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2 Homotopies and the Fundamental Group

2.1 Homotopies

Definition Let f :X → Y and g:X → Y be continuous maps between
topological spaces X and Y . The maps f and g are said to be homotopic if
there exists a continuous map H:X × [0, 1] → Y such that H(x, 0) = f(x)
and H(x, 1) = g(x) for all x ∈ X. If the maps f and g are homotopic then
we denote this fact by writing f ' g. The map H with the properties stated
above is referred to as a homotopy between f and g.

Continuous maps f and g from X to Y are homotopic if and only if it is
possible to ‘continuously deform’ the map f into the map g.

Lemma 2.1 Let X and Y be topological spaces. The homotopy relation '
is an equivalence relation on the set of all continuous maps from X to Y .

Proof Clearly f ' f , since (x, t) 7→ f(x) is a homotopy between f and
itself. Thus the relation is reflexive. If f ' g then there exists a homotopy
H:X × [0, 1] → Y between f and g (so that H(x, 0) = f(x) and H(x, 1) =
g(x) for all x ∈ X). But then (x, t) 7→ H(x, 1 − t) is a homotopy between
g and f . Therefore f ' g if and only if g ' f . Thus the relation is
symmetric. Finally, suppose that f ' g and g ' h. Then there exist
homotopies H1:X × [0, 1]→ Y and H2:X × [0, 1]→ Y such that H1(x, 0) =
f(x), H1(x, 1) = g(x) = H2(x, 0) and H2(x, 1) = h(x) for all x ∈ X. Define
H:X × [0, 1]→ Y by

H(x, t) =

{
H1(x, 2t) if 0 ≤ t ≤ 1

2
;

H2(x, 2t− 1) if 1
2
≤ t ≤ 1.

Now H|X× [0, 1
2
] and H|X× [1

2
, 1] are continuous. It follows from elementary

point set topology that H is continuous on X × [0, 1]. Moreover H(x, 0) =
f(x) and H(x, 1) = h(x) for all x ∈ X. Thus f ' h. Thus the relation is
transitive. The relation ' is therefore an equivalence relation.

Definition Let X and Y be topological spaces, and let A be a subset of X.
Let f :X → Y and g:X → Y be continuous maps from X to some topological
space Y , where f |A = g|A (i.e., f(a) = g(a) for all a ∈ A). We say that f and
g are homotopic relative to A (denoted by f ' g rel A) if and only if there
exists a (continuous) homotopy H:X × [0, 1]→ Y such that H(x, 0) = f(x)
and H(x, 1) = g(x) for all x ∈ X and H(a, t) = f(a) = g(a) for all a ∈ A.

Homotopy relative to a chosen subset of X is also an equivalence relation
on the set of all continuous maps between topological spaces X and Y .
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2.2 The Fundamental Group of a Topological Space

Definition Let X be a topological space, and let x0 and x1 be points of X.
A path in X from x0 to x1 is defined to be a continuous map γ: [0, 1] → X
for which γ(0) = x0 and γ(1) = x1. A loop in X based at x0 is defined to be
a continuous map γ: [0, 1]→ X for which γ(0) = γ(1) = x0.

We can concatenate paths. Let γ1: [0, 1]→ X and γ2: [0, 1]→ X be paths
in some topological space X. Suppose that γ1(1) = γ2(0). We define the
product path γ1.γ2: [0, 1]→ X by

(γ1.γ2)(t) =

{
γ1(2t) if 0 ≤ t ≤ 1

2
;

γ2(2t− 1) if 1
2
≤ t ≤ 1.

(The continuity of γ1.γ2 may be deduced from Lemma 2.1.)
If γ: [0, 1]→ X is a path in X then we define the inverse path γ−1: [0, 1]→

X by γ−1(t) = γ(1− t). (Thus if γ is a path from the point x0 to the point x1

then γ−1 is the path from x1 to x0 obtained by traversing γ in the reverse
direction.)

