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5 Simplicial Homology Groups

5.1 The Chain Groups of a Simplicial Complex

Let K be a simplicial complex. For each non-negative integer q, let ∆q(K)
be the additive group consisting of all formal sums of the form

n1(v1
0,v

1
1, . . . ,v

1
q) + n2(v2

0,v
2
1, . . . ,v

2
q) + · · ·+ ns(v

s
0,v

s
1, . . . ,v

s
q),

where n1, n2, . . . , ns are integers and vr0,v
r
1, . . . ,v

r
q are (not necessarily dis-

tinct) vertices of K that span a simplex of K for r = 1, 2, . . . , s. (In more
formal language, the group ∆q(K) is the free Abelian group generated by the
set of all (q+ 1)-tuples of the form (v0,v1, . . . ,vq), where v0,v1, . . . ,vq span
a simplex of K.)

We recall some basic facts concerning permutations. A permutation of
a set S is a bijection mapping S onto itself. The set of all permutations of
some set S is a group; the group multiplication corresponds to composition of
permutations. A transposition is a permutation of a set S which interchanges
two elements of S, leaving the remaining elements of the set fixed. If S is
finite and has more than one element then any permutation of S can be
expressed as a product of transpositions. In particular any permutation of
the set {0, 1, . . . , q} can be expressed as a product of transpositions (j−1, j)
that interchange j − 1 and j for some j.

Associated to any permutation π of a finite set S is a number επ, known as
the parity or signature of the permutation, which can take on the values ±1.
If π can be expressed as the product of an even number of transpositions,
then επ = +1; if π can be expressed as the product of an odd number of
transpositions then επ = −1. The function π 7→ επ is a homomorphism
from the group of permutations of a finite set S to the multiplicative group
{+1,−1} (i.e., επρ = επερ for all permutations π and ρ of the set S). Note in
particular that the parity of any transposition is −1.

Definition The qth chain group Cq(K) of the simplicial complex K is de-
fined to be the quotient group ∆q(K)/∆0

q(K), where ∆0
q(K) is the sub-

group of ∆q(K) generated by elements of the form (v0,v1, . . . ,vq) where
v0,v1, . . . ,vq are not all distinct, and by elements of the form

(vπ(0),vπ(1), . . . ,vπ(q))− επ(v0,v1, . . . ,vq)

where π is some permutation of {0, 1, . . . , q} with parity επ. For convenience,
we define Cq(K) = {0} when q < 0 or q > dimK, where dimK is the
dimension of the simplicial complex K. An element of the chain group Cq(K)
is referred to as q-chain of the simplicial complex K.
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We denote by 〈v0,v1, . . . ,vq〉 the element ∆0
q(K) + (v0,v1, . . . ,vq) of

Cq(K) corresponding to (v0,v1, . . . ,vq). The following results follow imme-
diately from the definition of Cq(K).

Lemma 5.1 Let v0,v1, . . . ,vq be vertices of a simplicial complex K that
span a simplex of K. Then

• 〈v0,v1, . . . ,vq〉 = 0 if v0,v1, . . . ,vq are not all distinct,

• 〈vπ(0),vπ(1), . . . ,vπ(q)〉 = επ〈v0,v1, . . . ,vq〉 for any permutation π of the
set {0, 1, . . . , q}.

Example If v0 and v1 are the endpoints of some line segment then

〈v0,v1〉 = −〈v1,v0〉.

If v0, v1 and v2 are the vertices of a triangle in some Euclidean space then

〈v0,v1,v2〉 = 〈v1,v2,v0〉 = 〈v2,v0,v1〉 = −〈v2,v1,v0〉
= −〈v0,v2,v1〉 = −〈v1,v0,v2〉.

Definition An oriented q-simplex is an element of the chain group Cq(K)
of the form ±〈v0,v1, . . . ,vq〉, where v0,v1, . . . ,vq are distinct and span a
simplex of K.

An oriented simplex of K can be thought of as consisting of a simplex of
K (namely the simplex spanned by the prescribed vertices), together with
one of two possible ‘orientations’ on that simplex. Any ordering of the ver-
tices determines an orientation of the simplex; any even permutation of the
ordering of the vertices preserves the orientation on the simplex, whereas any
odd permutation of this ordering reverses orientation.

Any q-chain of a simplicial complex K can be expressed as a sum of the
form

n1σ1 + n2σ2 + · · ·+ nsσs

where n1, n2, . . . , ns are integers and σ1, σ2, . . . , σs are oriented q-simplices of
K. If we reverse the orientation on one of these simplices σi then this reverses
the sign of the corresponding coefficient ni. If σ1, σ2, . . . , σs represent distinct
simplices of K then the coefficients n1, n2, . . . , ns are uniquely determined.

Example Let v0, v1 and v2 be the vertices of a triangle in some Euclidean
space. Let K be the simplicial complex consisting of this triangle, together
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with its edges and vertices. Every 0-chain of K can be expressed uniquely in
the form

n0〈v0〉+ n1〈v1〉+ n2〈v2〉
for some n0, n1, n2 ∈ Z. Similarly any 1-chain of K can be expressed uniquely
in the form

m0〈v1,v2〉+m1〈v2,v0〉+m2〈v0,v1〉
for some m0,m1,m2 ∈ Z, and any 2-chain of K can be expressed uniquely
as n〈v0,v1,v2〉 for some integer n.

Lemma 5.2 Let K be a simplicial complex, and let A be an additive group.
Suppose that, to each (q + 1)-tuple (v0,v1, . . . ,vq) of vertices spanning a
simplex of K, there corresponds an element α(v0,v1, . . . ,vq) of A, where

• α(v0,v1, . . . ,vq) = 0 unless v0,v1, . . . ,vq are all distinct,

• α(v0,v1, . . . ,vq) changes sign on interchanging any two adjacent ver-
tices vj−1 and vj.

Then there exists a well-defined homomorphism from Cq(K) to A which sends
〈v0,v1, . . . ,vq〉 to α(v0,v1, . . . ,vq) whenever v0,v1, . . . ,vq span a simplex of
K. This homomorphism is uniquely determined.

Proof The given function defined on (q+ 1)-tuples of vertices of K extends
to a well-defined homomorphism α: ∆q(K)→ A given by

α

(
s∑
r=1

nr(v
r
0,v

r
1, . . . ,v

r
q)

)
=
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nrα(vr0,v
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1, . . . ,v

r
q)

for all
s∑
r=1

nr(v
r
0,v

r
1, . . . ,v

r
q) ∈ ∆q(K). Moreover (v0,v1, . . . ,vq) ∈ kerα

unless v0,v1, . . . ,vq are all distinct. Also

(vπ(0),vπ(1), . . . ,vπ(q))− επ(v0,v1, . . . ,vq) ∈ kerα

for all permutations π of {0, 1, . . . , q}, since the permutation π can be ex-
pressed as a product of transpositions (j − 1, j) that interchange j − 1 with
j for some j and leave the rest of the set fixed, and the parity επ of π is
given by επ = +1 when the number of such transpositions is even, and by
επ = −1 when the number of such transpositions is odd. Thus the generators
of ∆0

q(K) are contained in kerα, and hence ∆0
q(K) ⊂ kerα. The required

homomorphism α̃:Cq(K)→ A is then defined by the formula

α̃

(
s∑
r=1

nr〈vr0,vr1, . . . ,vrq〉

)
=

s∑
r=1

nrα(vr0,v
r
1, . . . ,v

r
q).
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5.2 Boundary Homomorphisms

Let K be a simplicial complex. We introduce below boundary homomor-
phisms ∂q:Cq(K) → Cq−1(K) between the chain groups of K. If σ is an
oriented q-simplex of K then ∂q(σ) is a (q − 1)-chain which is a formal sum
of the (q − 1)-faces of σ, each with an orientation determined by the orien-
tation of σ.

Let σ be a q-simplex with vertices v0,v1, . . . ,vq. For each integer j
between 0 and q we denote by 〈v0, . . . , v̂j, . . . ,vq〉 the oriented (q − 1)-face

〈v0, . . . ,vj−1,vj+1, . . . ,vq〉

of the simplex σ obtained on omitting vj from the set of vertices of σ. In
particular

〈v̂0,v1, . . . ,vq〉 ≡ 〈v1, . . . ,vq〉, 〈v0, . . . ,vq−1, v̂q〉 ≡ 〈v0, . . . ,vq−1〉.

