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10 Exact Sequences of Homology Groups

10.1 Homology Groups of Simplicial Pairs

A simplicial pair (K,L) consists of a simplicial complex K together with
a subcomplex L. The qth chain group Cq(L) of the subcomplex L may be
regarded as a subgroup of the qth chain group Cq(K) of the simplicial com-
plex K, and the inclusion map i:L ↪→ K induces inclusion homomorphisms
iq:Cq(L) ↪→ Cq(K). We define the qth chain group Cq(K,L) of the simplicial
pair to be the quotient group Cq(K)/Cq(L). The boundary homomorphism
∂q:Cq(K)→ Cq−1(L) maps the subgroup Cq(L) into Cq−1(L), and therefore
induces a homomorphism ∂q:Cq(K,L) → Cq−1(K,L). For each integer q,
let uq:Cq(K) → Cq(K,L) be the quotient homomorphism from Cq(K) to
Cq(K,L). Then ∂q ◦ uq = uq−1 ◦ ∂q for all integers q. (This is an immediate
consequence of the fact that the homomorphism ∂q:Cq(K,L)→ Cq−1(K,L)
is by definition the homomorphism induced by the boundary homomorphism
∂q:Cq(K)→ Cq−1(K) of K.)

Now ∂q−1 ◦ ∂q ◦ uq = ∂q−1 ◦ uq−1 ◦ ∂q = uq−2 ◦ ∂q−1 ◦ ∂q = 0. Moreover
the quotient homomorphism uq:Cq(K) → Cq(K,L) is surjective. It follows
that the composition of the homomorphisms ∂q:Cq(K,L)→ Cq−1(K,L) and
∂q−1:Cq−1(K,L) → Cq−2(K,L) is the zero homomorphism. Therefore the
sequence of groups (Cq(K,L) : q ∈ Z) and homomorphisms (∂q:Cq(K,L)→
Cq−1(K,L) : q ∈ Z) constitutes a chain complex C∗(K,L), whose groups are
the chain groups of the simplicial pair (K,L). We shall refer to the homo-
morphisms ∂q:Cq(K,L) → Cq−1(K,L) as the boundary homomorphisms of
the simplicial pair (K,L).

The sequence of quotient homomorphisms (uq:Cq(K) → Cq(K,L) : q ∈
Z) define a chain map u∗:C∗(K) → C∗(K,L) between the chain complexes
C∗(K) and C∗(K,L). The image uq(c) of a q-chain c ∈ Cq(K) of K under
the quotient homomorphism is the coset c + Cq(L) of Cq(L) in Cq(K) that
contains c. Moreover ∂q(c+ Cq(L)) = ∂qc+ Cq−1(L). We define

Zq(K,L) = ker(∂q:Cq(K,L)→ Cq−1(K,L))

= {c+ Cq(L) : c ∈ Cq(K) and ∂qc ∈ Cq−1(L)},
Bq(K,L) = image(∂q+1:Cq+1(K,L)→ Cq(K,L))

= {∂q+1(e) + Cq(L) : e ∈ Cq+1(K)}.

Then Bq(K,L) ⊂ Zq(K,L). We define Hq(K,L) = Zq(K,L)/Bq(K,L).
Let z be an element of Zq(K,L), and let c and c′ be elements of Cq(K)

for which z = c + Cq(L) = c′ + Cq(L). Then c − c′ ∈ Cq(L), ∂qc ∈ Cq−1(L)
and ∂qc

′ ∈ Cq−1(L). But ∂q−1∂qc = ∂q−1∂qc
′ = 0 and ∂qc− ∂qc′ = ∂q(c− c′).
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It follows that ∂qc ∈ Zq−1(L), ∂qc
′ ∈ Zq−1(L) and ∂qc − ∂qc

′ ∈ Bq−1(L),
and therefore [∂qc] = [∂qc

′]. It follows that there is a well-defined homomor-
phism from Zq(K,L) to Hq−1(L) that maps c+Cq(L) to [∂qc]. The subgroup
Bq(K,L) is contained in the kernel of this homomorphism. The homomor-
phism therefore induces a homomorphism ∂∗:Hq(K,L) → Hq−1(L). This
homomorphism sends the homology class of c + Cq(L) in Hq(K,L) to the
homology class of ∂qc in Cq(L) for all c ∈ Cq(K) satisfying ∂qc ∈ Cq−1(L).

Proposition 10.1 (The Homology Exact Sequence of a Simplicial Pair) Let
K be a simplicial complex, and let L be a subcomplex of K. Then the sequence

· · · ∂∗−→Hq(L)
i∗−→Hq(K)

u∗−→Hq(K,L)
∂∗−→Hq−1(L)

i∗−→Hq−1(K)
u∗−→· · ·

of homology groups is exact, where ∂∗:Hq(K,L) → Hq−1(L)) is the homo-
morphism that sends the homology class of c + Cq(L) in Hq(K,L) to the
homology class of ∂c in Hq−1(L) for all c ∈ Cq(K) satisfying ∂qc ∈ Cq−1(L).

Proof The sequence 0−→C∗(L)
i∗−→C∗(K)

u∗−→C∗(K,L)−→0 is a short exact
sequence of chain complexes. It follows from Proposition 9.5 that there is
a corresponding (infinite) sequence of homology groups. Moreover the ho-
momorphism from Hq(K,L) to Hq−1(L) defined as in the statement of that
proposition is the homomorphism ∂q:Hq(K,L) → Hq−1(L) defined as de-
scribed above.

