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5 Simplicial Homology Groups

5.1 The Chain Groups of a Simplicial Complex

Let K be a simplicial complex. For each non-negative integer ¢, let A,(K)
be the additive group consisting of all formal sums of the form

2

ni(vg, vi, - .. ,Vé) +no(ve, Vi, ... V) (v, v, V),

where ny,ng, ..., ns are integers and vg, vi, ..., vy are (not necessarily dis-
tinct) vertices of K that span a simplex of K for r = 1,2,... s. (In more
formal language, the group A,(K) is the free Abelian group generated by the
set of all (¢ + 1)-tuples of the form (vg, vy,...,v,), where v, vy,..., Vv, span
a simplex of K.)

We recall some basic facts concerning permutations. A permutation of
a set S is a bijection mapping S onto itself. The set of all permutations of
some set S is a group; the group multiplication corresponds to composition of
permutations. A transposition is a permutation of a set S which interchanges
two elements of S, leaving the remaining elements of the set fixed. If S is
finite and has more than one element then any permutation of S can be
expressed as a product of transpositions. In particular any permutation of
the set {0,1,..., ¢} can be expressed as a product of transpositions (j — 1, j)
that interchange 7 — 1 and j for some j.

Associated to any permutation 7 of a finite set S is a number €,, known as
the parity or signature of the permutation, which can take on the values +1.
If m can be expressed as the product of an even number of transpositions,
then e, = +1; if 7 can be expressed as the product of an odd number of
transpositions then ¢, = —1. The function © +— ¢, is a homomorphism
from the group of permutations of a finite set S to the multiplicative group
{+1, -1} (i.e., €x, = €r€, for all permutations 7 and p of the set S). Note in
particular that the parity of any transposition is —1.

Definition The gth chain group Cy(K) of the simplicial complex K is de-
fined to be the quotient group A, (K)/A)(K), where AJ(K) is the sub-

group of A,(K) generated by elements of the form (vg,vy,...,v,) where
Vo, V1,...,V, are not all distinct, and by elements of the form

(Vr(0), Va(1)s -+ » V(a)) — €x(Vo, V1, ..., V)
where 7 is some permutation of {0, 1, ..., ¢} with parity e,. For convenience,

we define Cy(K) = {0} when ¢ < 0 or ¢ > dim K, where dim K is the
dimension of the simplicial complex K. An element of the chain group C,(K)
is referred to as gq-chain of the simplicial complex K.



We denote by (v, v1,...,v,) the element AYK) + (vo,v1,...,v,) of
Cy(K) corresponding to (vo, vi,...,Vv,). The following results follow imme-
diately from the definition of C,(K).

Lemma 5.1 Let vy, Vvy,...,v, be vertices of a simplicial complex K that
span a simplex of K. Then

o (vo,Vy,...,vy) =0 if vo,vy,...,v, are not all distinct,
® (Vi(0), Va(l)s - - - » Va(q)) = €x(V0, V1, ..., Vg) for any permutation 7 of the
set {0,1,...,q}.

Example If vy and v; are the endpoints of some line segment then

(vo, V1) = —(V1, Vo).
If vg, v1 and v, are the vertices of a triangle in some Euclidean space then

(VO,V17V2> = <V1,V27Vo> = <V2,V0,V1> = —<V2,V1,V0>

— _<V07V27V1> - _<V17V07V2>-

Definition An oriented q-simplex is an element of the chain group C,(K)
of the form £(vg,vy,...,v,), where vo,vy,...,v, are distinct and span a
simplex of K.

An oriented simplex of K can be thought of as consisting of a simplex of
K (namely the simplex spanned by the prescribed vertices), together with
one of two possible ‘orientations’ on that simplex. Any ordering of the ver-
tices determines an orientation of the simplex; any even permutation of the
ordering of the vertices preserves the orientation on the simplex, whereas any
odd permutation of this ordering reverses orientation.

Any ¢-chain of a simplicial complex K can be expressed as a sum of the
form

n101 + Na0g + - -+ + N0

where ny,ns, ..., ng are integers and oy, 09, . .., 04 are oriented g-simplices of
K. If we reverse the orientation on one of these simplices o; then this reverses
the sign of the corresponding coefficient n;. If o1, 09, ..., 0, represent distinct
simplices of K then the coefficients nq,no, ..., ns are uniquely determined.

Example Let vg, v; and v, be the vertices of a triangle in some Euclidean
space. Let K be the simplicial complex consisting of this triangle, together



with its edges and vertices. Every 0-chain of K can be expressed uniquely in
the form
n0<V0> + Al <V1> + TZ2<V2>

for some ng, n1,ny € Z. Similarly any 1-chain of K can be expressed uniquely
in the form

mo(Vi, Ve) + mi(va, vo) + ma(vo, vi)
for some mg, my, ms € Z, and any 2-chain of K can be expressed uniquely
as n{vy, vy, vo) for some integer n.

Lemma 5.2 Let K be a simplicial complex, and let A be an additive group.
Suppose that, to each (q + 1)-tuple (vo,V1,...,v,) of vertices spanning a

simplex of K, there corresponds an element o(vo, vy, ...,v,) of A, where
o a(vy,vi,...,v,) =0 unless vo,vi,..., Vv, are all distinct,
o a(vy,Vvi,...,V,) changes sign on interchanging any two adjacent ver-

tices vj_1 and v;.

Then there exists a well-defined homomorphism from Cy(K) to A which sends
(Vo, V1, ..., Vy) to avo, V1, ...,v,) whenever vo,vi,..., Vv, span a simplex of
K. This homomorphism is uniquely determined.

Proof The given function defined on (g + 1)-tuples of vertices of K extends
to a well-defined homomorphism a: A,(K) — A given by

s S

‘s ‘s ‘s _ ‘s ‘s T

o (E nr(vo,vl,...,vq)) = E nya (v, Vi, ..., vy)
r=1 r=1

for all an(vg,v’l’,...,vg) € A, (K). Moreover (vg,vy,...,v,) € kera

r=1

unless vo, vy,..., v, are all distinct. Also
(Va(0)s Vr(1)s - - > Va(q)) — Ex(V0, V1, ..., V) € kerav
for all permutations 7 of {0,1,...,¢q}, since the permutation 7 can be ex-

pressed as a product of transpositions (j — 1, 7) that interchange j — 1 with
j for some j and leave the rest of the set fixed, and the parity ¢, of 7 is
given by e, = +1 when the number of such transpositions is even, and by
€, = —1 when the number of such transpositions is odd. Thus the generators
of A)(K) are contained in ker o, and hence A(K) C kera. The required
homomorphism &: Cy(K) — A is then defined by the formula

S S
a <an<vg,vi,...,vg>) :ZnToz(VS,V’{,...,V;). |
r=1 r=1



5.2 Boundary Homomorphisms

Let K be a simplicial complex. We introduce below boundary homomor-
phisms 0, Cy(K) — Cy_1(K) between the chain groups of K. If ¢ is an
oriented g-simplex of K then 0,(c) is a (¢ — 1)-chain which is a formal sum
of the (¢ — 1)-faces of o, each with an orientation determined by the orien-
tation of o.