Similarly if j and k are integers between 0 and q, where j < k, we denote by

〈v0, . . . , v̂j, . . . , v̂k, . . .vq〉

the oriented (q−2)-face 〈v0, . . . ,vj−1,vj+1, . . . ,vk−1,vk+1, . . . ,vq〉 of the sim-
plex σ obtained on omitting vj and vk from the set of vertices of σ.

We now define a ‘boundary homomorphism’ ∂q:Cq(K) → Cq−1(K) for
each integer q. Define ∂q = 0 if q ≤ 0 or q > dimK. (In this case one
or other of the groups Cq(K) and Cq−1(K) is trivial.) Suppose then that
0 < q ≤ dimK. Given vertices v0,v1, . . . ,vq spanning a simplex of K, let

α(v0,v1, . . . ,vq) =

q∑
j=0

(−1)j〈v0, . . . , v̂j, . . . ,vq〉.

Inspection of this formula shows that α(v0,v1, . . . ,vq) changes sign whenever
two adjacent vertices vi−1 and vi are interchanged.

Suppose that vj = vk for some j and k satisfying j < k. Then

α(v0,v1, . . . ,vq) = (−1)j〈v0, . . . , v̂j, . . . ,vq〉+ (−1)k〈v0, . . . , v̂k, . . . ,vq〉,

since the remaining terms in the expression defining α(v0,v1, . . . ,vq) con-
tain both vj and vk. However (v0, . . . , v̂k, . . . ,vq) can be transformed to
(v0, . . . , v̂j, . . . ,vq) by making k− j − 1 transpositions which interchange vj
successively with the vertices vj+1,vj+2, . . . ,vk−1. Therefore

〈v0, . . . , v̂k, . . . ,vq〉 = (−1)k−j−1〈v0, . . . , v̂j, . . . ,vq〉.
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Thus α(v0,v1, . . . ,vq) = 0 unless v0,v1, . . . ,vq are all distinct. It now follows
immediately from Lemma 5.2 that there is a well-defined homomorphism
∂q:Cq(K)→ Cq−1(K), characterized by the property that

∂q (〈v0,v1, . . . ,vq〉) =

q∑
j=0

(−1)j〈v0, . . . , v̂j, . . . ,vq〉

whenever v0,v1, . . . ,vq span a simplex of K.

Lemma 5.3 ∂q−1 ◦ ∂q = 0 for all integers q.

Proof The result is trivial if q < 2, since in this case ∂q−1 = 0. Suppose
that q ≥ 2. Let v0,v1, . . . ,vq be vertices spanning a simplex of K. Then

∂q−1∂q (〈v0,v1, . . . ,vq〉) =

q∑
j=0

(−1)j∂q−1 (〈v0, . . . , v̂j, . . . ,vq〉)

=

q∑
j=0

j−1∑
k=0

(−1)j+k〈v0, . . . , v̂k, . . . , v̂j, . . . ,vq〉

+

q∑
j=0

q∑
k=j+1

(−1)j+k−1〈v0, . . . , v̂j, . . . , v̂k, . . . ,vq〉

= 0

(since each term in this summation over j and k cancels with the correspond-
ing term with j and k interchanged). The result now follows from the fact
that the homomorphism ∂q−1 ◦ ∂q is determined by its values on all oriented
q-simplices of K.

5.3 The Homology Groups of a Simplicial Complex

LetK be a simplicial complex. A q-chain z is said to be a q-cycle if ∂qz = 0. A
q-chain b is said to be a q-boundary if b = ∂q+1c

′ for some (q+1)-chain c′. The
group of q-cycles of K is denoted by Zq(K), and the group of q-boundaries
of K is denoted by Bq(K). Thus Zq(K) is the kernel of the boundary ho-
momorphism ∂q:Cq(K) → Cq−1(K), and Bq(K) is the image of the bound-
ary homomorphism ∂q+1:Cq+1(K) → Cq(K). However ∂q ◦ ∂q+1 = 0, by
Lemma 5.3. Therefore Bq(K) ⊂ Zq(K). But these groups are subgroups of
the Abelian group Cq(K). We can therefore form the quotient group Hq(K),
where Hq(K) = Zq(K)/Bq(K). The group Hq(K) is referred to as the qth
homology group of the simplicial complex K. Note that Hq(K) = 0 if q < 0
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or q > dimK (since Zq(K) = 0 and Bq(K) = 0 in these cases). It can
be shown that the homology groups of a simplicial complex are topological
invariants of the polyhedron of that complex.

The element [z] ∈ Hq(K) of the homology group Hq(K) determined by
z ∈ Zq(K) is referred to as the homology class of the q-cycle z. Note that
[z1 + z2] = [z1] + [z2] for all z1, z2 ∈ Zq(K), and [z1] = [z2] if and only if
z1 − z2 = ∂q+1c for some (q + 1)-chain c.

Proposition 5.4 Let K be a simplicial complex. Suppose that there exists
a vertex w of K with the following property:

• if vertices v0,v1, . . . ,vq span a simplex of K then so do
w,v0,v1, . . . ,vq.

Then H0(K) ∼= Z, and Hq(K) is the zero group for all q > 0.

Proof Using Lemma 5.2, we see that there is a well-defined homomorphism
Dq:Cq(K)→ Cq+1(K) characterized by the property that

Dq(〈v0,v1, . . . ,vq〉) = 〈w,v0,v1, . . . ,vq〉

whenever v0,v1, . . . ,vq span a simplex of K. Now ∂1(D0(v)) = v−w for all
vertices v of K. It follows that

s∑
r=1

nr〈vr〉 −

(
s∑
r=1

nr

)
〈w〉 =

s∑
r=1

nr(〈vr〉 − 〈w〉) ∈ B0(K)

for all
s∑
r=1

nr〈vr〉 ∈ C0(K). But Z0(K) = C0(K) (since ∂0 = 0 by definition),

and thus H0(K) = C0(K)/B0(K). It follows that there is a well-defined
surjective homomorphism from H0(K) to Z induced by the homomorphism

from C0(K) to Z that sends
s∑
r=1

nr〈vr〉 ∈ C0(K) to
s∑
r=1

nr. Moreover this

induced homomorphism is an isomorphism from H0(K) to Z.
Now let q > 0. Then

∂q+1(Dq(〈v0,v1, . . . ,vq〉))
= ∂q+1(〈w,v0,v1, . . . ,vq〉)

= 〈v0,v1, . . . ,vq〉+

q∑
j=0

(−1)j+1〈w,v0, . . . , v̂j, . . . ,vq〉

= 〈v0,v1, . . . ,vq〉 −Dq−1(∂q(〈v0,v1, . . . ,vq〉))
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whenever v0,v1, . . . ,vq span a simplex of K. Thus

∂q+1(Dq(c)) +Dq−1(∂q(c)) = c

for all c ∈ Cq(K). In particular z = ∂q+1(Dq(z)) for all z ∈ Zq(K), and hence
Zq(K) = Bq(K). It follows that Hq(K) is the zero group for all q > 0, as
required.

Example The hypotheses of the proposition are satisfied for the complex
Kσ consisting of a simplex σ together with all of its faces: we can choose
w to be any vertex of the simplex σ. They are also satisfied for the first
barycentric subdivision K ′σ of Kσ: in this case we must choose w to be the
barycentre σ̂ of the simplex σ. Thus the groups H0(Kσ) and H0(K ′σ) are both
isomorphic of Z, and the groups Hq(Kσ) and Hq(K

′
σ) are the zero group for

all q > 0.

5.4 Simplicial Maps and Induced Homomorphisms

Any simplicial map ϕ:K → L between simplicial complexes K and L induces
well-defined homomorphisms ϕq:Cq(K)→ Cq(L) of chain groups, where

ϕq(〈v0,v1, . . . ,vq〉) = 〈ϕ(v0), ϕ(v1), . . . , ϕ(vq)〉

whenever v0,v1, . . . ,vq span a simplex of K. (The existence of these induced
homomorphisms follows from a straightforward application of Lemma 5.2.)
Note that ϕq (〈v0,v1, . . . ,vq〉) = 0 unless ϕ(v0), ϕ(v1), . . . , ϕ(vq) are all dis-
tinct.