Corollary 10.2 Let K be a simplicial complex, and let L be a subcomplex
of K. Suppose that Hq+1(K,L) = Hq(K,L) = 0 for some integer q. Then
i∗:Hq(L)→ Hq(K) is an isomorphism.

Corollary 10.3 Let K be a simplicial complex, and let L be a subcomplex
of K. Suppose that Hq(K) = Hq−1(K) = 0 for some integer q. Then
∂∗:Hq(K,L)→ Hq−1(L) is an isomorphism.

Corollary 10.4 Let K be a simplicial complex, and let L be a subcom-
plex of K. Suppose that Hq(L) = Hq−1(L) = 0 for some integer q. Then
u∗:Hq(K)→ Hq(K,L) is an isomorphism.

Example Let K be the simplicial complex consisting of all the faces of
an n-dimensional simplex, and let L be the subcomplex consisting of all the
proper faces of this simplex. Then Cq(L) = Cq(K) when q 6= n, and therefore
Cq(K,L) = 0 when q 6= n. Also Cn(K,L) ∼= Z. It follows that Hn(K,L) ∼=
Z, Hq(K,L) = 0 when q 6= n. Also it follows from Proposition 6.4 that
Hq(K) = 0 when q > 0.
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Suppose that n ≥ 2. It follows from Corollary 10.3 that ∂∗:Hq(K,L) →
Hq−1(L) is an isomorphism for q ≥ 2. Therefore Hn−1(L) ∼= Z, and Hq(L) =
0 for q 6= 0, n− 1.

Now suppose that n = 1. We have an exact sequence

0−→H1(K,L)
∂∗−→H0(L)−→H0(K)−→0.

Now H1(K,L) ∼= Z when n = 1. Also H0(K) ∼= Z. From the exactness of
the above sequence we can deduce that H0(L) ∼= H1(K,L)⊕H0(K) ∼= Z⊕Z.
This result is consistent with the fact that, in this case, L is a 0-dimensional
simplicial complex consisting of two vertices.

10.2 Homology Groups of some Closed Surfaces

Lemma 10.5 Let K be a 2-dimensional simplicial complex, and let L and
M be subcomplexes of L, where K = L ∪M . Suppose that M consists of a
triangle of K, together with all its edges and vertices, and that L∩M matches
one of the following descriptions:

(i) L ∩M consists of a single vertex of the triangle;

(ii) L∩M consists of a single edge of the triangle together with the endpoints
of that edge;

(iii) L ∩M consists of two edges of the triangle together with the endpoints
of those edges.

Then Hq(K,L) = 0 for all integers q, and therefore the inclusion map
i:L ↪→ K induces isomorphisms i∗:Hq(L)→ Hq(K) of homology groups.

Proof Let the triangle have vertices v0, v1 and v2, and let τ ∈ C2(K) and
ρ0, ρ1, ρ2 ∈ C1(K) be defined by

τ = 〈v0,v1,v2〉,

ρ0 = 〈v1,v2〉, ρ1 = 〈v2,v0〉, ρ2 = 〈v0,v1〉.
Then ∂2τ = ρ0 + ρ1 + ρ2 in C1(K).

Consider first the case where L ∩M is as described in (i). We label the
vertices of the triangle so that L∩M consists of the single vertex v0. In this
case

C2(K,L) = {nτ + C2(L) : n ∈ Z},
C1(K,L) = {n0ρ0 + n1ρ1 + n2ρ2 + C1(L) : n0, n1 ∈ Z},
C0(K,L) = {r1〈v1〉+ r2〈v2〉+ C0(L) : r ∈ Z}.

112



Now ∂2τ ∈ ρ0 + ρ1 + ρ2 + C1(L), and

∂1(n0ρ0 + n1ρ1 + n2ρ2) ∈ (n2 − n0)〈v1〉+ (n0 − n1)〈v2〉+ C0(L)

for all n0, n1, n2 ∈ Z. It follows that B2(K,L) = Z2(K,L) = 0,

Z1(K,L) = B1(K,L) = {n(ρ0 + ρ1 + ρ2) + C1(L) : n ∈ Z},

and Z0(K,L) = B0(K,L) = C0(K,L). Therefore Hq(K,L) = 0 for all
integers q in the case when L ∩M consists of a single vertex of the triangle.

Consider next the case where L ∩M is as described in (ii). We label the
vertices of the triangle so that L∩M consists of the single edge ρ2, together
with its endpoints v0 and v1. In this case

C2(K,L) = {nτ + C2(L) : n ∈ Z},
C1(K,L) = {n0ρ0 + n1ρ1 + C1(L) : n0, n1 ∈ Z},
C0(K,L) = {r〈v2〉+ C0(L) : r ∈ Z}.

Now ∂2τ ∈ ρ0 + ρ1 + C1(L), and

∂1(n0ρ0 + n1ρ1) ∈ (n0 − n1)〈v2〉+ C0(L)

for all n0, n1 ∈ Z. It follows that B2(K,L) = Z2(K,L) = 0,

Z1(K,L) = B1(K,L) = {n(ρ0 + ρ1) + C1(L) : n ∈ Z},

and Z0(K,L) = B0(K,L) = C0(K,L). Therefore Hq(K,L) = 0 for all
integers q in the case when L ∩M consists of a single edge of the triangle
together with its endpoints.

Finally consider the case where L ∩M is as described in (iii). We label
the vertices of the triangle so that L ∩M consists of the edges ρ1 and ρ2,
together with the vertices v0, v1 and v2 of the triangle. In this case

C2(K,L) = {nτ + C2(L) : n ∈ Z},
C1(K,L) = {n0ρ0 + C1(L) : n0 ∈ Z},
C0(K,L) = 0.