Let X be a topological space, and let x0 ∈ X be some chosen point of X.
We define an equivalence relation on the set of all (continuous) loops based
at the basepoint x0 of X, where two such loops γ0 and γ1 are equivalent if
and only if γ0 ' γ1 rel {0, 1}. We denote the equivalence class of a loop
γ: [0, 1] → X based at x0 by [γ]. This equivalence class is referred to as the
based homotopy class of the loop γ. The set of equivalence classes of loops
based at x0 is denoted by π1(X, x0). Thus two loops γ0 and γ1 represent the
same element of π1(X, x0) if and only if γ0 ' γ1 rel {0, 1} (i.e., there exists
a homotopy F : [0, 1] × [0, 1] → X between γ0 and γ1 which maps (0, τ) and
(1, τ) to x0 for all τ ∈ [0, 1]).

Theorem 2.2 Let X be a topological space, let x0 be some chosen point of X,
and let π1(X, x0) be the set of all based homotopy classes of loops based at the
point x0. Then π1(X, x0) is a group, the group multiplication on π1(X, x0)
being defined according to the rule [γ1][γ2] = [γ1.γ2] for all loops γ1 and γ2

based at x0.

Proof First we show that the group operation on π1(X, x0) is well-defined.
Let γ1, γ

′
1, γ2 and γ′2 be loops in X based at the point x0. Suppose that

[γ1] = [γ′1] and [γ2] = [γ′2]. Let the map F : [0, 1]× [0, 1]→ X be defined by

F (t, τ) =

{
F1(2t, τ) if 0 ≤ t ≤ 1

2
,

F2(2t− 1, τ) if 1
2
≤ t ≤ 1,
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where F1: [0, 1] × [0, 1] → X is a homotopy between γ1 and γ′1, F2: [0, 1] ×
[0, 1] → X is a homotopy between γ2 and γ′2, and where the homotopies
F1 and F2 map (0, τ) and (1, τ) to x0 for all τ ∈ [0, 1]. Then F is itself
a homotopy from γ1.γ2 to γ′1.γ

′
2, and maps (0, τ) and (1, τ) to x0 for all

τ ∈ [0, 1]. Thus [γ1.γ2] = [γ′1.γ
′
2], showing that the group operation on

π1(X, x0) is well-defined.
Next we show that the group operation on π1(X, x0) is associative. Let γ1,

γ2 and γ3 be loops based at x0, and let α = (γ1.γ2).γ3. Then γ1.(γ2.γ3) = α◦θ,
where

θ(t) =


1
2
t if 0 ≤ t ≤ 1

2
;

t− 1
4

if 1
2
≤ t ≤ 3

4
;

2t− 1 if 3
4
≤ t ≤ 1.

Thus the map G: [0, 1]× [0, 1]→ X defined by G(t, τ) = α((1−τ)t+τθ(t)) is
a homotopy between (γ1.γ2).γ3 and γ1.(γ2.γ3), and moreover this homotopy
maps (0, τ) and (1, τ) to x0 for all τ ∈ [0, 1]. It follows that (γ1.γ2).γ3 '
γ1.(γ2.γ3) rel {0, 1} and hence ([γ1][γ2])[γ3] = [γ1]([γ2][γ3]). This shows that
the group operation on π1(X, x0) is associative.

Let ε: [0, 1]→ X denote the constant loop at x0, defined by ε(t) = x0 for
all t ∈ [0, 1]. Then ε.γ = γ ◦ θ0 and γ.ε = γ ◦ θ1 for any loop γ based at x0,
where

θ0(t) =

{
0 if 0 ≤ t ≤ 1

2
,

2t− 1 if 1
2
≤ t ≤ 1,

θ1(t) =

{
2t if 0 ≤ t ≤ 1

2
,

1 if 1
2
≤ t ≤ 1,

for all t ∈ [0, 1]. But the continuous map (t, τ) 7→ γ((1 − τ)t + τθj(t)) is
a homotopy between γ and γ ◦ θj for j = 0, 1 which sends (0, τ) and (1, τ)
to x0 for all τ ∈ [0, 1]. Therefore ε.γ ' γ ' γ.ε rel {0, 1}, and hence
[ε][γ] = [γ] = [γ][ε]. We conclude that [ε] represents the identity element of
π1(X, x0).