Now ϕq−1 ◦ ∂q = ∂q ◦ϕq for each integer q. Therefore ϕq(Zq(K)) ⊂ Zq(L)
and ϕq(Bq(K)) ⊂ Bq(L) for all integers q. It follows that any simplicial
map ϕ:K → L induces well-defined homomorphisms ϕ∗:Hq(K)→ Hq(L) of
homology groups, where ϕ∗([z]) = [ϕq(z)] for all q-cycles z ∈ Zq(K). It is a
trivial exercise to verify that if K, L and M are simplicial complexes and if
ϕ:K → L and ψ:L → M are simplicial maps then the induced homomor-
phisms of homology groups satisfy (ψ ◦ ϕ)∗ = ψ∗ ◦ ϕ∗.

5.5 Connectedness and H0(K)

Lemma 5.5 Let K be a simplicial complex. Then K can be partitioned
into pairwise disjoint subcomplexes K1, K2, . . . , Kr whose polyhedra are the
connected components of the polyhedron |K| of K.
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Proof Let X1, X2, . . . , Xr be the connected components of the polyhedron
of K, and, for each j, let Kj be the collection of all simplices σ of K for
which σ ⊂ Xj. If a simplex belongs to Kj for all j then so do all its faces.
Therefore K1, K2, . . . , Kr are subcomplexes of K. These subcomplexes are
pairwise disjoint since the connected components X1, X2, . . . , Xr of |K| are
pairwise disjoint. Moreover, if σ ∈ K then σ ⊂ Xj for some j, since σ is a
connected subset of |K|, and any connected subset of a topological space is
contained in some connected component. But then σ ∈ Kj. It follows that
K = K1 ∪K2 ∪ · · · ∪Kr and |K| = |K1| ∪ |K2| ∪ · · · ∪ |Kr|, as required.

The direct sum A1⊕A2⊕· · ·⊕Ar of additive Abelian groups A1, A2, . . . , Ar
is defined to be the additive group consisting of all r-tuples (a1, a2, . . . , ar)
with ai ∈ Ai for i = 1, 2, . . . , r, where

(a1, a2, . . . , ar) + (b1, b2, . . . , br) ≡ (a1 + b1, a2 + b2, . . . , ar + br).

Lemma 5.6 Let K be a simplicial complex. Suppose that K = K1 ∪ K2 ∪
· · · ∪Kr, where K1, K2, . . . Kr are pairwise disjoint. Then

Hq(K) ∼= Hq(K1)⊕Hq(K2)⊕ · · · ⊕Hq(Kr)

for all integers q.

Proof We may restrict our attention to the case when 0 ≤ q ≤ dimK,
since Hq(K) = {0} if q < 0 or q > dimK. Now any q-chain c of K can be
expressed uniquely as a sum of the form c = c1 + c2 + · · ·+ cr, where cj is a
q-chain of Kj for j = 1, 2, . . . , r. It follows that

Cq(K) ∼= Cq(K1)⊕ Cq(K2)⊕ · · · ⊕ Cq(Kr).

Now let z be a q-cycle of K (i.e., z ∈ Cq(K) satisfies ∂q(z) = 0). We can
express z uniquely in the form z = z1 + z2 + · · · + zr, where zj is a q-chain
of Kj for j = 1, 2, . . . , r. Now

0 = ∂q(z) = ∂q(z1) + ∂q(z2) + · · ·+ ∂q(zr),

and ∂q(zj) is a (q−1)-chain of Kj for j = 1, 2, . . . , r. It follows that ∂q(zj) = 0
for j = 1, 2, . . . , r. Hence each zj is a q-cycle of Kj, and thus

Zq(K) ∼= Zq(K1)⊕ Zq(K2)⊕ · · · ⊕ Zq(Kr).

Now let b be a q-boundary of K. Then b = ∂q+1(c) for some (q + 1)-
chain c of K. Moreover c = c1 + c2 + · · · cr, where cj ∈ Cq+1(Kj). Thus b =
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b1 + b2 + · · · br, where bj ∈ Bq(Kj) is given by bj = ∂q+1cj for j = 1, 2, . . . , r.
We deduce that

Bq(K) ∼= Bq(K1)⊕Bq(K2)⊕ · · · ⊕Bq(Kr).

It follows from these observations that there is a well-defined isomorphism

ν:Hq(K1)⊕Hq(K2)⊕ · · · ⊕Hq(Kr)→ Hq(K)

which maps ([z1], [z2], . . . , [zr]) to [z1 + z2 + · · · + zr], where [zj] denotes the
homology class of a q-cycle zj of Kj for j = 1, 2, . . . , r.

Let K be a simplicial complex, and let y and z be vertices of K. We
say that y and z can be joined by an edge path if there exists a sequence
v0,v1, . . . ,vm of vertices of K with v0 = y and vm = z such that the line
segment with endpoints vj−1 and vj is an edge belonging to K for j =
1, 2, . . . ,m.

Lemma 5.7 The polyhedron |K| of a simplicial complex K is a connected
topological space if and only if any two vertices of K can be joined by an edge
path.

Proof It is easy to verify that if any two vertices of K can be joined by an
edge path then |K| is path-connected and is thus connected. (Indeed any
two points of |K| can be joined by a path made up of a finite number of
straight line segments.)

We must show that if |K| is connected then any two vertices of K can be
joined by an edge path. Choose a vertex v0 of K. It suffices to verify that
every vertex of K can be joined to v0 by an edge path.

Let K0 be the collection of all of the simplices of K having the property
that one (and hence all) of the vertices of that simplex can be joined to v0

by an edge path. If σ is a simplex belonging to K0 then every vertex of σ can
be joined to v0 by an edge path, and therefore every face of σ belongs to K0.
Thus K0 is a subcomplex of K. Clearly the collection K1 of all simplices of K
which do not belong to K0 is also a subcomplex of K. Thus K = K0 ∪K1,
where K0 ∩ K1 = ∅, and hence |K| = |K0| ∪ |K1|, where |K0| ∩ |K1| = ∅.
But the polyhedra |K0| and |K1| of K0 and K1 are closed subsets of |K|. It
follows from the connectedness of |K| that either |K0| = ∅ or |K1| = ∅. But
v0 ∈ K0. Thus K1 = ∅ and K0 = K, showing that every vertex of K can be
joined to v0 by an edge path, as required.

Theorem 5.8 Let K be a simplicial complex. Suppose that the polyhe-
dron |K| of K is connected. Then H0(K) ∼= Z.
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Proof Let u1,u2, . . . ,ur be the vertices of the simplicial complex K. Every
0-chain of K can be expressed uniquely as a formal sum of the form

n1〈u1〉+ n2〈u2〉+ · · ·+ nr〈ur〉

for some integers n1, n2, . . . , nr. It follows that there is a well-defined homo-
morphism ε:C0(K)→ Z defined by

ε (n1〈u1〉+ n2〈u2〉+ · · ·+ nr〈ur〉) = n1 + n2 + · · ·+ nr.

Now ε(∂1(〈y, z〉)) = ε(〈z〉 − 〈y〉) = 0 whenever y and z are endpoints of an
edge of K. It follows that ε ◦ ∂1 = 0, and hence B0(K) ⊂ ker ε.

Let v0,v1, . . . ,vm be vertices of K determining an edge path. Then

〈vm〉 − 〈v0〉 = ∂1

(
m∑
j=1

〈vj−1,vj〉

)
∈ B0(K).

Now |K| is connected, and therefore any pair of vertices of K can be joined
by an edge path (Lemma 5.7). We deduce that 〈z〉 − 〈y〉 ∈ B0(K) for all

vertices y and z of K. Thus if c ∈ ker ε, where c =
r∑
j=1

nj〈uj〉, then
r∑
j=1

nj = 0,

and hence c =
r∑
j=2

nj(〈uj〉 − 〈u1〉). But 〈uj〉 − 〈u1〉 ∈ B0(K). It follows that

c ∈ B0(K). We conclude that ker ε ⊂ B0(K), and hence ker ε = B0(K).
Now the homomorphism ε:C0(K) → Z is surjective and its kernel is

B0(K). Therefore it induces an isomorphism from C0(K)/B0(K) to Z.
However Z0(K) = C0(K) (since ∂0 = 0 by definition). Thus H0(K) ≡
C0(K)/B0(K) ∼= Z, as required.

On combining Theorem 5.8 with Lemmas 5.5 and 5.6 we obtain immedi-
ately the following result.

Corollary 5.9 Let K be a simplicial complex. Then

H0(K) ∼= Z⊕ Z⊕ · · · ⊕ Z (r times),

where r is the number of connected components of |K|.