Let o be a g-simplex with vertices v, vy,..., v, For each integer j
between 0 and ¢ we denote by (vg,...,V,,...,v,) the oriented (¢ — 1)-face
(Vo, ooy Vi1, Vigt, - -, V)

of the simplex o obtained on omitting v, from the set of vertices of o. In
particular

(Vo, Vi ooy Vg) = (V1 ..., V), (Vo, oo, Vg1, V) = (Vo, .., Vg1).
Similarly if j and k are integers between 0 and ¢, where 5 < k, we denote by
<V0,...,\A’j,...,\A’k,...Vq>

the oriented (¢—2)-face (vo, ..., Vj_1,Vji1, ..., Vi1, Vit1, .. ., Vq) Of the sim-
plex o obtained on omitting v; and v;, from the set of vertices of o.

We now define a ‘boundary homomorphism’ d,: C,(K) — C,_1(K) for
cach integer ¢. Define 9, = 0if ¢ < 0 or ¢ > dim K. (In this case one
or other of the groups C,(K) and C,_(K) is trivial.) Suppose then that
0 < ¢ <dim K. Given vertices vo, vy,...,V, spanning a simplex of K, let

q

a(Vo, Vi, Ve) = D (=1 Vo, 5, V).

J=0

Inspection of this formula shows that a(vo, vy, ..., v,) changes sign whenever
two adjacent vertices v;_; and v; are interchanged.
Suppose that v; = v}, for some j and k satisfying 7 < k. Then

_ j . k o
a(ve,vi,...,vy) = (=1)(vo, ..., Vj,...,vg) + (=1)"(Vo, ..., Vi, ..., V)
since the remaining terms in the expression defining a(vy,vy,...,v,) con-
tain both v; and vi. However (vo,...,Vy,...,Vv,) can be transformed to
(vo,...,Vj,...,v,) by making k — j — 1 transpositions which interchange v;

successively with the vertices v;y1,v,y2,...,Vig_1. Therefore
~ i 1 k—j—1 ~
(Vo, ooy, Vi, ooy V) = (—1) (Vo, ooy Vi, oo, V).

b}



Thus a(vo, vy, ..., v,) = 0 unless vq, vy, ..., v, are all distinct. It now follows
immediately from Lemma 5.2 that there is a well-defined homomorphism
Oy Cy(K) — Cy—1(K), characterized by the property that

q

0y (Vo, Vi, vg)) = D> (=1 (vo, ..., V5, vy)

5=0
whenever vy, vy,..., v, span a simplex of K.
Lemma 5.3 J,_1 09, = 0 for all integers q.

Proof The result is trivial if ¢ < 2, since in this case 9,1 = 0. Suppose
that ¢ > 2. Let v, vy,..., v, be vertices spanning a simplex of K. Then

q

0q10y (o, Vi, vg)) = D (1)1 ((Vo,- .., 95, ..., Vy))

7=0
g Jj-1 ‘
= Z (—1)J+k<V0,...,\A/k,...7\Afj,...,Vq>
j=0 k=0
q q '
+ (—1)]+k_1<V0,...,\A/j,...,\A/k,...,Vq>
7=0 k=j+1

= 0

(since each term in this summation over j and k cancels with the correspond-
ing term with j and k interchanged). The result now follows from the fact
that the homomorphism 0,_; o 9, is determined by its values on all oriented
g-simplices of K. |}

5.3 The Homology Groups of a Simplicial Complex

Let K be a simplicial complex. A g-chain z is said to be a g-cycle if 9,2 = 0. A
g-chain b is said to be a g-boundary if b = 0,41 ¢ for some (¢+1)-chain ¢’. The
group of g-cycles of K is denoted by Z,(K), and the group of ¢g-boundaries
of K is denoted by B,(K). Thus Z,(K) is the kernel of the boundary ho-
momorphism J,: Cy(K) — Cy—1(K), and B,(K) is the image of the bound-
ary homomorphism 0y 41: Cyy1(K) — Cy(K). However 0, 0 9,41 = 0, by
Lemma 5.3. Therefore B,(K) C Z,(K). But these groups are subgroups of
the Abelian group Cy(K). We can therefore form the quotient group H,(K),
where H,(K) = Z,(K)/B,(K). The group H,(K) is referred to as the gqth
homology group of the simplicial complex K. Note that H,(K) =01if ¢ <0
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or ¢ > dimK (since Z,(K) = 0 and B,(K) = 0 in these cases). It can
be shown that the homology groups of a simplicial complex are topological
invariants of the polyhedron of that complex.

The element [z] € H,(K) of the homology group H,(K') determined by
z € Z,(K) is referred to as the homology class of the g-cycle z. Note that
[21 + 22] = [21] + [22] for all z1, 20 € Z,(K), and [z1] = [29] if and only if
21 — 29 = Oyy1¢ for some (¢ + 1)-chain c.

Proposition 5.4 Let K be a simplicial complex. Suppose that there exists
a verter w of K with the following property:

o if vertices vo,vi,...,V, span a simplex of K then so do
W, Vo, Vi, ..., Vy.

Then Hy(K) = Z, and H,(K) is the zero group for all ¢ > 0.

Proof Using Lemma 5.2, we see that there is a well-defined homomorphism
D,: Cy(K) — Cy41(K) characterized by the property that

D,((vo,V1,...,Vg)) = (W, Vo, Vi,...,V,)

whenever vy, vq,. .., Vv, span a simplex of K. Now 0;(Dy(v)) = v —w for all
vertices v of K. It follows that

S nelv) - (Z n> (w) = D" nal(vy) = (w)) € Bo(K)

for all > n,(v,) € Co(K). But Zy(K) = Cy(K) (since dy = 0 by definition),

r=1
and thus Ho(K) = Cy(K)/By(K). It follows that there is a well-defined
surjective homomorphism from Hy(K') to Z induced by the homomorphism

from Co(K) to Z that sends Y n.(v,) € Co(K) to >_ n,. Moreover this
r=1

r=1 =
induced homomorphism is an isomorphism from Hy(K) to Z.