In this case ∂2:C2(K,L)→ C1(K,L) is an isomorphism that sends τ +C2(L)
to ρ0 + C1(L), B2(K,L) = Z2(K,L) = 0, B1(K,L) = Z1(K,L) = C1(K,L)
and B0(K,L) = Z0(K,L) = C0(K,L) = 0. Therefore Hq(K,L) = 0 for
all integers q in the case when L ∩M consists of two edges of the triangle,
together with the vertices of the triangle.

The exact sequence of homology groups of the simplicial pair (K,L)
(Proposition 10.1) then ensures that the inclusion map i:L ↪→ K induces
isomorphisms i∗:Hq(L)→ Hq(K) of homology groups, as required.
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Lemma 10.6 Let K be a 2-dimensional simplicial complex, and let L and
M be subcomplexes of L, where K = L ∪ M . Suppose that M consists
of a triangle of K, together with all its edges and vertices, and that L ∩M
consists of all the edges and vertices of this triangle. Then H2(K,L) ∼= Z, and
Hq(K,L) = 0 for all integers q satisfying q 6= 2. Moreover H0(L) ∼= H0(K)
and there are short exact sequences

0−→H2(L)
i∗−→H2(K)−→J−→0,

0−→I−→H1(L)
i∗−→H1(K)−→0,

where i∗:Hq(L) → Hq(K) is induced by the inclusion map i:L ↪→ K for all
q ∈ Z, and

J = ker(∂∗:H2(K,L)→ H1(L)), I = image(∂∗:H2(K,L)→ H1(L)).

Proof Let the triangle have vertices v0, v1 and v2. Then

C2(K,L) = {nτ + C2(L) : n ∈ Z},

where τ = 〈v0,v1,v2〉, and therefore C2(K,L) ∼= Z. Moreover Cq(L) =
Cq(K) when q 6= 2, and thus Cq(K,L) = 0 when q 6= 2. It follows that
Hq(K,L) = 0 when q 6= 2, and H2(K,L) ∼= C2(K,L) ∼= Z. The exactness of
the short exact sequences then follows from the exact sequence of homology
groups of the simplicial pair (K,L) (Proposition 10.1).

Example We calculate the homology groups H∗(KS, LS), where the simpli-
cial complex KS represents a square S, subdivided into eighteen triangles,
and LS is the subcomplex corresponding to the boundary of that square. We
let S = [0, 3] × [0, 3], so that S is the square in the plane with corners at
(0, 0), (3, 0), (3, 3) and (0, 3). The subdivision of this square into triangles is
as depicted on the following diagram:
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v1 v2 v3 v4

v5 v6 v7 v8

v9 v10 v11 v12

v13 v14 v15 v16

t1
t2

t3
t4

t5
t6

t7
t8

t9
t10

t11

t12

t13

t14
t15

t16
t17

t18

- - -

- - -

e−0 e−1 e−2

e+0 e+1 e+2

6

6

6

6

6

6

f−0

f−1

f−2

f+
0

f+
1

f+
2

The vertices of this simplicial complex KS are v1, . . . ,v16, where

v1 = (0, 0), v2 = (1, 0), v3 = (2, 0), v4 = (3, 0),

v5 = (0, 1), v6 = (1, 1), v7 = (2, 1), v8 = (3, 1),

v9 = (0, 2), v10 = (1, 2), v11 = (2, 2), v12 = (3, 2),

v13 = (0, 3), v14 = (1, 3), v15 = (2, 3), v16 = (3, 3),

We label the exterior edges of the simplicial complex KS as indicated on the
diagram, so that

e−0 = 〈v1,v2〉, e−1 = 〈v2,v3〉, e−2 = 〈v3,v4〉,

e+0 = 〈v13,v14〉, e+1 = 〈v14,v15〉, e+2 = 〈v15,v16〉,

f−0 = 〈v1,v5〉, f−1 = 〈v5,v9〉, f−2 = 〈v9,v13〉,

f+
0 = 〈v4,v8〉, f+

1 = 〈v8,v12〉, f+
2 = 〈v12,v16〉,

We also the vertices, triangles and exterior edges of the simplicial complex
KS as indicated on the diagram. Thus We give each triangle of the simplicial
complex KS the orientation determined by an anticlockwise ordering of its
vertices. Then the oriented triangles of KS are represented by t1, . . . , t18,
where

t1 = 〈v1,v2,v6〉, t2 = 〈v1,v6,v5〉, t3 = 〈v2,v3,v7〉,

t4 = 〈v2,v7,v6〉, t5 = 〈v3,v4,v8〉, t6 = 〈v3,v8,v7〉,
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t7 = 〈v5,v6,v10〉, t8 = 〈v5,v10,v9〉, t9 = 〈v6,v7,v11〉,

t10 = 〈v6,v11,v10〉, t11 = 〈v7,v8,v12〉, t12 = 〈v7,v12,v11〉,

t13 = 〈v9,v10,v14〉, t14 = 〈v9,v14,v13〉, t15 = 〈v10,v11,v15〉,

t16 = 〈v10,v15,v14〉, t17 = 〈v11,v12,v16〉, t18 = 〈v11,v16,v15〉.