6 Introduction to Homological Algebra

6.1 Exact Sequences

In homological algebra we consider sequences

· · · −→F p−→G q−→H ···−→

11



where F , G, H etc. are Abelian groups and p, q etc. are homomorphisms.
We denote the trivial group {0} by 0, and we denote by 0−→G and G−→0
the zero homomorphisms from 0 to G and from G to 0 respectively. (These
zero homomorphisms are of course the only homomorphisms mapping out of
and into the trivial group 0.)

Definition The sequence F
p−→G q−→H of Abelian groups and homomor-

phisms is said to be exact at G if and only if image(p:F → G) = ker(q:G→
H). A sequence of Abelian groups and homomorphisms is said to be exact if
it is exact at each Abelian group occurring in the sequence (so that the image
of each homomorphism is the kernel of the succeeding homomorphism).

A monomorphism is an injective homomorphism. An epimorphism is a
surjective homomorphism. An isomorphism is a bijective homomorphism.

The following result follows directly from the relevant definitions.

Lemma 6.1 Let h:G→ H be a homomorphism of Abelian groups.

• h:G → H is a monomorphism if and only if 0−→G h−→H is an exact
sequence.

• h:G → H is an epimorphism if and only if G
h−→H−→0 is an exact

sequence.

• h:G → H is an isomorphism if and only if 0−→G h−→H−→0 is an
exact sequence.

Let F be a subgroup of an Abelian group G. Then the sequence

0−→F i−→G q−→G/F−→0,

is exact, where G/F is the quotient group, i:F ↪→ G is the inclusion ho-
momorphism, and q:G → G/F is the quotient homomorphism. Conversely,
given any exact sequence of the form

0−→F i−→G q−→H−→0,

we can regard F as a subgroup of G (on identifying F with i(F )), and then
H is isomorphic to the quotient group G/F . Exact sequences of this type
are referred to as short exact sequences.

We now introduce the concept of a commutative diagram. This is a di-
agram depicting a collection of homomorphisms between various Abelian

12



groups occurring on the diagram. The diagram is said to commute if, when-
ever there are two routes through the diagram from an Abelian group G to an
Abelian group H, the homomorphism from G to H obtained by forming the
composition of the homomorphisms along one route in the diagram agrees
with that obtained by composing the homomorphisms along the other route.
Thus, for example, the diagram

A
f−→ B

g−→ Cyp yq yr
D

h−→ E
k−→ F

commutes if and only if q ◦ f = h ◦ p and r ◦ g = k ◦ q.

Proposition 6.2 Suppose that the following diagram of Abelian groups and
homomorphisms

G1
θ1−→ G2

θ2−→ G3
θ3−→ G4

θ4−→ G5yψ1

yψ2

yψ3

yψ4

yψ5

H1
φ1−→ H2

φ2−→ H3
φ3−→ H4

φ4−→ H5

commutes and that both rows are exact sequences. Then the following results
follow:

(i) if ψ2 and ψ4 are monomorphisms and if ψ1 is a epimorphism then ψ3

is an monomorphism,

(ii) if ψ2 and ψ4 are epimorphisms and if ψ5 is a monomorphism then ψ3

is an epimorphism.

Proof First we prove (i). Suppose that ψ2 and ψ4 are monomorphisms and
that ψ1 is an epimorphism. We wish to show that ψ3 is a monomorphism.
Let x ∈ G3 be such that ψ3(x) = 0. Then ψ4 (θ3(x)) = φ3 (ψ3(x)) = 0,
and hence θ3(x) = 0. But then x = θ2(y) for some y ∈ G2, by exactness.
Moreover

φ2 (ψ2(y)) = ψ3 (θ2(y)) = ψ3(x) = 0,

hence ψ2(y) = φ1(z) for some z ∈ H1, by exactness. But z = ψ1(w) for some
w ∈ G1, since ψ1 is an epimorphism. Then

ψ2 (θ1(w)) = φ1 (ψ1(w)) = ψ2(y),

and hence θ1(w) = y, since ψ2 is a monomorphism. But then

x = θ2(y) = θ2 (θ1(w)) = 0

13



by exactness. Thus ψ3 is a monomorphism.
Next we prove (ii). Thus suppose that ψ2 and ψ4 are epimorphisms and

that ψ5 is a monomorphism. We wish to show that ψ3 is an epimorphism.
Let a be an element of H3. Then φ3(a) = ψ4(b) for some b ∈ G4, since ψ4 is
an epimorphism. Now

ψ5 (θ4(b)) = φ4 (ψ4(b)) = φ4 (φ3(a)) = 0,

hence θ4(b) = 0, since ψ5 is a monomorphism. Hence there exists c ∈ G3

such that θ3(c) = b, by exactness. Then

φ3 (ψ3(c)) = ψ4 (θ3(c)) = ψ4(b),

hence φ3 (a− ψ3(c)) = 0, and thus a − ψ3(c) = φ2(d) for some d ∈ H2, by
exactness. But ψ2 is an epimorphism, hence there exists e ∈ G2 such that
ψ2(e) = d. But then

ψ3 (θ2(e)) = φ2 (ψ2(e)) = a− ψ3(c).

Hence a = ψ3 (c+ θ2(e)), and thus a is in the image of ψ3. This shows that
ψ3 is an epimorphism, as required.

The following result is an immediate corollary of Proposition 6.2.

Lemma 6.3 (Five-Lemma) Suppose that the rows of the commutative dia-
gram of Proposition 6.2 are exact sequences and that ψ1, ψ2, ψ4 and ψ5 are
isomorphisms. Then ψ3 is also an isomorphism.

6.2 Chain Complexes

Definition A chain complex C∗ is a (doubly infinite) sequence (Ci : i ∈ Z)
of Abelian groups, together with homomorphisms ∂i:Ci → Ci−1 for each
i ∈ Z, such that ∂i ◦ ∂i+1 = 0 for all integers i.

The ith homology group Hi(C∗) of the complex C∗ is defined to be the
quotient group Zi(C∗)/Bi(C∗), where Zi(C∗) is the kernel of ∂i:Ci → Ci−1

and Bi(C∗) is the image of ∂i+1:Ci+1 → Ci.

Definition Let C∗ and D∗ be chain complexes. A chain map f :C∗ → D∗ is
a sequence fi:Ci → Di of homomorphisms which satisfy the commutativity
condition ∂i ◦ fi = fi−1 ◦ ∂i for all i ∈ Z.

14



Note that a collection of homomorphisms fi:Ci → Di defines a chain map
f∗:C∗ → D∗ if and only if the diagram

· · · −→ Ci+1
∂i+1−→ Ci

∂i−→ Ci−1 −→· · ·yfi+1

yfi yfi−1

· · · −→ Di+1
∂i+1−→ Di

∂i−→ Di−1 −→· · ·

is commutative.
Let C∗ and D∗ be chain complexes, and let f∗:C∗ → D∗ be a chain map.

Then fi(Zi(C∗)) ⊂ Zi(D∗) and fi(Bi(C∗)) ⊂ Bi(D∗) for all i. It follows
from this that fi:Ci → Di induces a homomorphism f∗:Hi(C∗) → Hi(D∗)
of homology groups sending [z] to [fi(z)] for all z ∈ Zi(C∗), where [z] =
z +Bi(C∗), and [fi(z)] = fi(z) +Bi(D∗).

Definition A short exact sequence 0−→A∗
p∗−→B∗

q∗−→C∗−→0 of chain com-
plexes consists of chain complexes A∗, B∗ and C∗ and chain maps p∗:A∗ → B∗
and q∗:B∗ → C∗ such that the sequence

0−→Ai
pi−→Bi

qi−→Ci−→0

is exact for each integer i.

We see that 0−→A∗
p∗−→B∗

q∗−→C∗−→0 is a short exact sequence of chain
complexes if and only if the diagram

...
...

...y∂i+2

y∂i+2

y∂i+2

0 −→ Ai+1
pi+1−→ Bi+1

qi+1−→ Ci+1 −→ 0y∂i+1

y∂i+1

y∂i+1

0 −→ Ai
pi−→ Bi

qi−→ Ci −→ 0y∂i y∂i y∂i
0 −→ Ai−1

pi−1−→ Bi−1
qi−1−→ Ci−1 −→ 0y∂i−1

y∂i−1

y∂i−1

...
...

...