Now let ¢ > 0. Then

8q+1(Dq(<Vo, Vi, .- 7Vq>))

= Og+1((W, Vo, vi,...,Vy))
q

= (Vo, Vi, V) + > (=1 W, vo, Vg, )
j=0

= (V0,V1,...,Vg) — Dg1(04((vo, V1,...,Vg)))



whenever vy, vy,...,v, span a simplex of K. Thus
9g11(Dq(c)) + Dyg-1(9y(c)) = ¢

for all ¢ € Cy(K). In particular z = 0,11(D,(2)) for all z € Z,(K), and hence
Z,(K) = By(K). It follows that H,(K) is the zero group for all ¢ > 0, as
required. |

Example The hypotheses of the proposition are satisfied for the complex
K, consisting of a simplex ¢ together with all of its faces: we can choose
w to be any vertex of the simplex . They are also satisfied for the first
barycentric subdivision K/ of K,: in this case we must choose w to be the
barycentre & of the simplex o. Thus the groups Hy(K,,) and Ho(K!) are both
isomorphic of Z, and the groups H,(K,) and H,(K]) are the zero group for
all ¢ > 0.

5.4 Simplicial Maps and Induced Homomorphisms

Any simplicial map ¢: K — L between simplicial complexes K and L induces
well-defined homomorphisms ¢,: C,(K) — C,(L) of chain groups, where

@q((vo’ Vi, ... 7Vq>) = <90(V0)> gp(Vl), R SO(Vq)>

whenever vy, vy, ..., v, span a simplex of K. (The existence of these induced
homomorphisms follows from a straightforward application of Lemma 5.2.)
Note that ¢, ((vo, v1,...,v,)) = 0 unless ©(vo), p(v1),...,¢(v,) are all dis-
tinct.

Now 4100, = 0, 0 ¢, for each integer q. Therefore p,(Z,(K)) C Z,(L)
and ¢,(By(K)) C B,(L) for all integers g. It follows that any simplicial
map ¢: K — L induces well-defined homomorphisms ¢,: H,(K) — H,(L) of
homology groups, where ¢.([z]) = [¢4(2)] for all g-cycles z € Z,(K). It is a
trivial exercise to verify that if K, L and M are simplicial complexes and if
p: K — L and ¢: L — M are simplicial maps then the induced homomor-
phisms of homology groups satisfy (¢ o ¢). = 1, 0 p,.

5.5 Connectedness and H((K)

Lemma 5.5 Let K be a simplicial compler. Then K can be partitioned
into pairwise disjoint subcomplexes K1, Ko, ..., K, whose polyhedra are the
connected components of the polyhedron |K| of K.



Proof Let X, Xs,..., X, be the connected components of the polyhedron
of K, and, for each j, let K; be the collection of all simplices o of K for
which o C Xj. If a simplex belongs to K; for all j then so do all its faces.
Therefore Ky, K, ..., K, are subcomplexes of K. These subcomplexes are
pairwise disjoint since the connected components X, Xo,..., X, of |K| are
pairwise disjoint. Moreover, if o € K then ¢ C X; for some j, since o is a
connected subset of |K|, and any connected subset of a topological space is
contained in some connected component. But then o € K;. It follows that
K=K UKyU---UK, and |K| = |K;|U|Ky|U---U|K,|, as required. |}

The direct sum A1DAs®- - -PD A, of additive Abelian groups A, Ay, ..., A,
is defined to be the additive group consisting of all r-tuples (aq,as, ..., a,)
with a; € A; for i =1,2,...,r, where

(al,az,...,a,,)—I—(bl,bg,...,br)E (a1+b1,a2+bg,...,ar+br).

Lemma 5.6 Let K be a simplicial complex. Suppose that K = Ky U Ky U
- U K,., where Ky, Ks, ... K, are pairunse disjoint. Then

H

q

(K) = Hy(K1) @ Hy(Ky) @ -+ @ Hy(K,)
for all integers q.

Proof We may restrict our attention to the case when 0 < ¢ < dim K,
since H,(K) = {0} if ¢ < 0 or ¢ > dim K. Now any g¢-chain ¢ of K can be
expressed uniquely as a sum of the form ¢ =¢; +co + -+ + ¢, where ¢; is a
g-chain of K for j =1,2,...,r. It follows that

Cq(K) = Oq(Kl) S Cq(KZ) ST Cq(-Kr)'

Now let z be a g-cycle of K (i.e., z € Cy(K) satisfies 9,(z) = 0). We can
express z uniquely in the form z = z; + 29 + - -+ + z,, where z; is a ¢-chain
of K for j=1,2,...,r. Now

0= 0y(2) = 0y(21) + Oy(22) + - - - + 9y (2),

and 0,(z;) is a (¢—1)-chain of K for j = 1,2,...,r. It follows that 0,(z;) =0
for j =1,2,...,r. Hence each z; is a g-cycle of K, and thus

Zq(K) = Zq(Kl) D Zq(K2> ©---D Zq<Kr)'

Now let b be a ¢-boundary of K. Then b = 0,11(c) for some (¢ + 1)-
chain ¢ of K. Moreover ¢ = ¢; + ¢2 + - - - ¢, where ¢; € Cyq1(K;). Thus b =
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by + by + - - b, where b; € B,(K;) is given by b; = Oyq1¢j for j =1,2,... 7.
We deduce that

Bq(K> = Bq(Kl) ©® Bq<K2) &0 Bq(Kr>~
It follows from these observations that there is a well-defined isomorphism
vi Hy(K1) @ Hy(Ko) @ -+ @ Hy(K,) — Hy(K)

which maps ([z1], [22], ..., [2/]) to [21 + 22 + - - - + 2,], where [z;] denotes the
homology class of a ¢g-cycle z; of K for j =1,2,...,r. |}

Let K be a simplicial complex, and let y and z be vertices of K. We
say that y and z can be joined by an edge path if there exists a sequence
Vo, V1, ..., V,, of vertices of K with vy =y and v,, = z such that the line
segment with endpoints v;_; and v; is an edge belonging to K for j =
1,2,...,m.

Lemma 5.7 The polyhedron |K| of a simplicial complex K is a connected
topological space if and only if any two vertices of K can be joined by an edge
path.

Proof It is easy to verify that if any two vertices of K can be joined by an
edge path then |K| is path-connected and is thus connected. (Indeed any
two points of |K| can be joined by a path made up of a finite number of
straight line segments.)

We must show that if | K| is connected then any two vertices of K can be
joined by an edge path. Choose a vertex vy of K. It suffices to verify that
every vertex of K can be joined to vy by an edge path.