Let M0 be the simplicial complex consisting of the single vertex v1 and, for
each integer k between 1 and 18, let Mk be the subcomplex of KS consisting
of the triangles Tj represented by tj for 1 ≤ j ≤ k, together with all the edges
and vertices of those triangles. Then KS = M18. Now examination of the
diagrams shows that, for each integer k between 1 and 18, the intersection
Tk ∩

⋃
j<k Tj is either a single vertex of Tk, or a single edge of Tk, or the

union of two edges of Tk. It follows from Lemma 10.5 that the inclusion map
ik:Mk−1 ↪→Mk induces isomorphisms ik∗:H∗(Mk−1)→ H∗(Mk) of homology
groups for all integers k satisfying 1 ≤ k ≤ 18. Therefore Hq(KS) ∼= Hq(M0)
for all integers q, and thus Hq(KS) = 0 when q > 0, and H0(KS) ∼= Z. More-
over H0(KS) is generated by the 0-dimensional homology class represented
by the single vertex v1.

Let LS denote the one-dimensional subcomplex of KS consisting of all
edges and vertices of KS that are contained within the boundary of the
square [0, 3] × [0, 3]. Now H0(LS) ∼= Z, H1(LS) ∼= Z, and Hq(LS) = 0 when
q > 1. The group H0(LS) is generated by the homology class representing the
vertex v1, and therefore the homomorphism i∗:H0(LS) → H0(KS) induced
by the inclusion map i:LS ↪→ KS is an isomorphism. The group H1(LS) is
generated by the 1-cycle zS, where

zS = e−0 + e−1 + e−2 + f+
0 + f+

1 + f+
2 − e+2 − e+1 − e+0 − f−2 − f−1 − f−0 .

This generating 1-cycle zS represents the sum of the edges of KS that lie on
the boundary of the square, where the orientation on each edge is consistent
with an anticlockwise traversal of the boundary of the square S.

We can use the homology exact sequence of the simplicial pair (KS, LS)
(Proposition 10.1) in order to evaluate the homology groups H∗(KS, LS).
The sequence

H1(KS)−→H1(KS, LS)
∂∗−→H0(LS)

iS∗−→H0(KS)

is exact, where the homomorphism iS∗:H0(LS)→ H0(KS) is induced by the
inclusion map iS:LS ↪→ KS. We have noted that this homomorphism is
an isomorphism. It follows from the exactness of the above sequence that
∂∗:H1(KS, LS)→ H0(LS) is the zero homomorphism. Therefore its kernel is
the whole of H1(KS, LS), and therefore the homomorphism from H1(KS) to
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H1(KS, LS) is surjective. But we have shown that Hq(KS) = 0 for q > 0. It
follows that H1(KS, LS) = 0.

The homology exact sequence of the pair also ensures that the homo-
morphism ∂∗:H2(KS, LS) → H1(LS) is an isomophism, since H2(KS) = 0
and H2(LS) = 0 (see Corollary 10.3). But H1(LS) ∼= Z. It follows that
H2(KS, LS) ∼= Z.

In fact H2(KS, LS) ∼= Z2(KS, LS) since B2(KS, LS) = 0. Moreover

Z2(KS, LS) = {nyS + C2(LS) : n ∈ Z},

where yS =
18∑
j=1

tj. Indeed let c be a 2-chain of KS. Then there are integers

n1, . . . , n18 such that c =
18∑
j=1

njtj. Now any edge belonging to KS \LS lies on

the boundary of exactly two triangles Tj and Tj′ of KS. Moreover orientation
on that edge determined by the anticlockwise ordering of the vertices of Tj is
opposite to the orientation determined by the anticlockwise ordering of the
vertices of Tj′ , and therefore the coefficient of this edge in ∂2c is ±(nj −nj′).
It follows that ∂2c ∈ C1(L) if and only if n1 = n2 = · · · = n18, in which case
c2 = nyS for some integer n. It is then easy to verify that ∂2(yS) = zS.

Example We shall make use of the above results to calculate the homology
groups of a torus. The two-dimensional torus may be represented as the
quotient space obtained from the square [0, 3]×[0, 3] by identifying the points
(x, 0) and (x, 3) for all x ∈ [0, 3], and also identifying the points (0, y) and
(3, y) for all y ∈ [0, 3]. Thus each point on an edge of the square is identified
with a corresponding point on the opposite edge of the square. The four
corners of the square are identified together, so as to represent a single point
of the torus.

Now there exists a simplicial complex KT , and a simplicial map p:KS →
KT where KS is the simplicial complex triangulating the square [0, 3]× [0, 3]
discussed in the previous example, where the polyhedron |KT | of KT is home-
omorphic to the torus, and where the induced map p: |KS| → |KT | between
polyhedra is an identification map which identifies points on opposite edges
of the square S as described above. Moreover this simplicial complex KT

has 18 triangles, 27 edges and 9 vertices. Throughout this example we shall
use the notation developed in the previous example to describe the simplical
complex KS and its chain groups and homology groups.