.

is a commutative diagram whose rows are exact sequences and whose columns
are chain complexes.
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Lemma 6.4 Given any short exact sequence 0−→A∗
p∗−→B∗

q∗−→C∗−→0 of
chain complexes, there is a well-defined homomorphism

αi:Hi(C∗)→ Hi−1(A∗)

which sends the homology class [z] of z ∈ Zi(C∗) to the homology class [w] of
any element w of Zi−1(A∗) with the property that pi−1(w) = ∂i(b) for some
b ∈ Bi satisfying qi(b) = z.

Proof Let z ∈ Zi(C∗). Then there exists b ∈ Bi satisfying qi(b) = z, since
qi:Bi → Ci is surjective. Moreover

qi−1(∂i(b)) = ∂i(qi(b)) = ∂i(z) = 0.

But pi−1:Ai−1 → Bi−1 is injective and pi−1(Ai−1) = ker qi−1, since the se-
quence

0−→Ai−1
pi−1−→Bi−1

qi−1−→Ci−1

is exact. Therefore there exists a unique element w of Ai−1 such that ∂i(b) =
pi−1(w). Moreover

pi−2(∂i−1(w)) = ∂i−1(pi−1(w)) = ∂i−1(∂i(b)) = 0

(since ∂i−1 ◦ ∂i = 0), and therefore ∂i−1(w) = 0 (since pi−2:Ai−2 → Bi−2 is
injective). Thus w ∈ Zi−1(A∗).

Now let b, b′ ∈ Bi satisfy qi(b) = qi(b
′) = z, and let w,w′ ∈ Zi−1(A∗)

satisfy pi−1(w) = ∂i(b) and pi−1(w′) = ∂i(b
′). Then qi(b− b′) = 0, and hence

b′ − b = pi(a) for some a ∈ Ai, by exactness. But then

pi−1(w + ∂i(a)) = pi−1(w) + ∂i(pi(a)) = ∂i(b) + ∂i(b
′ − b) = ∂i(b

′) = pi−1(w′),

and pi−1:Ai−1 → Bi−1 is injective. Therefore w + ∂i(a) = w′, and hence
[w] = [w′] in Hi−1(A∗). Thus there is a well-defined function α̃i:Zi(C∗) →
Hi−1(A∗) which sends z ∈ Zi(C∗) to [w] ∈ Hi−1(A∗), where w ∈ Zi−1(A∗) is
chosen such that pi−1(w) = ∂i(b) for some b ∈ Bi satisfying qi(b) = z. This
function α̃i is clearly a homomorphism from Zi(C∗) to Hi−1(A∗).

Suppose that elements z and z′ of Zi(C∗) represent the same homology
class in Hi(C∗). Then z′ = z+∂i+1c for some c ∈ Ci+1. Moreover c = qi+1(d)
for some d ∈ Bi+1, since qi+1:Bi+1 → Ci+1 is surjective. Choose b ∈ Bi such
that qi(b) = z, and let b′ = b+ ∂i+1(d). Then

qi(b
′) = z + qi(∂i+1(d)) = z + ∂i+1(qi+1(d)) = z + ∂i+1(c) = z′.

Moreover ∂i(b
′) = ∂i(b + ∂i+1(d)) = ∂i(b) (since ∂i ◦ ∂i+1 = 0). Therefore

α̃i(z) = α̃i(z
′). It follows that the homomorphism α̃i:Zi(C∗)→ Hi−1(A∗) in-

duces a well-defined homomorphism αi:Hi(C∗)→ Hi−1(A∗), as required.
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Let 0−→A∗
p∗−→B∗

q∗−→C∗−→0 and 0−→A′∗
p′∗−→B′∗

q′∗−→C ′∗−→0 be short ex-
act sequences of chain complexes, and let λ∗:A∗ → A′∗, µ∗:B∗ → B′∗ and
ν∗:C∗ → C ′∗ be chain maps. For each integer i, let αi:Hi(C∗) → Hi−1(A∗)
and α′i:Hi(C

′
∗) → Hi−1(A′∗) be the homomorphisms defined as described in

Lemma 6.4. Suppose that the diagram

0 −→ A∗
p∗−→ B∗

q∗−→ C∗ −→ 0yλ∗ yµ∗ yν∗
0 −→ A′∗

p′∗−→ B′∗
q′∗−→ C ′∗ −→ 0

commutes (i.e., p′i ◦λi = µi ◦ pi and q′i ◦µi = νi ◦ qi for all i). Then the square

Hi(C∗)
αi−→ Hi−1(A∗)yν∗ yλ∗

Hi(C
′
∗)

α′i−→ Hi−1(A′∗)

commutes for all i ∈ Z (i.e., λ∗ ◦ αi = α′i ◦ ν∗).

Proposition 6.5 Let 0−→A∗
p∗−→B∗

q∗−→C∗−→0 be a short exact sequence of
chain complexes. Then the (infinite) sequence

· · · αi+1−→Hi(A∗)
p∗−→Hi(B∗)

q∗−→Hi(C∗)
αi−→Hi−1(A∗)

p∗−→Hi−1(B∗)
q∗−→· · ·

of homology groups is exact, where αi:Hi(C∗)→ Hi−1(A∗) is the well-defined
homomorphism that sends the homology class [z] of z ∈ Zi(C∗) to the homol-
ogy class [w] of any element w of Zi−1(A∗) with the property that pi−1(w) =
∂i(b) for some b ∈ Bi satisfying qi(b) = z.

Proof First we prove exactness at Hi(B∗). Now qi ◦ pi = 0, and hence
q∗ ◦ p∗ = 0. Thus the image of p∗:Hi(A∗) → Hi(B∗) is contained in the
kernel of q∗:Hi(B∗) → Hi(C∗). Let x be an element of Zi(B∗) for which
[x] ∈ ker q∗. Then qi(x) = ∂i+1(c) for some c ∈ Ci+1. But c = qi+1(d) for
some d ∈ Bi+1, since qi+1:Bi+1 → Ci+1 is surjective. Then

qi(x− ∂i+1(d)) = qi(x)− ∂i+1(qi+1(d)) = qi(x)− ∂i+1(c) = 0,

and hence x− ∂i+1(d) = pi(a) for some a ∈ Ai, by exactness. Moreover

pi−1(∂i(a)) = ∂i(pi(a)) = ∂i(x− ∂i+1(d)) = 0,

since ∂i(x) = 0 and ∂i ◦ ∂i+1 = 0. But pi−1:Ai−1 → Bi−1 is injective.
Therefore ∂i(a) = 0, and thus a represents some element [a] of Hi(A∗). We
deduce that

[x] = [x− ∂i+1(d)] = [pi(a)] = p∗([a]).
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We conclude that the sequence of homology groups is exact at Hi(B∗).
Next we prove exactness at Hi(C∗). Let x ∈ Zi(B∗). Now αi(q∗[x]) =

αi([qi(x)]) = [w], where w is the unique element of Zi(A∗) satisfying pi−1(w) =
∂i(x). But ∂i(x) = 0, and hence w = 0. Thus αi ◦ q∗ = 0. Now let z be an
element of Zi(C∗) for which [z] ∈ kerαi. Choose b ∈ Bi and w ∈ Zi−1(A∗)
such that qi(b) = z and pi−1(w) = ∂i(b). Then w = ∂i(a) for some a ∈ Ai,
since [w] = αi([z]) = 0. But then qi(b − pi(a)) = z and ∂i(b − pi(a)) = 0.
Thus b − pi(a) ∈ Zi(B∗) and q∗([b − pi(a)]) = [z]. We conclude that the
sequence of homology groups is exact at Hi(C∗).

Finally we prove exactness at Hi−1(A∗). Let z ∈ Zi(C∗). Then αi([z]) =
[w], where w ∈ Zi−1(A∗) satisfies pi−1(w) = ∂i(b) for some b ∈ Bi satisfying
qi(b) = z. But then p∗(αi([z])) = [pi−1(w)] = [∂i(b)] = 0. Thus p∗ ◦ αi = 0.
Now let w be an element of Zi−1(A∗) for which [w] ∈ ker p∗. Then [pi−1(w)] =
0 in Hi−1(B∗), and hence pi−1(w) = ∂i(b) for some b ∈ Bi. But

∂i(qi(b)) = qi−1(∂i(b)) = qi−1(pi−1(w)) = 0.

Therefore [w] = αi([z]), where z = qi(b). We conclude that the sequence of
homology groups is exact at Hi−1(A∗), as required.