Let Ky be the collection of all of the simplices of K having the property
that one (and hence all) of the vertices of that simplex can be joined to vy
by an edge path. If ¢ is a simplex belonging to K then every vertex of o can
be joined to vy by an edge path, and therefore every face of o belongs to K.
Thus K is a subcomplex of K. Clearly the collection K of all simplices of K
which do not belong to K is also a subcomplex of K. Thus K = Ky U Kj,
where Ko N K; = (), and hence |K| = |Ko| U | K|, where |Ko| N | K| = 0.
But the polyhedra |Ky| and |K;| of Ky and K7 are closed subsets of |K|. It
follows from the connectedness of | K| that either |Ky| = () or |K;| = 0. But
v € Ky. Thus K; = ) and Ky = K, showing that every vertex of K can be
joined to vy by an edge path, as required. |

Theorem 5.8 Let K be a simplicial complex. Suppose that the polyhe-
dron |K| of K is connected. Then Hy(K) = Z.

10



Proof Let uj, us, ..., u, be the vertices of the simplicial complex K. Every
0-chain of K can be expressed uniquely as a formal sum of the form

ni(ur) + no(uz) + -+ - + n,(uy)

for some integers ny,ns, ..., n,. It follows that there is a well-defined homo-
morphism e: Cy(K) — Z defined by

e (ni{uy) +na(ug) + -+ - +n.(u.)) =ny +ng+ -+ + n,.

Now £(01({(y,z))) = ¢((z) — (y)) = 0 whenever y and z are endpoints of an
edge of K. It follows that € 0 9 = 0, and hence By(K) C kere.

Let vo, vy, ..., vy be vertices of K determining an edge path. Then
(Vi) — (Vo) = 01 <Z<Vj—1avj>> € By(K).
j=1

Now | K| is connected, and therefore any pair of vertices of K can be joined

by an edge path (Lemma 5.7). We deduce that (z) — (y) € Bo(K) for all

vertices y and z of K. Thus if ¢ € kere, where ¢ = ) n;(u;), then Y n; =0,

j=1 Jj=1
and hence ¢ = > n;((u;) — (u1)). But (u;) — (u;) € By(K). It follows that
j=2

¢ € By(K). We conclude that kere C By(K), and hence kere = By(K).
Now the homomorphism e: Cy(K) — Z is surjective and its kernel is

By(K). Therefore it induces an isomorphism from Cy(K)/Bo(K) to Z.

However Zy(K) = Co(K) (since 0y = 0 by definition). Thus Hy(K) =

Co(K)/By(K) =2 Z, as required. |

On combining Theorem 5.8 with Lemmas 5.5 and 5.6 we obtain immedi-
ately the following result.

Corollary 5.9 Let K be a simplicial complex. Then
H(K)=2Z&Zs--- L (r times),

where 1 is the number of connected components of |K]|.

6 Introduction to Homological Algebra

6.1 Exact Sequences
In homological algebra we consider sequences

AU AN AT Ny » SN
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where F', GG, H etc. are Abelian groups and p, ¢ etc. are homomorphisms.
We denote the trivial group {0} by 0, and we denote by 0—G and G—0
the zero homomorphisms from 0 to G and from G to 0 respectively. (These
zero homomorphisms are of course the only homomorphisms mapping out of
and into the trivial group 0.)

Definition The sequence F—~G—H of Abelian groups and homomor-
phisms is said to be ezact at G if and only if image(p: F' — G) = ker(¢: G —
H). A sequence of Abelian groups and homomorphisms is said to be ezact if
it is exact at each Abelian group occurring in the sequence (so that the image
of each homomorphism is the kernel of the succeeding homomorphism).

A monomorphism is an injective homomorphism. An epimorphism is a
surjective homomorphism. An isomorphism is a bijective homomorphism.
The following result follows directly from the relevant definitions.

Lemma 6.1 Let h: G — H be a homomorphism of Abelian groups.

e h:G — H is a monomorphism if and only if 0—G—H is an eract
sequence.

e h:G — H is an epimorphism if and only if G-LSH——0 is an ezact
sequence.

e h:G — H is an isomorphism if and only if 0—G-LSH—0 is an
exact sequence.

Let F' be a subgroup of an Abelian group GG. Then the sequence
0—F-5G-5G/F—0,

is exact, where GG/F is the quotient group, i: F' — @ is the inclusion ho-
momorphism, and ¢: G — G/F is the quotient homomorphism. Conversely,
given any exact sequence of the form

0—>F—i>Gi>H—>O,

we can regard F' as a subgroup of G (on identifying F' with i(F")), and then
H is isomorphic to the quotient group G/F. Exact sequences of this type
are referred to as short exact sequences.

We now introduce the concept of a commutative diagram. This is a di-
agram depicting a collection of homomorphisms between various Abelian
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groups occurring on the diagram. The diagram is said to commute if, when-
ever there are two routes through the diagram from an Abelian group G to an
Abelian group H, the homomorphism from G to H obtained by forming the
composition of the homomorphisms along one route in the diagram agrees
with that obtained by composing the homomorphisms along the other route.
Thus, for example, the diagram

A L B 2 ¢

| O
D " B kA 0F

commutes if and only if go f =hopandrog==~kogq.

Proposition 6.2 Suppose that the following diagram of Abelian groups and
homomorphisms

Gl e Gg — Gg e G4 — G5
J{% ld& lﬂis Jd@ J{d)z’;
H - H = Hy — Hy; — Hs

commutes and that both rows are exact sequences. Then the following results
follow:

(i) if 12 and 1y are monomorphisms and if 11 is a epimorphism then 13
s an monomorphism,

(i) of Yo and 4 are epimorphisms and if 15 is a monomorphism then 13
s an epimorphism.

Proof First we prove (i). Suppose that ¢, and 1), are monomorphisms and
that 1), is an epimorphism. We wish to show that 3 is a monomorphism.
Let * € G3 be such that ¥3(z) = 0. Then 4 (03(x)) = ¢3(¢v3(z)) = 0,
and hence 05(z) = 0. But then = 6y(y) for some y € Go, by exactness.
Moreover

P2 (V2(y)) = V3 (02(y)) = ¥3(z) = 0,

hence ¥y (y) = ¢1(2) for some z € Hy, by exactness. But z = 91 (w) for some
w € (G, since ¥ is an epimorphism. Then

P (01(w)) = ¢1 (Ya(w)) = a(y),

and hence 0, (w) = y, since 15 is a monomorphism. But then
z = 05(y) = 02 (61(w)) = 0

13



by exactness. Thus 13 is a monomorphism.