Let the vertices of KT be labelled as w1, . . . ,w9, where

w1 = p(v1) = p(v4) = p(v13) = p(v16),
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w2 = p(v2) = p(v14),

w3 = p(v3) = p(v15),

w4 = p(v5) = p(v8),

w5 = p(v9) = p(v12),

w6 = p(v6),

w7 = p(v7),

w8 = p(v10),

w9 = p(v11).

and let
e0 = 〈w1,w2〉, e1 = 〈w2,w3〉, e2 = 〈w3,w1〉,
f 0 = 〈w1,w4〉, f 1 = 〈w4,w5〉, f 2 = 〈w5,w1〉,

Then
p#(e+0 ) = p#(e−0 ) = e0, p#(e+1 ) = p#(e−1 ) = e1,

p#(e+2 ) = p#(e−2 ) = e2, p#(f+
0 ) = p#(f−0 ) = f 0,

p#(f+
1 ) = p#(f−1 ) = f 1, p#(f+

2 ) = p#(f−2 ) = f 2,

where p#:C1(KS)→ C1(KT ) is the homomorphism of chain groups induced
by p:KS → KT . Also let tj = p#(tj) for j = 1, 2, . . . , 18, where p#:C2(KS)→
C2(KT ) is the homomorphism of chain groups induced by the simplicial map
p:KS → KT . Then the triangulation KT of the torus may be represented by
the following diagram:
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w1 w2 w3 w1

w4 w6 w7 w4

w5 w8 w9 w5

w1 w2 w3 w1

t1
t2

t3
t4

t5
t6

t7
t8

t9
t10

t11

t12

t13

t14
t15

t16
t17

t18

- - -

- - -

e0 e1 e2

e0 e1 e2

6

6

6

6

6

6

f 0

f 1

f 2

f 0

f 1

f 2
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Let LT = p(LS). Then LT is the subcomplex of KT consisting of the
five vertices w1, w2, w3, w4 and w5, together with the six edges represented
by e0, e1, e3, f 0, f 1 and f 3. Now H1(LT ) ∼= Z1(LT ), since B1(LT ) = 0.
Moreover Z1(LT ) ∼= Z⊕ Z. Indeed

Z1(LT ) = {n1z1 + n2z2 : n1, n2 ∈ Z},

where z1 = e0+e1+e2 and z2 = f 0+f 1+f 2. The simplicial map p:KS → KT

defines a bijection between the simplices of KS \LS and those of KT \LT . It
follows from this that the chain map p∗:C∗(KS, LS) → C∗(KT , LT ) induced
by the simplicial map is an isomorphism of chain complexes, and therefore
induces isomorphisms

p∗:H∗(KS, LS)→ H∗(KT , LT ).

We conclude that H2(KT , LT ) ∼= Z, and Hq(KT , LT ) = 0 when q 6= 2. More-
over H2(KT , LT ) is generated by the homology class of zT , where

yT =
18∑
j=1

tj = p#(yS).

Also H2(LT ) = 0, because the simplicial complex LT is one-dimensional.
We now determine the homomorphism ∂∗:H2(KT , LT ) → H1(LT ). Now

the following diagram relating homology groups of the square and the torus
is commutative:

H2(KS, LS)
∂∗−→ H1(LS)yp∗

yp∗

H2(KT , LT )
∂∗−→ H1(LT )

Moreover
H1(LS) ∼= H2(KS, LS) ∼= H2(KT , LT ) ∼= Z,

and the homomorphisms ∂∗:H2(KS, LS) → H1(LS) and p∗:H2(KS, LS) →
H2(KT , LT ) are isomorphisms. Let µKS ,LS

and µKT ,LT
be the homology

classes in H2(KS, LS) and H2(KT , LT ) respectively represented by yS and
yT . Then p∗(µKS ,LS

) = µKT ,LT
. and ∂∗(µKS ,LS

) = [zS], where

zS = e−0 + e−1 + e−2 + f+
0 + f+

1 + f+
2 − e+2 − e+1 − e+0 − f−2 − f−1 − f−0 .

It follows that ∂∗(µKT ,LT
) = p∗(zS).

We now calculate the image of zS under the homomorphism

p#:C1(LS)→ C1(LT )
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induced by the simplicial map p:KS → KT . We find that

p#(zS) = p#(e−0 ) + p#(e−1 ) + p#(e−2 )

+ p#(f+
0 ) + p#(f+

1 ) + p#(f+
2 )

− p#(e+2 )− p#(e+1 )− p#(e+0 )

− p#(f−2 )− p#(f−1 )− p#(f−0 )

= e0 + e1 + e2

+ f 0 + f 1 + f 2

− e2 − e1 − e0
− f 2 − f 1 − f 0

= z1 + z2 − z1 − z2 = 0.

Therefore ∂∗(µKT ,LT
) = p∗(zS) = 0. We conclude from this that

∂∗:H2(KT , LT )→ H1(LT )

is the zero homorphism.
We now have the information required in order to calculate the homology

groups of the simplicial complex KT . The homology exact sequence of the
simplicial pair (KT , LT ) gives rise to the following exact sequence:

0−→H2(KT )−→H2(KT , LT )
∂∗−→H1(LT )

iT∗−→H1(KT )−→0.

Using the exactness of this sequence, together with the result that ∂∗ = 0,
we conclude that H2(KT ) ∼= H2(KT , LT ) and H1(KT ) ∼= H1(LT ) ∼= Z ⊕ Z.
Indeed

H2(KT ) = {n[yT ] : n ∈ Z}

and
H1(KT ) = {n1[z1] + n2[z2] : n1, n2 ∈ Z},

where yT , z1 and z2 are the 1-cycles of LT defined above. Thus

H0(KT ) ∼= Z, H1(KT ) ∼= Z⊕ Z, H2(KT ) ∼= Z.

Example We shall make use of the above results to calculate the homology
groups of a Klein Bottle. The Klein Bottle may be represented as the quotient
space obtained from the square [0, 3] × [0, 3] by identifying the points (x, 0)
and (x, 3) for all x ∈ [0, 3], and also identifying the points (0, y) and (3, 3−y)
for all y ∈ [0, 3]. Thus each point on an edge of the square is identified with
some other point on the opposite edge of the square. The four corners of the
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square are identified together, so as to represent a single point of the Klein
Bottle.