It only remains to verify the existence of inverses. Now the map K: [0, 1]×
[0, 1]→ X defined by

K(t, τ) =

{
γ(2τt) if 0 ≤ t ≤ 1

2
;

γ(2τ(1− t)) if 1
2
≤ t ≤ 1.

is a homotopy between the loops γ.γ−1 and ε, and moreover this homotopy
sends (0, τ) and (1, τ) to x0 for all τ ∈ [0, 1]. Therefore γ.γ−1 ' ε rel{0, 1},
and thus [γ][γ−1] = [γ.γ−1] = [ε]. On replacing γ by γ−1, we see also that
[γ−1][γ] = [ε], and thus [γ−1] = [γ]−1, as required.

Let x0 be a point of some topological space X. The group π1(X, x0) is
referred to as the fundamental group of X based at the point x0.
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Let f :X → Y be a continuous map between topological spaces X and Y ,
and let x0 be a point of X. Then f induces a homomorphism f#: π1(X, x0)→
π1(Y, f(x0)), where f#([γ]) = [f ◦ γ] for all loops γ: [0, 1] → X based at x0.
If x0, y0 and z0 are points belonging to topological spaces X, Y and Z, and
if f :X → Y and g:Y → Z are continuous maps satisfying f(x0) = y0 and
g(y0) = z0, then the induced homomorphisms f#: π1(X, x0)→ π1(Y, y0) and
g#: π1(Y, x0) → π1(Z, z0) satisfy g# ◦ f# = (g ◦ f)#. It follows easily from
this that any homeomorphism of topological spaces induces a corresponding
isomorphism of fundamental groups, and thus the fundamental group is a
topological invariant.

2.3 Simply-Connected Topological Spaces

Definition A topological space X is said to be simply-connected if it is path-
connected, and any continuous map f : ∂D → X mapping the boundary circle
∂D of a closed disc D into X can be extended continuously over the whole
of the disk.

Example Rn is simply-connected for all n. Indeed any continuous map
f : ∂D → Rn defined over the boundary ∂D of the closed unit disk D can
be extended to a continuous map F :D → Rn over the whole disk by setting
F (rx) = rf(x) for all x ∈ ∂D and r ∈ [0, 1].

Let E be a topological space that is homeomorphic to the closed disk D,
and let ∂E = h(∂D), where ∂D is the boundary circle of the disk D and
h:D → E is a homeomorphism from D to E. Then any continuous map
g: ∂E → X mapping ∂E into a simply-connected space X extends continu-
ously to the whole of E. Indeed there exists a continuous map F :D → X
which extends g ◦ h: ∂D → X, and the map F ◦ h−1:E → X then extends
the map g.

Theorem 2.3 A path-connected topological space X is simply-connected if
and only if π1(X, x) is trivial for all x ∈ X.

Proof Suppose that the space X is simply-connected. Let γ: [0, 1] → X be
a loop based at some point x of X. Now the unit square is homeomorphic to
the unit disk, and therefore any continuous map defined over the boundary
of the square can be continuously extended over the whole of the square. It
follows that there exists a continuous map F : [0, 1] × [0, 1] → X such that
F (t, 0) = γ(t) and F (t, 1) = x for all t ∈ [0, 1], and F (0, τ) = F (1, τ) = x for
all τ ∈ [0, 1]. Thus γ ' εx rel{0, 1}, where εx is the constant loop at x, and
hence [γ] = [εx] in π1(X, x). This shows that π1(X, x) is trivial.
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Conversely suppose that X is path-connected and π1(X, x) is trivial for all
x ∈ X. Let f : ∂D → X be a continuous function defined on the boundary
circle ∂D of the closed unit disk D in R2. We must show that f can be
extended continuously over the whole of D. Let x = f(1, 0). There exists a
continuous map G: [0, 1]×[0, 1]→ X such that G(t, 0) = f(cos(2πt), sin(2πt))
and G(t, 1) = x for all t ∈ [0, 1] and G(0, τ) = G(1, τ) = x for all τ ∈ [0, 1],
since π1(X, x) is trivial. Moreover G(t1, τ1) = G(t2, τ2) whenever q(t1, τ1) =
q(t2, τ2), where