6.3 The Mayer-Vietoris Sequence

Let K be a simplicial complex and let L and M be subcomplexes of K such
that K = L ∪M . Let

iq:Cq(L ∩M)→ Cq(L), jq:Cq(L ∩M)→ Cq(M),

uq:Cq(L)→ Cq(K), vq:Cq(M)→ Cq(K)

be the inclusion homomorphisms induced by the inclusion maps i:L∩M ↪→
L, j:L ∩M ↪→M , u:L ↪→ K and v:M ↪→ K. Then

0−→C∗(L ∩M)
k∗−→C∗(L)⊕ C∗(M)

w∗−→C∗(K)−→0

is a short exact sequence of chain complexes, where

kq(c) = (iq(c),−jq(c)),
wq(c

′, c′′) = uq(c
′) + vq(c

′′),

∂q(c
′, c′′) = (∂q(c

′), ∂q(c
′′))

for all c ∈ Cq(L∩M), c′ ∈ Cq(L) and c′′ ∈ Cq(M). It follows from Lemma 6.4
that there is a well-defined homomorphism αq:Hq(K)→ Hq−1(L ∩M) such
that αq([z]) = [∂q(c

′)] = −[∂q(c
′′)] for any z ∈ Zq(K), where c′ and c′′
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are any q-chains of L and M respectively satisfying z = c′ + c′′. (Note
that ∂q(c

′) ∈ Zq−1(L ∩ M) since ∂q(c
′) ∈ Zq−1(L), ∂q(c

′′) ∈ Zq−1(M) and
∂q(c

′) = −∂q(c′′).) It now follows immediately from Proposition 6.5 that the
infinite sequence

· · · αq+1−→Hq(L ∩M)
k∗−→Hq(L)⊕Hq(M)

w∗−→Hq(K)
αq−→Hq−1(L ∩M)

k∗−→· · · ,

of homology groups is exact. This long exact sequence of homology groups is
referred to as the Mayer-Vietoris sequence associated with the decomposition
of K as the union of the subcomplexes L and M .

7 The Topological Invariance of Simplicial

Homology Groups

7.1 Contiguous Simplicial Maps

Definition Two simplicial maps s:K → L and t:K → L between simplicial
complexes K and L are said to be contiguous if, given any simplex σ of K,
there exists a simplex τ of L such that s(v) and t(v) are vertices of τ for
each vertex v of σ.

Lemma 7.1 Let K and L be simplicial complexes, and let s:K → L and
t:K → L be simplicial approximations to some continuous map f : |K| → |L|.
Then the simplicial maps s and t are contiguous.

Proof Let x be a point in the interior of some simplex σ of K. Then f(x)
belongs to the interior of a unique simplex τ of L, and moreover s(x) ∈ τ
and t(x) ∈ τ , since s and t are simplicial approximations to the map f . But
s(x) and t(x) are contained in the interior of the simplices s(σ) and t(σ) of
L. It follows that s(σ) and t(σ) are faces of τ , and hence s(v) and t(v) are
vertices of τ for each vertex v of σ, as required.

Proposition 7.2 Let s:K → L and t:K → L be simplicial maps between
simplicial complexes K and L. Suppose that s and t are contiguous. Then
the homomorphisms s∗:Hq(K) → Hq(L) and t∗:Hq(K) → Hq(L) coincide
for all q.

Proof Choose an ordering of the vertices of K. Then there are well-defined
homomorphisms Dq:Cq(K)→ Cq+1(L) characterized by the property that

Dq(〈v0,v1, . . . ,vq〉) =

q∑
j=0

(−1)j〈s(v0), . . . , s(vj), t(vj), . . . , t(vq)〉.
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whenever v0,v1, . . .vq are the vertices of a q-simplex of K listed in increasing
order (with respect to the chosen ordering of the vertices of K). Then

∂1(D0(〈v〉)) = ∂1(〈s(v), t(v)〉) = 〈t(v)〉 − 〈s(v)〉,

and thus ∂1 ◦D0 = t0 − s0. Also

Dq−1(∂q(〈v0, . . . ,vq〉))

=

q∑
i=0

(−1)iDq−1(〈v0, . . . , v̂i, . . . ,vq〉)

=

q∑
i=0

i−1∑
j=0

(−1)i+j〈s(v0), . . . , s(vj), t(vj), . . . ,̂t(vi), . . . , t(vq)〉

+

q∑
i=0

q∑
j=i+1

(−1)i+j−1〈s(v0), . . . ,̂s(vi), . . . , s(vj), t(vj), . . . , t(vq)〉

and

∂q+1(Dq(〈v0, . . .vq〉))

=

q∑
j=0

(−1)j∂q+1(〈s(v0), . . . , s(vj), t(vj), . . . , t(vq)〉)

=

q∑
j=0

j−1∑
i=0

(−1)i+j〈s(v0), . . . ,̂s(vi), . . . , s(vj), t(vj), . . . , t(vq)〉

+〈t(v0), . . . , t(vq)〉+

q∑
j=1

〈s(v0), . . . , s(vj−1), t(vj), . . . , t(vq)〉

−
q−1∑
j=0

〈s(v0), . . . , s(vj), t(vj+1), . . . , t(vq)〉 − 〈s(v0), . . . , s(vq)〉

+

q∑
j=0

q∑
i=j+1

(−1)i+j+1〈s(v0), . . . , s(vj), t(vj), . . . ,̂t(vi), . . . , t(vq)〉

= −Dq−1(∂q(〈v0, . . . ,vq〉)) + 〈t(v0), . . . , t(vq)〉 − 〈s(v0), . . . , s(vq)〉

and thus
∂q+1 ◦Dq +Dq−1 ◦ ∂q = tq − sq

for all q > 0. It follows that tq(z) − sq(z) = ∂q+1 (Dq(z)) for any q-cycle z
of K, and therefore s∗([z]) = t∗([z]). Thus s∗ = t∗ as homomorphisms from
Hq(K) to Hq(L), as required.
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7.2 The Homology of Barycentric Subdivisions

We shall show that the homology groups of a simplicial complex are isomor-
phic to those of its first barycentric subdivision.

We recall that the vertices of the first barycentric subdivision K ′ of a
simplicial complex K are the barycentres σ̂ of the simplices σ of K, and that
K ′ consists of the simplices spanned by σ̂0, σ̂1, . . . , σ̂q, where σ0, σ1, . . . , σq ∈
K and σj−1 is a proper face of σj for j = 1, 2, . . . , q.

Lemma 7.3 Let K ′ be the first barycentric subdivision of a simplicial com-
plex K. Then a function ζ: VertK ′ → VertK from the vertices of K ′ to
those of K represents a simplicial approximation to the identity map of |K|
if and only if it sends the barycentre of any simplex of K to some vertex of
that simplex.

Proof If ζ represents a simplicial approximation to the identity map of |K|
then ζ(σ̂) ∈ σ for any σ ∈ K, and hence ζ(σ̂) is a vertex of σ.

Conversely suppose that the function ζ sends the barycentre of any sim-
plex of K to a vertex of that simplex. Let τ be a simplex of K ′. Then it
follows from the definition of K ′ that the interior of τ is contained in the
interior of some simplex σ of K, and the vertices of τ are barycentres of
faces of σ. Then ζ must map the vertices of τ to vertices of σ, and hence
ζ represents a simplicial map from K ′ to K. Moreover this simplicial map
is a simplicial approximation to the identity map, since the interior of τ is
contained in σ and ζ maps the interior of τ into σ.

It follows from Lemma 7.3 that there exist simplicial approximations
ζ:K ′ → K to the identity map of |K|: such a simplicial approximation
can be obtained by choosing, for each σ ∈ K, a vertex vσ of σ, and defining
ζ(σ̂) = vσ.

Suppose that ζ:K ′ → K and θ:K ′ → K are both simplicial approxima-
tions to the identity map of |K|. Then ζ and θ are contiguous (Lemma 7.1),
and therefore the homomorphisms ζ∗ and θ∗ of homology groups induced by
ζ and θ must coincide. It follows that there is a well-defined natural homo-
morphism νK :Hq(K

′)→ Hq(K) of homology groups which coincides with ζ∗
for any simplicial approximation ζ:K ′ → K to the identity map of |K|.

Theorem 7.4 The natural homomorphism νK :Hq(K
′)→ Hq(K) is an iso-

morphism for any simplicial complex K.