Now there exists a simplicial complexKKlB, and a simplicial map r:KS →
KKlB where KS is the simplicial complex triangulating the square [0, 3]×[0, 3]
discussed in the previous example, where the polyhedron |KKlB| of KKlB is
homeomorphic to the Klein Bottle, and where the induced map r: |KS| →
|KKlB| between polyhedra is an identification map which identifies points on
opposite edges of the square S as described above. Moreover this simplicial
complex KKlB has 18 triangles, 27 edges and 9 vertices. Throughout this
example we shall use the notation developed in a previous example to describe
the simplical complex KS and its chain groups and homology groups.

Let the vertices of KKlB be labelled as u1, . . . ,u9, where

u1 = r(v1) = r(v4) = r(v13) = r(v16),

u2 = r(v2) = r(v14),

u3 = r(v3) = r(v15),

u4 = r(v9) = r(v8),

u5 = r(v5) = r(v12),

u6 = r(v6),

u7 = r(v7),

u8 = r(v10),

u9 = r(v11).

and let
ê0 = 〈u1,u2〉, ê1 = 〈u2,u3〉, ê2 = 〈u3,u1〉,

f̂0 = 〈u1,u4〉, f̂1 = 〈u4,u5〉, f̂2 = 〈u5,u1〉,

Then
r#(e+0 ) = r#(e−0 ) = ê0, r#(e+1 ) = r#(e−1 ) = ê1,

r#(e+2 ) = r#(e−2 ) = ê2, r#(f+
0 ) = −r#(f−2 ) = f̂0,

r#(f+
1 ) = −r#(f−1 ) = f̂1, r#(f+

2 ) = −r#(f−0 ) = f̂2,

where r#:C1(KS) → C1(KKlB) is the homomorphism of chain groups in-
duced by r:KS → KKlB. Also let t̂j = r#(tj) for j = 1, 2, . . . , 18, where
r#:C2(KS) → C2(KKlB) is the homomorphism of chain groups induced by
the simplicial map r:KS → KKlB. Then the triangulation KKlB of the Klein
Bottle may be represented by the following diagram:
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u1 u2 u3 u1

u5 u6 u7 u4

u4 u8 u9 u5

u1 u2 u3 u1

t̂1
t̂2

t̂3
t̂4

t̂5
t̂6

t̂7
t̂8

t̂9
t̂10

t̂11

t̂12

t̂13

t̂14
t̂15

t̂16
t̂17

t̂18

- - -

- - -

ê0 ê1 ê2

ê0 ê1 ê2

?

?

?

6

6

6

f̂2

f̂1

f̂0

f̂0

f̂1

f̂2

Let LKlB = r(LS). Then LKlB is the subcomplex of KKlB consisting of
the five vertices u1, u2, u3, u4 and u5, together with the six edges represented
by ê0, ê1, ê3, f̂0, f̂1 and f̂3. Now H1(LKlB) ∼= Z1(LKlB), since B1(LKlB) = 0.
Moreover Z1(LKlB) ∼= Z⊕ Z. Indeed

Z1(LKlB) = {n1z1 + n2z2 : n1, n2 ∈ Z},

where z1 = ê0+ê1+ê2 and z2 = f̂0+f̂1+f̂2. The simplicial map r:KS → KKlB

defines a bijection between the simplices of KS \LS and those of KKlB \LKlB.
It follows from this that the chain map r∗:C∗(KS, LS) → C∗(KKlB, LKlB)
induced by the simplicial map is an isomorphism of chain complexes, and
therefore induces isomorphisms

r∗:H∗(KS, LS)→ H∗(KKlB, LKlB).

We conclude that H2(KKlB, LKlB) ∼= Z, and Hq(KKlB, LKlB) = 0 when
q 6= 2. Moreover H2(KKlB, LKlB) is generated by the homology class of zKlB,
where

yKlB =
18∑
j=1

t̂j = r#(yS).

Also H2(LKlB) = 0, because the simplicial complex LKlB is one-dimensional.
We now determine the homomorphism ∂∗:H2(KKlB, LKlB)→ H1(LKlB).

Now the following diagram relating homology groups of the square and the
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Klein Bottle is commutative:

H2(KS, LS)
∂∗−→ H1(LS)yr∗

yr∗

H2(KKlB, LKlB)
∂∗−→ H1(LKlB)

Moreover
H1(LS) ∼= H2(KS, LS) ∼= H2(KKlB, LKlB) ∼= Z,

and the homomorphisms ∂∗:H2(KS, LS) → H1(LS) and r∗:H2(KS, LS) →
H2(KKlB, LKlB) are isomorphisms. Let µKS ,LS

and µKKlB ,LKlB
be the homol-

ogy classes in H2(KS, LS) and H2(KKlB, LKlB) respectively represented by
yS and yKlB. Then r∗(µKS ,LS

) = µKKlB ,LKlB
. and ∂∗(µKS ,LS

) = [zS], where

zS = e−0 + e−1 + e−2 + f+
0 + f+

1 + f+
2 − e+2 − e+1 − e+0 − f−2 − f−1 − f−0 .

It follows that ∂∗(µKKlB ,LKlB
) = r∗(zS).

We now calculate the image of zS under the homomorphism

r#:C1(LS)→ C1(LKlB)

induced by the simplicial map r:KS → KKlB. We find that

r#(zS) = r#(e−0 ) + r#(e−1 ) + r#(e−2 )

+ r#(f+
0 ) + r#(f+

1 ) + r#(f+
2 )

− r#(e+2 )− r#(e+1 )− r#(e+0 )

− r#(f−2 )− r#(f−1 )− r#(f−0 )

= ê0 + ê1 + ê2

+ f̂0 + f̂1 + f̂2

− ê2 − ê1 − ê0
+ f̂0 + f̂1 + f̂2

= z1 + z2 − z1 + z2 = 2z2.

