism of (0D, b), since r 0 i: 0D — 0D is the identity
map. But it follows directly from the definition of induced homomorphisms
that (roi)y = ry oiy. Therefore iy:m (0D,b) — m(D,b) is injective,
and rg:m(D,b) — m(0D,b) is surjective. But this is impossible, since
m(0D,b) =2 Z (Theorem 3.6) and 7 (D, b) is the trivial group. This con-
tradiction shows that the continuous map f: D — D must have at least one
fixed point. |}
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