Next we prove (ii). Thus suppose that ¢, and 1, are epimorphisms and
that 15 is a monomorphism. We wish to show that 13 is an epimorphism.
Let a be an element of Hz. Then ¢3(a) = 14(b) for some b € Gy, since 1)y is
an epimorphism. Now

V5 (04(b)) = ¢4 (¥4(b)) = ¢4 (¢3(a)) =0,

hence 04(b) = 0, since 5 is a monomorphism. Hence there exists ¢ € Gy
such that 63(c) = b, by exactness. Then

¢3 (P3(¢)) = 1a (63(c)) = 1a(b),

hence ¢3 (a —v3(c)) = 0, and thus a — 13(c) = ¢2(d) for some d € H,, by
exactness. But 15 is an epimorphism, hence there exists e € G5 such that
(e) = d. But then

Y3 (Ba(e)) = d2 (Ya(e)) = a — 3(c).

Hence a = 93 (¢ + 6(e)), and thus a is in the image of 3. This shows that
15 is an epimorphism, as required. |}

The following result is an immediate corollary of Proposition 6.2.

Lemma 6.3 (Five-Lemma) Suppose that the rows of the commutative dia-
gram of Proposition 6.2 are exact sequences and that 1y, ¥, Yy and s are
1somorphisms. Then 3 is also an isomorphism.

6.2 Chain Complexes

Definition A chain complez C., is a (doubly infinite) sequence (C; : i € Z)
of Abelian groups, together with homomorphisms 0;: C; — C;_; for each
i € Z, such that 9; o 9;11 = 0 for all integers 1.

The ith homology group H;(C.) of the complex C, is defined to be the
quotient group Z;(C.)/B;(Cy), where Z;(C,) is the kernel of 0;: C; — C;_;
and B;(C.) is the image of 0;11: Ci11 — C;.

Definition Let C, and D, be chain complexes. A chain map f:C, — D, is

a sequence f;: C; — D; of homomorphisms which satisfy the commutativity
condition d; o f; = fi_1 0 0; for all i € Z.

14



Note that a collection of homomorphisms f;: C; — D; defines a chain map
fe: Cy — D, if and only if the diagram

Oit1 0;
I i1 — G — Cig —--

lfz#l lfi lfifl

= Dipa G D; 2 Dy —---
is commutative.

Let C, and D, be chain complexes, and let f,:C, — D, be a chain map.
Then f;(Z;(Cy)) C Zi(D.) and fi(B;(Cy)) C Bi(D,) for all i. It follows
from this that f;: C; — D; induces a homomorphism f,: H;(C,) — H;(D.)
of homology groups sending [z] to [fi(2)] for all z € Z;(C,), where [z] =
z+ Bi(C.), and [fi(2)] = fi(2) + Bi(Dx).

Definition A short ezact sequence 0— A, 2 B,-*>C,—0 of chain com-
plexes consists of chain complexes A,, B, and C, and chain maps p,: A, — B,
and ¢,: B, — C, such that the sequence

is exact for each integer i.

We see that 0—s A, = B, (', —0 is a short exact sequence of chain
complexes if and only if the diagram

Oit+2 Oiy2 Oit2
Pi+1 qi+1
0 — Az—l—l Bt Cz+1 — 0
Oit1 0541 Oi1
Di g
0o — 4 X B XL ¢ — 0.
8 9 9;
Pi—1 qi—1
0O — A4, — B, — C_ — 0
Oi_1 Oi—1 Oi—1

is a commutative diagram whose rows are exact sequences and whose columns
are chain complexes.
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Lemma 6.4 Given any short exact sequence 0— A, 2B, -0, —0 of
chain complexes, there is a well-defined homomorphism

OéZHZ(C*) - z‘—l(A*>

which sends the homology class [z] of z € Z;(C\) to the homology class [w] of
any element w of Z;_1(A.) with the property that p;—1(w) = 0;(b) for some
b € B; satisfying q;(b) = z.

Proof Let z € Z;(C,). Then there exists b € B; satisfying ¢;(b) = z, since
q;: B; — C} is surjective. Moreover

¢i—1(05(b)) = 0i(qs(b)) = Gi(2) = 0.

But p;_1: A,y — B;_; is injective and p;_1(A;_1) = kerg;_1, since the se-
quence
0—>Ai—1pl—_1>Bi—1£>Ci—1

is exact. Therefore there exists a unique element w of A;_; such that 9;(b) =
pi—1(w). Moreover

pi—2(0i—1(w)) = 0i—1(pi—1(w)) = 0;—1(9(b)) = 0

(since 0;_1 0 0; = 0), and therefore 9; _1(w) = 0 (since p;_o: A; 5 — B;_o is
injective). Thus w € Z;_1(A,).

Now let 0,0 € B; satisfy ¢;(b) = ¢;(') = 2, and let w,w" € Z;_1(A.)
satisfy p;—1(w) = 0;(b) and p;,—1(w') = 0;(b'). Then ¢;(b — V') = 0, and hence
b’ — b= p;(a) for some a € A;, by exactness. But then

pic1(w+0i(a)) = pi1(w) + 0i(pi(a)) = 9i(b) + 0;(V — b) = 0;(V') = pi_1 ('),

and p;_1: A;_1 — B;_; is injective. Therefore w + 9;(a) = w’, and hence
[w] = [w'] in H;_1(A,). Thus there is a well-defined function &;: Z;(C,) —
H;_1(A,) which sends z € Z;(C,) to [w] € H;—1(As), where w € Z;_1(A,) is
chosen such that p;_;(w) = 9;(b) for some b € B; satisfying ¢;(b) = z. This
function @; is clearly a homomorphism from Z;(C,) to H;—1(A.).

Suppose that elements z and 2’ of Z;(C,) represent the same homology
class in H;(Cy). Then 2’ = z+ 0;41¢ for some ¢ € C;;1. Moreover ¢ = ¢;11(d)
for some d € B;11, since ¢;+1: Biy1 — Cj11 is surjective. Choose b € B; such
that ¢;(b) = 2z, and let V/ = b+ 0;11(d). Then

¢(V') = 2+ ¢i(0i11(d) = 2 + 0is1(giy1(d)) = 2 + Oipa(c) = 2.

Moreover 0;(b') = 0;(b + 0;11(d)) = 0;(b) (since 0; 0 J;41 = 0). Therefore
&;(z) = &;(2'). It follows that the homomorphism &;: Z;(C,) — H;—1(A.) in-
duces a well-defined homomorphism «;: H;(Cy) — H;_1(A,), as required. |}
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Let 0— A, 2B, -2C,—0 and O—>A;£Biq—;>0fk—>0 be short ex-
act sequences of chain complexes, and let \,;: A, — A, u.: B, — B, and
vy: C, — C. be chain maps. For each integer i, let «o;: H;(Cy) — H;_1(As)
and of: H;(C") — H;_1(A.) be the homomorphisms defined as described in
Lemma 6.4. Suppose that the diagram

0 — A, X B, & 0, — 0

[ 2 B

/ !
p q
0 — A I p Lo — 0

commutes (i.e., pio\; = p;op; and ¢. o p; = v;0q; for all i). Then the square
Hy(C,) —> Hi1(A,)
v A
H(C) =5 Hia(A)
commutes for all i € Z (i.e.,, \xoa; = o o v,).