Therefore ∂∗(µKKlB ,LKlB
) = r∗(zS) = 2z2. We conclude from this that

∂∗:H2(KKlB, LKlB)→ H1(LKlB)

is an injective homomorphism whose image is the subgroup of H1(KlB)
generated by 2[z2].

We now have the information required in order to calculate the homology
groups of the simplicial complex KKlB. The homology exact sequence of the
simplicial pair (KKlB, LKlB) gives rise to the following exact sequence:

0−→H2(KKlB)−→H2(KKlB, LKlB)
∂∗−→H1(LKlB)

iT∗−→H1(KKlB)−→0.
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Using the exactness of this sequence, together with the result that ∂∗ is
injective, we conclude that H2(KKlB) = 0. Also

H1(KKlB) ∼= H1(LKlB)/∂∗(H2(KKlB, LKlB)) ∼= Z⊕ Z2.

Indeed there is an isomorphism ϕ:H1(LKlB) → Z ⊕ Z which maps the ho-
mology classes of the cycles z1 and z2 to (1, 0) and (0, 1) respectively. Then
ϕ(∂∗(H2(KKlB, LKlB))) is the subgroup of Z⊕Z generated by (0, 2), and the
corresponding quotient group is isomorphic to Z⊕ Z2. Thus

H0(KKlB) ∼= Z, H1(KKlB) ∼= Z⊕ Z2, H2(KKlB) ∼= 0.

Example We shall make use of the above results to calculate the homol-
ogy groups of a real projective plane. The real projective plane may be
represented as the quotient space obtained from the square [0, 3] × [0, 3] by
identifying the points (x, 0) and (3 − x, 3) for all x ∈ [0, 3], and also identi-
fying the points (0, y) and (3, 3− y) for all y ∈ [0, 3]. Thus each point on an
edge of the square is identified with some other point on the opposite edge
of the square. Also each corner of the square is identified with the corner
diagonally opposite, so as to represent a single point of the real projective
plane.

Now there exists a simplicial complex KPP , and a simplicial map s:KS →
KPP where KS is the simplicial complex triangulating the square [0, 3]× [0, 3]
discussed in the previous example, where the polyhedron |KPP | of KPP is
homeomorphic to the real projective plane, and where the induced map
s: |KS| → |KPP | between polyhedra is an identification map which identifies
points on opposite edges of the square S as described above. Moreover this
simplicial complex KPP has 18 triangles, 27 edges and 10 vertices. Through-
out this example we shall use the notation developed in a previous example
to describe the simplical complex KS and its chain groups and homology
groups.

Let the vertices of KPP be labelled as q1, . . . ,q10, where

q1 = s(v1) = s(v16),

q2 = s(v2) = s(v15),

q3 = s(v3) = s(v14),

q4 = s(v4) = s(v13),

q5 = s(v9) = s(v8),

q6 = s(v5) = s(v12),

q7 = s(v6),

q8 = s(v7),
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q9 = s(v10),

q10 = s(v11).

and let
ẽ0 = 〈q1,q2〉, ẽ1 = 〈q2,q3〉, ẽ2 = 〈q3,q4〉,
f̃0 = 〈q4,q5〉, f̃1 = 〈q5,q6〉, f̃2 = 〈q6,q1〉,

Then
−s#(e+2 ) = s#(e−0 ) = ẽ0, −s#(e+1 ) = s#(e−1 ) = ẽ1,

−s#(e+0 ) = s#(e−2 ) = ẽ2, s#(f+
0 ) = −s#(f−2 ) = f̃0,

s#(f+
1 ) = −s#(f−1 ) = f̃1, s#(f+

2 ) = −s#(f−0 ) = f̃2,

where s#:C1(KS) → C1(KPP ) is the homomorphism of chain groups in-
duced by s:KS → KPP . Also let t̃j = s#(tj) for j = 1, 2, . . . , 18, where
s#:C2(KS) → C2(KPP ) is the homomorphism of chain groups induced by
the simplicial map s:KS → KPP . Then the triangulation KPP of the real
projective plane may be represented by the following diagram:
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q1 q2 q3 q4

q6 q7 q8 q5

q5 q9 q10 q6

q4 q3 q2 q1

t̃1
t̃2

t̃3
t̃4

t̃5
t̃6

t̃7
t̃8

t̃9
t̃10

t̃11

t̃12

t̃13

t̃14
t̃15

t̃16
t̃17

t̃18

- - -

� � �

ẽ0 ẽ1 ẽ2

ẽ2 ẽ1 ẽ0

?

?

?

6

6

6

f̃2

f̃1

f̃0

f̃0

f̃1

f̃2

Let LPP = s(LS). Then LPP is the subcomplex of KPP consisting of the
six vertices q1, q2, q3, q4, q5 and q6, together with the six edges represented
by ẽ0, ẽ1, ẽ3, f̃0, f̃1 and f̃3. Now H1(LPP ) ∼= Z1(LPP ), since B1(LPP ) = 0.
Moreover Z1(LPP ) ∼= Z. Indeed

Z1(LPP ) = {nz0 : n ∈ Z},
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where
z0 = ẽ0 + ẽ1 + ẽ2 + f̃0 + f̃1 + f̃2.