Proof Let M be the simplicial complex consisting of some simplex σ to-
gether with all of its faces. Then H0(M) ∼= Z, H0(M ′) ∼= Z, and Hq(M) =
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0 = Hq(M
′) for all q > 0 (see Proposition 5.4 and the following example).

Let v be a vertex of M . If θ:M ′ → M is any simplicial approximation to
the identity map of |M | then θ(v) = v. But the homology class of 〈v〉 gen-
erates both H0(M) and H0(M ′). It follows that θ∗:H0(M ′) → H0(M) is an
isomorphism, and thus νM :Hq(M

′)→ Hq(M) is an isomorphism for all q.
We now use induction on the number of simplices in K to prove the

theorem in the general case. It therefore suffices to prove that the required
result holds for a simplicial complex K under the additional assumption that
the result is valid for all proper subcomplexes of K.

Let σ be a simplex of K whose dimension equals the dimension of K.
Then σ is not a face of any other simplex of K, and therefore K \ {σ} is a
subcomplex of K. Let M be the subcomplex of K consisting of the simplex σ,
together with all of its faces. We have already proved the result in the special
case when K = M . Thus we only need to verify the result in the case when
M is a proper subcomplex of K. In that case K = L∪M , where L = K\{σ}.

Let ζ:K ′ → K be a simplicial approximation to the identity map of |K|.
Then the restrictions ζ|L′, ζ|M ′ and ζ|L′ ∩M ′ of ζ to L′, M ′ and L′ ∩M ′

are simplicial approximations to the identity maps of |L|, |M | and |L| ∩ |M |
respectively. Therefore the diagram

0−→Cq(L′∩M ′)−→Cq(L′)⊕Cq(M ′) −→ Cq(K′)−→0yζ|L′∩M ′ y(ζ|L′)⊕(ζ|M ′)
yζ

0−→ Cq(L∩M) −→ Cq(L)⊕Cq(M) −→ Cq(K)−→0

commutes, and its rows are short exact sequences. But the restrictions ζ|L′,
ζ|M ′ and ζ|L′ ∩M ′ of ζ to L′, M ′ and L′ ∩M ′ are simplicial approximations
to the identity maps of |L|, |M | and |L| ∩ |M | respectively, and therefore
induce the natural homomorphisms νL, νM and νL∩M . We therefore obtain
a commutative diagram

Hq(L′∩M ′)−→Hq(L′)⊕Hq(M ′)−→Hq(K′)
αq−→Hq−1(L′∩M ′)−→Hq−1(L′)⊕Hq−1(M ′)yνL∩M yνL⊕νM yνK yνL∩M yνL⊕νM

Hq(L∩M) −→ Hq(L)⊕Hq(M) −→Hq(K)
αq−→ Hq−1(L∩M) −→ Hq−1(L)⊕Hq−1(M)

in which the rows are exact sequences, and are the Mayer-Vietoris sequences
corresponding to the decompositions K = L ∪M and K ′ = L′ ∪M ′ of K
and K ′. But the induction hypothesis ensures that the homomorphisms νL,
νM and νL∩M are isomorphisms, since L, M and L ∩M are all proper sub-
complexes of K. It now follows directly from the Five-Lemma (Lemma 6.3)
that νK :Hq(K

′)→ Hq(K) is also an isomorphism, as required.

We refer to the isomorphism νK :Hq(K
′) → Hq(K) as the canonical iso-

morphism from the qth homology group of K ′ to that of K.
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For each j > 0, we define the canonical isomorphism νK,j:Hq(K
(j)) →

Hq(K) from the homology groups of the jth barycentric subdivision K(j) of
K to those of K itself to be the composition of the natural isomorphisms

Hq(K
(j))→ Hq(K

(j−1))→ · · · → Hq(K
′)→ Hq(K)

induced by appropriate simplicial approximations to the identity map of |K|.
Note that if i ≤ j then ν−1

K,i ◦ νK,j is induced by a composition of simplicial
approximations to the identity map of |K|. But any composition of simplicial
approximations to the identity map is itself a simplicial approximation to the
identity map (Corollary 4.10). We deduce the following result.

Lemma 7.5 Let K be a simplicial complex, let i and j be positive integers
satisfying i ≤ j. Then νK,j = νK,i ◦ ζ∗ for some simplicial approximation
ζ:K(j) → K(i) to the identity map of |K|.

7.3 Continuous Maps and Induced Homomorphisms

Proposition 7.6 Any continuous map f : |K| → |L| between the polyhe-
dra of simplicial complexes K and L induces a well-defined homomorphism
f∗:Hq(K)→ Hq(L) of homology groups such that f∗ = s∗ ◦ ν−1

K,i for any sim-

plicial approximation s:K(i) → L to the map f , where s∗:Hq(K
(i))→ Hq(L)

is the homomorphism induced by the simplicial map s and νK,i:Hq(K
(i)) →

Hq(K) is the canonical isomorphism.

Proof The Simplicial Approximation Theorem (Theorem 4.11) guarantees
the existence of a simplicial approximation s:K(i) → L to the map f defined
on the ith barycentric subdivision K(i) of K for some sufficiently large i.
Thus it only remains to verify that if s:K(i) → L and t:K(j) → L are both
simplicial approximations to the map f then s∗ ◦ ν−1

K,i = t∗ ◦ ν−1
K,j.

Suppose that i ≤ j. Then ν−1
K,iνK,j = ζ∗ for some simplicial approx-

imation ζ:K(j) → K(i) to the identity map of |K| (Lemma 7.5). Thus
s∗ ◦ ν−1

K,i = s∗ ◦ ζ∗ ◦ ν−1
K,j = (s ◦ ζ)∗ ◦ ν−1

K,j. Moreover ζ:K(j) → K(i) and

s:K(i) → L are simplicial approximations to the identity map of |K| and
to f : |K| → |L| respectively, and therefore s ◦ ζ:K(j) → L is a simplicial
approximation to f : |K| → |L| (Corollary 4.10). But then s◦ζ and t are sim-
plicial approximations to the same continuous map, and thus are contiguous
simplicial maps from K(j) to L (Lemma 7.1). It follows that (s ◦ ζ)∗ and
t∗ coincide as homomorphisms from Hq(K

(j)) to Hq(L) (Lemma 7.2), and
therefore s∗ ◦ ν−1

K,i = t∗ ◦ ν−1
K,j, as required.
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Proposition 7.7 Let K, L and M be simplicial complexes and let f : |K| →
|L| and g: |L| → |M | be continuous maps. Then the homomorphisms f∗, g∗
and (g ◦ f)∗ of homology groups induced by the maps f , g and g ◦ f satisfy
(g ◦ f)∗ = g∗ ◦ f∗.

Proof Let t:L(m) →M be a simplicial approximation to g and let s:K(j) →
L(m) be a simplicial approximation to f . Now the canonical isomorphism
νL,m from Hq(L

(m)) to Hq(L) is induced by some simplicial approximation to
the identity map of |L|. It follows that νL,m ◦s∗ is induced by some simplicial
approximation to f (Corollary 4.10), and therefore f∗ = νL,m ◦ s∗ ◦ν−1

K,j. Also

g∗ = t∗ ◦ ν−1
L,m. It follows that g∗ ◦ f∗ = t∗ ◦ s∗ ◦ ν−1

K,j = (t ◦ s)∗ ◦ ν−1
K,j. But

t ◦ s:K(j) →M is a simplicial approximation to g ◦ f (Corollary 4.10). Thus
(g ◦ f)∗ = g∗ ◦ f∗, as required.

Corollary 7.8 If the polyhedra |K| and |L| of simplicial complexes K and
L are homeomorphic then the homology groups of K and L are isomorphic.

Proof Let h: |K| → |L| be a homeomorphism. Then h∗:Hq(K)→ Hq(L) is
an isomorphism whose inverse is (h−1)∗:Hq(L)→ Hq(K).