Proposition 6.5 Let 0— A, 2B, - 250, —0 be a short exact sequence of
chain complexes. Then the (infinite) sequence

- SR H (A S H (B = Hi(C) = i (A T2 Hia (BL) =5 -

of homology groups is exact, where o;: H;(C,) — H;_1(A.) is the well-defined
homomorphism that sends the homology class [z] of z € Z;(C\) to the homol-
ogy class [w] of any element w of Z;_1(As) with the property that p;_1(w) =
0;(b) for some b € B; satisfying ¢;(b) = .

Proof First we prove exactness at H;(B.). Now ¢; o p; = 0, and hence
¢« o p» = 0. Thus the image of p,: H;(A,) — H;(B.) is contained in the
kernel of ¢.: H;(B.) — H;(C.). Let x be an element of Z;(B.) for which
[x] € kerq.. Then ¢;(x) = 9;41(c) for some ¢ € Ciy1. But ¢ = ¢, 1(d) for
some d € B, since ¢;11: Biy1 — Cjyq is surjective. Then

gi(z — 0i4a(d)) = ¢i(z) — 0ita(giv1(d)) = gi(x) — Dia(c) = 0,
and hence x — 0;41(d) = p;(a) for some a € A;, by exactness. Moreover
pi-1(0i(a)) = 0i(pi(a)) = 9i(z — 9111 (d)) = 0,

since 0;(z) = 0 and 0; 0 ;41 = 0. But p;_1: A;_1 — B;_; is injective.
Therefore 0;(a) = 0, and thus a represents some element [a] of H;(A.). We
deduce that

2] = [z = 8i11(d)] = [pi(a)] = p.(la]).
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We conclude that the sequence of homology groups is exact at H;(B,).

Next we prove exactness at H;(C.). Let x € Z;(B.). Now «a;(g.[z]) =
a;([q;(x)]) = [w], where w is the unique element of Z;( A,) satisfying p; 1 (w) =
0;(x). But 0;(x) = 0, and hence w = 0. Thus «; o g. = 0. Now let z be an
element of Z;(C,) for which [z] € kera;. Choose b € B; and w € Z;_1(A.)
such that ¢;(b) = z and p;_1(w) = 9;(b). Then w = 0;(a) for some a € A;,
since [w] = «;([z]) = 0. But then ¢;(b — pi(a)) = z and 9;(b — p;(a)) = 0.
Thus b — p;(a) € Z;(B.) and ¢.([b — pi(a)]) = [2]. We conclude that the
sequence of homology groups is exact at H;(C,).

Finally we prove exactness at H;_1(A,). Let z € Z;(C.). Then «;([2]) =
[w], where w € Z;_1(A.) satisfies p;_1(w) = 0;(b) for some b € B; satisfying
¢;(b) = z. But then p,(i([z])) = [pi—1(w)] = [0;(b)] = 0. Thus p. o a; = 0.
Now let w be an element of Z;_;(A,) for which [w] € ker p,. Then [p;_1(w)] =
0 in H;_1(B.), and hence p;_1(w) = 0;(b) for some b € B;. But

0i(:(b)) = ¢i-1(9:(b)) = gia(pia (w)) = 0.

Therefore [w] = «;([z]), where z = ¢;(b). We conclude that the sequence of
homology groups is exact at H;_1(A,), as required. |}

6.3 The Mayer-Vietoris Sequence

Let K be a simplicial complex and let L and M be subcomplexes of K such
that K = LU M. Let

i Co(LN M) — Cy(L), Jg: Co(LN M) — Cy(M),
ug: Cy(L) — Cy(K), Vg Cy(M) — Cy(K)

be the inclusion homomorphisms induced by the inclusion maps i: LN M —
L,j:LNM— M, uw.L — K and v: M — K. Then

0—C, (L N M)E5CL (L) & Cu(M)-250, (K)—0

is a short exact sequence of chain complexes, where

ko(c) = (ig(c); —Jq(c)),
we(c'y ") = ug(c) +vg(c”),
0y(c, ") = (94(c), 0y(c"))

forall c € C,(LNM), ¢ € Cy(L) and " € Cy(M). It follows from Lemma 6.4
that there is a well-defined homomorphism «,: H,(K) — H,_1(L N M) such
that ay([z]) = [0,(c)] = —[0,(¢")] for any 2z € Z,(K), where ¢ and ¢’
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are any ¢-chains of L and M respectively satisfying z = ¢ + ¢’. (Note
that 0,(c') € Z,_1(L N M) since 0,(c') € Z,_1(L), 0,(c") € Z,—1(M) and
0y(c') = —0,4(c").) It now follows immediately from Proposition 6.5 that the
infinite sequence

BB H(LOM)ESH (L) @ Hy(M)25Hy(K)25H, (L0 M)25

of homology groups is exact. This long exact sequence of homology groups is
referred to as the Mayer-Vietoris sequence associated with the decomposition
of K as the union of the subcomplexes L and M.

7 The Topological Invariance of Simplicial
Homology Groups

7.1 Contiguous Simplicial Maps

Definition Two simplicial maps s: K — L and t: K — L between simplicial
complexes K and L are said to be contiguous if, given any simplex o of K,
there exists a simplex 7 of L such that s(v) and ¢(v) are vertices of 7 for
each vertex v of o.

Lemma 7.1 Let K and L be simplicial complexes, and let s: K — L and
t: K — L be simplicial approximations to some continuous map f:|K| — |L|.
Then the simplicial maps s and t are contiguous.

Proof Let x be a point in the interior of some simplex o of K. Then f(x)
belongs to the interior of a unique simplex 7 of L, and moreover s(x) € 7
and t(x) € 7, since s and ¢ are simplicial approximations to the map f. But
s(x) and t(x) are contained in the interior of the simplices s(o) and t(o) of
L. Tt follows that s(o) and t(o) are faces of 7, and hence s(v) and ¢(v) are
vertices of 7 for each vertex v of o, as required. |}

Proposition 7.2 Let s: K — L and t: K — L be simplicial maps between
simplicial complexes K and L. Suppose that s and t are contiguous. Then
the homomorphisms s.: H(K) — H,(L) and t.: H(K) — H,(L) coincide
for all q.

Proof Choose an ordering of the vertices of K. Then there are well-defined
homomorphisms D,: Cy(K) — Cy+1(L) characterized by the property that

q

D,((vo,V1,...,vq)) = Z(—l)j(s(vo), cey (V) (), (V).