The simplicial map s:KS → KPP defines a bijection between the simplices
of KS \ LS and those of KPP \ LPP . It follows from this that the chain
map s∗:C∗(KS, LS) → C∗(KPP , LPP ) induced by the simplicial map is an
isomorphism of chain complexes, and therefore induces isomorphisms

s∗:H∗(KS, LS)→ H∗(KPP , LPP ).

We conclude that H2(KPP , LPP ) ∼= Z, and Hq(KPP , LPP ) = 0 when q 6= 2.
Moreover H2(KPP , LPP ) is generated by the homology class of zPP , where

yPP =
18∑
j=1

t̃j = s#(yS).

Also H2(LPP ) = 0, because the simplicial complex LPP is one-dimensional.
We now determine the homomorphism ∂∗:H2(KPP , LPP ) → H1(LPP ).

Now the following diagram relating homology groups of the square and the
real projective plane is commutative:

H2(KS, LS)
∂∗−→ H1(LS)ys∗

ys∗

H2(KPP , LPP )
∂∗−→ H1(LPP )

Moreover
H1(LS) ∼= H2(KS, LS) ∼= H2(KPP , LPP ) ∼= Z,

and the homomorphisms ∂∗:H2(KS, LS) → H1(LS) and s∗:H2(KS, LS) →
H2(KPP , LPP ) are isomorphisms. Let µKS ,LS

and µKPP ,LPP
be the homology

classes in H2(KS, LS) and H2(KPP , LPP ) respectively represented by yS and
yPP . Then s∗(µKS ,LS

) = µKPP ,LPP
. and ∂∗(µKS ,LS

) = [zS], where

zS = e−0 + e−1 + e−2 + f+
0 + f+

1 + f+
2 − e+2 − e+1 − e+0 − f−2 − f−1 − f−0 .

It follows that ∂∗(µKPP ,LPP
) = s∗(zS).

We now calculate the image of zS under the homomorphism

s#:C1(LS)→ C1(LPP )

induced by the simplicial map s:KS → KPP . We find that

s#(zS) = s#(e−0 ) + s#(e−1 ) + s#(e−2 )
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+ s#(f+
0 ) + s#(f+

1 ) + s#(f+
2 )

− s#(e+2 )− s#(e+1 )− s#(e+0 )

− s#(f−2 )− s#(f−1 )− s#(f−0 )

= ẽ0 + ẽ1 + ẽ2

+ f̃0 + f̃1 + f̃2

+ ẽ0 + ẽ1 + ẽ2

+ f̃0 + f̃1 + f̃2

= 2z0.

Therefore ∂∗(µKPP ,LPP
) = s∗(zS) = 2z0. We conclude from this that

∂∗:H2(KPP , LPP )→ H1(LPP )

is an injective homomorphism whose image is the subgroup of H1(PP ) gen-
erated by 2[z0].

We now have the information required in order to calculate the homology
groups of the simplicial complex KPP . The homology exact sequence of the
simplicial pair (KPP , LPP ) gives rise to the following exact sequence:

0−→H2(KPP )−→H2(KPP , LPP )
∂∗−→H1(LPP )

iT∗−→H1(KPP )−→0.

Using the exactness of this sequence, together with the result that ∂∗ is
injective, we conclude that H2(KPP ) = 0. Also

H1(KPP ) ∼= H1(LPP )/∂∗(H2(KPP , LPP )) ∼= Z/2Z = Z2.

Thus
H0(KPP ) ∼= Z, H1(KPP ) ∼= Z2, H2(KPP ) ∼= 0.

10.3 The Mayer-Vietoris Sequence

Let K be a simplicial complex and let L and M be subcomplexes of K such
that K = L ∪M . Let

iq:Cq(L ∩M)→ Cq(L), jq:Cq(L ∩M)→ Cq(M),

uq:Cq(L)→ Cq(K), vq:Cq(M)→ Cq(K)

be the inclusion homomorphisms induced by the inclusion maps i:L∩M ↪→
L, j:L ∩M ↪→M , u:L ↪→ K and v:M ↪→ K. Then

0−→C∗(L ∩M)
k∗−→C∗(L)⊕ C∗(M)

w∗−→C∗(K)−→0
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is a short exact sequence of chain complexes, where

kq(c) = (iq(c),−jq(c)),
wq(c

′, c′′) = uq(c
′) + vq(c

′′),

∂q(c
′, c′′) = (∂q(c

′), ∂q(c
′′))

for all c ∈ Cq(L∩M), c′ ∈ Cq(L) and c′′ ∈ Cq(M). It follows from Lemma 9.4
that there is a well-defined homomorphism αq:Hq(K)→ Hq−1(L ∩M) such
that αq([z]) = [∂q(c

′)] = −[∂q(c
′′)] for any z ∈ Zq(K), where c′ and c′′

are any q-chains of L and M respectively satisfying z = c′ + c′′. (Note
that ∂q(c

′) ∈ Zq−1(L ∩ M) since ∂q(c
′) ∈ Zq−1(L), ∂q(c

′′) ∈ Zq−1(M) and
∂q(c

′) = −∂q(c′′).) It now follows immediately from Proposition 9.5 that the
infinite sequence

· · · αq+1−→Hq(L ∩M)
k∗−→Hq(L)⊕Hq(M)

w∗−→Hq(K)
αq−→Hq−1(L ∩M)

k∗−→· · · ,

of homology groups is exact. This long exact sequence of homology groups is
referred to as the Mayer-Vietoris sequence associated with the decomposition
of K as the union of the subcomplexes L and M .
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