q(t, τ) = ((1− τ) cos(2πt) + τ, (1− τ) sin(2πt))

for all t, τ ∈ [0, 1]. It follows that there is a well-defined function F :D → X
such that F ◦ q = G. However q: [0, 1]× [0, 1]→ D is a continuous surjection
from a compact space to a Hausdorff space and is therefore an identification
map. It follows that F :D → X is continuous (since a basic property of iden-
tification maps ensures that a function F :D → X is continuous if and only
if F ◦ q: [0, 1] × [0, 1] → X is continuous). Moreover F :D → X extends the
map f . We conclude that the space X is simply-connected, as required.

One can show that, if two points x1 and x2 in a topological space X
can be joined by a path in X then π1(X, x1) and π1(X, x2) are isomorphic.
On combining this result with Theorem 2.3, we see that a path-connected
topological space X is simply-connected if and only if π1(X, x) is trivial for
some x ∈ X.

Theorem 2.4 Let X be a topological space, and let U and V be open subsets
of X, with U ∪V = X. Suppose that U and V are simply-connected, and that
U ∩ V is non-empty and path-connected. Then X is itself simply-connected.

Proof We must show that any continuous function f : ∂D → X defined on
the unit circle ∂D can be extended continuously over the closed unit disk D.
Now the preimages f−1(U) and f−1(V ) of U and V are open in ∂D (since
f is continuous), and ∂D = f−1(U) ∪ f−1(V ). It follows from the Lebesgue
Lemma that there exists some δ > 0 such that any arc in ∂D whose length
is less than δ is entirely contained in one or other of the sets f−1(U) and
f−1(V ). Choose points z1, z2, . . . , zn around ∂D such that the distance from
zi to zi+1 is less than δ for i = 1, 2, . . . , n−1 and the distance from zn to z1 is
also less than δ. Then, for each i, the short arc joining zi−1 to zi is mapped
by f into one or other of the open sets U and V .

Let x0 be some point of U ∩V . Now the sets U , V and U ∩V are all path-
connected. Therefore we can choose paths αi: [0, 1] → X for i = 1, 2, . . . , n
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such that αi(0) = x0, αi(1) = f(zi), αi([0, 1]) ⊂ U whenever f(zi) ∈ U , and
αi([0, 1]) ⊂ V whenever f(zi) ∈ V . For convenience let α0 = αn.

Now, for each i, consider the sector Ti of the closed unit disk bounded by
the line segments joining the centre of the disk to the points zi−1 and zi and by
the short arc joining zi−1 to zi. Now this sector is homeomorphic to the closed
unit disk, and therefore any continuous function mapping the boundary ∂Ti

of Ti into a simply-connected space can be extended continuously over the
whole of Ti. In particular, let Fi be the function on ∂Ti defined by

Fi(z) =

 f(z) if z ∈ Ti ∩ ∂D,
αi−1(t) if z = tzi−1 for any t ∈ [0, 1],
αi(t) if z = tzi for any t ∈ [0, 1],

Note that Fi(∂Ti) ⊂ U whenever the short arc joining zi−1 to zi is mapped
by f into U , and Fi(∂Ti) ⊂ V whenever this short arc is mapped into V . But
U and V are both simply-connected. It follows that each of the functions
Fi can be extended continuously over the whole of the sector Ti. Moreover
the functions defined in this fashion on each of the sectors Ti agree with one
another wherever the sectors intersect, and can therefore be pieced together
to yield a continuous map defined over the the whole of the closed disk D
which extends the map f , as required.

Example The n-dimensional sphere Sn is simply-connected for all n > 1,
where Sn = {x ∈ Rn+1 : |x| = 1}. Indeed let U = {x ∈ Sn : xn+1 > −1

2
}

and V = {x ∈ Sn : xn+1 <
1
2
}. Then U and V are homeomorphic to an

n-dimensional ball, and are therefore simply-connected. Moreover U ∩ V is
path-connected, provided that n > 1. It follows that Sn is simply-connected
for all n > 1.
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