J=0
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whenever v, vy, ... v, are the vertices of a ¢g-simplex of K listed in increasing
order (with respect to the chosen ordering of the vertices of K). Then

I (Do((v))) = 01({s(v),t(v))) = (t(v)) — (s(v)),
and thus 0; o Dy = tg — sg. Also
Dy—1(94({vo, - - -, vq)))

— Z(_w‘Dq,l((vO,...,vi,...,vq))
= . ( 1)Z+]<3(V0)7 7S(Vj)7t(vj)7 ’t/(‘-/i\)’ 7t(v‘1)>
£33 (1) s(w) L5(VE), - (V)L EVS), - H(vy))

— ]Z;::< D (5(v0), oy 5(Ve)s ooy 8(v3) £(V), - £(v))
v, ,t<vq>>+j§q;<s<w>, S 1) 1)
—j:;<s<vo>, S Vi) - HVa)) = (5(¥0)s - 5(v))
E3 ST U () s 3 ) H) )

and thus
Og+10 Dy + Dy100y =15 — 84

for all ¢ > 0. It follows that t,(2) — s4,(2) = Oy41 (D,(2)) for any g-cycle z
of K, and therefore s,([z]) = t.([z]). Thus s, = t. as homomorphisms from
H,(K) to H,(L), as required. |
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7.2 The Homology of Barycentric Subdivisions

We shall show that the homology groups of a simplicial complex are isomor-
phic to those of its first barycentric subdivision.

We recall that the vertices of the first barycentric subdivision K’ of a
simplicial complex K are the barycentres ¢ of the simplices ¢ of K, and that
K’ consists of the simplices spanned by 6y, 41, ..., d,, where 0g,01,...,0, €
K and o;_; is a proper face of o; for j =1,2,...,¢q.

Lemma 7.3 Let K' be the first barycentric subdivision of a simplicial com-
plex K. Then a function (:Vert K' — Vert K from the vertices of K' to
those of K represents a simplicial approximation to the identity map of | K|
if and only if it sends the barycentre of any simplex of K to some vertex of
that simplex.

Proof If { represents a simplicial approximation to the identity map of | K|
then ((0) € o for any o € K, and hence ((¢) is a vertex of o.

Conversely suppose that the function ¢ sends the barycentre of any sim-
plex of K to a vertex of that simplex. Let 7 be a simplex of K’. Then it
follows from the definition of K’ that the interior of 7 is contained in the
interior of some simplex o of K, and the vertices of 7 are barycentres of
faces of 0. Then ¢ must map the vertices of 7 to vertices of o, and hence
¢ represents a simplicial map from K’ to K. Moreover this simplicial map
is a simplicial approximation to the identity map, since the interior of 7 is
contained in o and ¢ maps the interior of 7 into o. |}

It follows from Lemma 7.3 that there exist simplicial approximations
(:K' — K to the identity map of |K|: such a simplicial approximation
can be obtained by choosing, for each o € K, a vertex v, of o, and defining
C(0) = v,.

Suppose that (: K’ — K and 6: K/ — K are both simplicial approxima-
tions to the identity map of |K|. Then ¢ and 6 are contiguous (Lemma 7.1),
and therefore the homomorphisms ¢, and 6, of homology groups induced by
¢ and € must coincide. It follows that there is a well-defined natural homo-
morphism vg: Hy(K') — H,(K) of homology groups which coincides with (,
for any simplicial approximation ¢: K’ — K to the identity map of |K]|.

Theorem 7.4 The natural homomorphism vi: Hy(K') — H,(K) is an iso-
morphism for any simplicial complex K.

Proof Let M be the simplicial complex consisting of some simplex o to-
gether with all of its faces. Then Ho(M) = Z, Hy(M') = Z, and H,(M) =
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0 = H,(M') for all ¢ > 0 (see Proposition 5.4 and the following example).
Let v be a vertex of M. If §: M’ — M 1is any simplicial approximation to
the identity map of |M| then #(v) = v. But the homology class of (v) gen-
erates both Hy(M) and Hy(M'). It follows that 6.: Hy(M') — Hy(M) is an
isomorphism, and thus vy;: H,(M') — H,(M) is an isomorphism for all g.

We now use induction on the number of simplices in K to prove the
theorem in the general case. It therefore suffices to prove that the required
result holds for a simplicial complex K under the additional assumption that
the result is valid for all proper subcomplexes of K.

Let o be a simplex of K whose dimension equals the dimension of K.
Then o is not a face of any other simplex of K, and therefore K \ {c} is a
subcomplex of K. Let M be the subcomplex of K consisting of the simplex o,
together with all of its faces. We have already proved the result in the special
case when K = M. Thus we only need to verify the result in the case when
M is a proper subcomplex of K. In that case K = LUM, where L = K\{o}.

Let ¢: K’ — K be a simplicial approximation to the identity map of | K]|.
Then the restrictions (|L’, {|M" and ¢|L' N M’ of { to L', M’ and L' " M’
are simplicial approximations to the identity maps of |L|, |M| and |L| N |M|
respectively. Therefore the diagram

0—Cq(L'NM")—Cq(L")DCq(M') - Cq(K')—0
lCIL’ﬂM’ l(C\L’)eB(CIM’) lC
0—> Cy(LNM) — Co(L)®Cq(M) - Cq(K) —0

commutes, and its rows are short exact sequences. But the restrictions (|L/,
C|M" and {|L' N M’ of ¢ to L', M’ and L' N M’ are simplicial approximations
to the identity maps of |L|, |M| and |L| N |M] respectively, and therefore
induce the natural homomorphisms vy, vy, and vy, We therefore obtain
a commutative diagram

Hq(LIQMI)*’Hq(Ll)@Hq(M/)*’Hq(K/)qu—l(LIQM/)*)Hq—I(LI)@Hq—l (M")
lVLﬂlw v @vng VK VLAM vp®vng

Hy(LAM) — Hy(L)®Hy(M) — Ho(K) <% Hy_y(LOM) — Hy—1 (L)®Hy—1 (M)

in which the rows are exact sequences, and are the Mayer-Vietoris sequences
corresponding to the decompositions K = LUM and K' = L' UM’ of K
and K’. But the induction hypothesis ensures that the homomorphisms v,
vy and vpnpy are isomorphisms, since L, M and L N M are all proper sub-
complexes of K. It now follows directly from the Five-Lemma (Lemma 6.3)
that vg: H,(K') — H,(K) is also an isomorphism, as required. [}

We refer to the isomorphism vg: H,(K') — H,(K) as the canonical iso-
morphism from the gth homology group of K’ to that of K.
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For each j > 0, we define the canonical isomorphism vy ;: H,(KY) —
H,(K) from the homology groups of the jth barycentric subdivision K of
K to those of K itself to be the composition of the natural isomorphisms

H

q

(KD) = Hy(KV™D) = - — Hy(K') — Hy(K)

induced by appropriate simplicial approximations to the identity map of | K|.
Note that if i« < j then I/I;}i o Vg ; is induced by a composition of simplicial
approximations to the identity map of |K|. But any composition of simplicial
approximations to the identity map is itself a simplicial approximation to the
identity map (Corollary 4.10). We deduce the following result.