One can make use of induced homomorphisms in homology theory in order
to prove the Brouwer Fixed Point Theorem (Theorem 4.14) in all dimensions.
The Brouwer Fixed Point Theorem is a consequence of the fact that there
is no continuous map r: ∆ → ∂∆ from an n-simplex ∆ to its boundary
∂∆ with the property that r(x) = x for all x ∈ ∂∆ (Proposition 4.13).
Such a continuous map would induce homomorphisms r∗:Hq(∆)→ Hq(∂∆)
of homology groups for all non-negative integers q, and r∗ ◦ i∗ would be
the identity automorphism of Hq(∂∆) for all q, where i∗:Hq(∂∆) → Hq(∆)
is induced by the inclusion map i: ∂∆ ↪→ ∆. But this would imply that
r∗:Hq(∆) → Hq(∂∆) was surjective for all non-negative integers q, which
is impossible, since Hn−1(∆) = 0 and Hn−1(∂∆) ∼= Z when n ≥ 2 (and
Hn−1(∆) ∼= Z and Hn−1(∂∆) ∼= Z ⊕ Z when n = 1). We conclude therefore
that there is no continuous map r: ∆→ ∂∆ that fixes all points of ∂∆, and
therefore the Brouwer Fixed Point Theorem is satisfied in all dimensions.

We next show that homotopic maps between the polyhedra of simplicial
complexes induce the same homomorphisms of homology groups. For this
we require the following result.

Lemma 7.9 For any simplicial complex L there is some ε > 0 with the
following property: given continuous maps f : |K| → |L| and g: |K| → |L|
defined on the polyhedron of some simplicial complex K, where f(x) is within
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a distance ε of g(x) for all x ∈ |K|, there exists a simplicial map defined on
K(i) for some sufficiently large i which is a simplicial approximation to both
f and g.

Proof An application of the Lebesgue Lemma shows that there exists ε > 0
such that the open ball of radius 2ε about any point of |L| is contained
in stL(b) for some vertex b of L. Let f : |K| → |L| and g: |K| → |L| be
continuous maps. Suppose that f(x) is within a distance ε of g(x) for all
x ∈ |K|. Another application of the Lebesgue Lemma (to the open cover of
|K| by preimages of open balls of radius ε) shows that there exists δ > 0 such
that any subset S of |K| whose diameter is less than δ is mapped by f into
an open ball of radius ε about some point of |L|, and is therefore mapped by
g into an open ball of of radius 2ε about that point. But then f(S) ⊂ stL(b)
and g(S) ⊂ stL(b) for some vertex b of L. Now choose i such that µ(K(i)) <
1
2
δ. As in the proof of the Simplicial Approximation Theorem (Theorem 4.11)

we see that, for every vertex a of K(i), the diameter of stK(i)(a) is less than
δ, and hence f(stK(i)(a)) ⊂ stL(s(a)) and g(stK(i)(a)) ⊂ stL(s(a)) for some
vertex s(a) of L. It then follows from Proposition 4.9 that the function
s: VertK(i) → VertL constructed in this manner is the required simplicial
approximation to f and g.

Theorem 7.10 Let K and L be simplicial complexes and let f : |K| → |L|
and g: |K| → |L| be continuous maps from |K| to |L|. Suppose that f and g
are homotopic. Then the induced homomorphisms f∗ and g∗ from Hq(K) to
Hq(L) are equal for all q.

Proof Let F : |K| × [0, 1] → |L| be a homotopy with F (x, 0) = f(x) and
F (x, 1) = g(x), and let ε > 0 be given. Using the well-known fact that con-
tinuous functions defined on compact metric spaces are uniformly continuous
(which is easily proved using the Lebesgue Lemma), we see that there exists
some δ > 0 such that if |s− t| < δ then the distance from F (x, s) to F (x, t)
is less than ε. Let fi(x) = F (x, ti) for i = 0, 1, . . . , r, where t0, t1, . . . , tr have
been chosen such that 0 = t0 < t1 < · · · < tr = 1 and ti − ti−1 < δ for
all i. Then fi−1(x) is within a distance ε of fi(x) for all x ∈ |K|. Using
Lemma 7.9, we see that the maps fi−1 and fi from |K| to |L| have a common
simplicial approximation, and thus fi−1 and fi induce the same homomor-
phisms of homology groups, provided that ε > 0 has been chosen sufficiently
small. It follows that the maps f and g induce the same homomorphisms of
homology groups, as required.
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7.4 Homotopy Equivalence

Definition Let X and Y be topological spaces. A continuous map f :X →
Y is said to be a homotopy equivalence if there exists a continuous map
g:Y → X such that g ◦ f is homotopic to the identity map of X and f ◦ g
is homotopic to the identity map of Y . The spaces X and Y are said to be
homotopy equivalent if there exists a homotopy equivalence from X to Y .

Lemma 7.11 A composition of homotopy equivalences is itself a homotopy
equivalence.

Proof Let X, Y and Z be topological spaces, and let f :X → Y and h:Y →
Z be homotopy equivalences. Then there exist continuous maps g:Y → X
and k:Z → Y such that g ◦ f ' iX , f ◦ g ' iY , k ◦ h ' iY and h ◦ k ' iZ ,
where iX , iY and iZ denote the identity maps of the spaces X, Y , Z. Then
(g ◦k)◦ (h◦f) = g ◦ (k ◦h)◦f ' g ◦ iY ◦f = g ◦f ' iX and (h◦f)◦ (g ◦k) =
h ◦ (f ◦ g) ◦ k ' h ◦ iY ◦ k = h ◦ k ' iZ . Thus h ◦ f :X → Z is a homotopy
equivalence from X to Z.

Lemma 7.12 Let f : |K| → |L| be a homotopy equivalence between the poly-
hedra of simplicial complexes K and L. Then, for each non-negative inte-
ger q, the induced homomorphism f∗:Hq(K)→ Hq(L) of homology groups is
an isomorphism.

Proof There exists a continuous map g: |L| → |K| such that g ◦ f is homo-
topic to the identity map of |K| and f ◦ g is homotopic to the identity map
of |L|. It follows that the induced homomorphisms (g ◦f)∗:Hq(K)→ Hq(K)
and (f ◦ g)∗:Hq(L)→ Hq(L) are the identity automorphisms of Hq(K) and
Hq(L) for each q. But (g ◦ f)∗ = g∗ ◦ f∗ and (f ◦ g)∗ = f∗ ◦ g∗. It follows that
f∗:Hq(K)→ Hq(L) is an isomorphism with inverse g∗:Hq(L)→ Hq(K).

Definition A subset A of a topological space X is said to be a deformation
retract of X if there exists a continuous map H:X × [0, 1] → X such that
H(x, 0) = x and H(x, 1) ∈ A for all x ∈ X and H(a, 1) = a for all a ∈ A.

Thus a subset A of a topological space X is a deformation retract of X if
and only if there exists a function r:X → A such that r(a) = a for all a ∈ A
and r is homotopic in X to the identity map of X.

Example The unit sphere Sn−1 in Rn is a deformation retract of Rn \ {0}.
For if H(x, t) = (1 − t + t/|x|)x for all x ∈ Rn \ {0} and t ∈ [0, 1] then
H(x, 0) = x and H(x, 1) ∈ Sn−1 for all x ∈ Rn \ {0} and H(x, 1) = x when
x ∈ Sn−1.
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If A is a deformation retract of a topological space X then the inclusion
map i:A ↪→ X is a homotopy equivalence.

Theorem 7.13 The spaces Rm and Rn are not homeomorphic if m 6= n.

Proof Let Sm−1 and Sn−1 denote the unit spheres in Rm and Rn respectively.
Then Sm−1 and Sn−1 are homeomorphic to the polyhedra of simplicial com-
plexes K and L respectively. Let im:Sm−1 → R

m \ {0} be the inclusion map
and let rn:Rn \ {0} → Sn−1 be the map that sends x ∈ Rn \ {0} to (1/|x|)x.
Then both im:Sm−1 → R

m \ {0} and rn:Rn \ {0} → Sn−1 are homotopy
equivalences.

Suppose that there were to exist a homeomorphism h:Rm → R
n. Let

f(x) = h(x)−h(0) for all x ∈ Rm \{0}. Then f :Rm \{0} → R
n \{0} would

also be a homeomorphism, and therefore rn ◦ f ◦ im:Sm−1 → Sn−1 would be
a homotopy equivalence. Thus if Rm and Rn were homeomorphic then Sm−1

and Sn−1 would be homotopy equivalent, and therefore the homology groups
of the simplicial complexes K and L would be isomorphic. But Hq(K) ∼= Z

when q = 0 and q = m− 1 and Hq(K) = 0 for all other values of q, whereas
Hq(L) ∼= Z when q = 0 and q = n−1 and Hq(L) = 0 for all other values of q.
Thus if m 6= n then the homology groups of the simplicial complexes K and
L are not isomorphic, and therefore Rm and Rn are not homeomorphic.
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