Lemma 7.5 Let K be a simplicial complex, let © and j be positive integers
satisfying © < j. Then vik,; = vk, o (. for some simplicial approximation
¢: KU — K to the identity map of | K|.

7.3 Continuous Maps and Induced Homomorphisms

Proposition 7.6 Any continuous map f:|K| — |L| between the polyhe-
dra of simplicial complexes K and L induces a well-defined homomorphism
for H(K) — H,(L) of homology groups such that f. = s, o u;(}i for any sim-
plicial approxvimation s: K& — L to the map f, where s,: Hy(K®) — H,(L)
is the homomorphism induced by the simplicial map s and vk ;: Hq(K(i)) —

H,(K) is the canonical isomorphism.

Proof The Simplicial Approximation Theorem (Theorem 4.11) guarantees
the existence of a simplicial approximation s: K@ — L to the map f defined
on the ith barycentric subdivision K® of K for some sufficiently large i.
Thus it only remains to verify that if s: K — L and t: K¥) — L are both
simplicial approximations to the map f then s, o VI_{,li =t,0 VI;}]-.

Suppose that ¢ < 7. Then VI};VKJ = (, for some simplicial approx-
imation ¢: K — K@ to the identity map of |K| (Lemma 7.5). Thus
Sy O I/[_(}i =s5,0( 0 V;{}j = (so().o0 VI}}]-. Moreover ¢: KU — K® and

s: KW — L are simplicial approximations to the identity map of |K| and
to f:|K| — |L| respectively, and therefore s o (: KU) — [ is a simplicial
approximation to f:|K| — |L| (Corollary 4.10). But then so( and ¢ are sim-
plicial approximations to the same continuous map, and thus are contiguous
simplicial maps from KU) to L (Lemma 7.1). It follows that (s o ¢), and
t, coincide as homomorphisms from H,(K") to H,(L) (Lemma 7.2), and
therefore s, o vy = t, o I/I}}J., as required. |
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Proposition 7.7 Let K, L and M be simplicial complexes and let f:|K| —
|L| and g:|L| — |M]| be continuous maps. Then the homomorphisms fs, g.
and (g o f).« of homology groups induced by the maps f, g and g o f satisfy

(gOf)*:g*Of*.

Proof Let t: L™ — M be a simplicial approximation to g and let s: KU —
L™ be a simplicial approximation to f. Now the canonical isomorphism
v.m from H,(L™) to H,(L) is induced by some simplicial approximation to
the identity map of |L|. It follows that vy ,, o s, is induced by some simplicial
approximation to f (Corollary 4.10), and therefore f, = v, 05,0 I/I_(}j. Also
g« = tiowp,,. It follows that g, o f, = t, 05, ovg' = (tos), ovg,. But
tos: KU — M is a simplicial approximation to go f (Corollary 4.10). Thus

(go f)« = gs«o fi, as required. ||

Corollary 7.8 If the polyhedra |K| and |L| of simplicial complezes K and
L are homeomorphic then the homology groups of K and L are isomorphic.

Proof Let h:|K| — |L| be a homeomorphism. Then h,: Hy(K) — H,(L) is
an isomorphism whose inverse is (h™1).: H,(L) — H,(K). |

One can make use of induced homomorphisms in homology theory in order
to prove the Brouwer Fixed Point Theorem (Theorem 4.14) in all dimensions.
The Brouwer Fixed Point Theorem is a consequence of the fact that there
is no continuous map 7:A — JA from an n-simplex A to its boundary
OA with the property that r(x) = x for all x € 9A (Proposition 4.13).
Such a continuous map would induce homomorphisms r,: H,(A) — H,(0A)
of homology groups for all non-negative integers ¢, and r, o 7, would be
the identity automorphism of H,(0A) for all ¢, where i,: H,(0A) — H,(A)
is induced by the inclusion map i:0A — A. But this would imply that
ro Hy(A) — Hy(OA) was surjective for all non-negative integers ¢, which
is impossible, since H,_1(A) = 0 and H,_1(0A) = Z when n > 2 (and
H, 1(A) =2 Z and H,_1(0A) = Z & Z when n = 1). We conclude therefore
that there is no continuous map r: A — 0A that fixes all points of 0A, and
therefore the Brouwer Fixed Point Theorem is satisfied in all dimensions.

We next show that homotopic maps between the polyhedra of simplicial
complexes induce the same homomorphisms of homology groups. For this
we require the following result.

Lemma 7.9 For any simplicial complex L there is some € > 0 with the

following property: given continuous maps f:|K| — |L| and g:|K| — |L]
defined on the polyhedron of some simplicial complex K, where f(x) is within
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a distance € of g(x) for all x € |K|, there exists a simplicial map defined on
K9 for some sufficiently large i which is a simplicial approxzimation to both

fand g.

Proof An application of the Lebesgue Lemma shows that there exists € > 0
such that the open ball of radius 2¢ about any point of |L| is contained
in stz (b) for some vertex b of L. Let f:|K| — |L| and g¢:|K| — |L| be
continuous maps. Suppose that f(x) is within a distance ¢ of g(x) for all
x € |K|. Another application of the Lebesgue Lemma (to the open cover of
| K| by preimages of open balls of radius ¢) shows that there exists § > 0 such
that any subset S of |K| whose diameter is less than ¢ is mapped by f into
an open ball of radius £ about some point of |L|, and is therefore mapped by
g into an open ball of of radius 2¢ about that point. But then f(S) C st.(b)
and g(S) C stz (b) for some vertex b of L. Now choose i such that u(K®) <
%5 . Asin the proof of the Simplicial Approximation Theorem (Theorem 4.11)
we see that, for every vertex a of K¥, the diameter of st (@) is less than
9, and hence f(stiw(a)) C str(s(a)) and g(strw(a)) C str(s(a)) for some
vertex s(a) of L. It then follows from Proposition 4.9 that the function
s:Vert K@ — Vert L constructed in this manner is the required simplicial
approximation to f and g. |}

Theorem 7.10 Let K and L be simplicial complexes and let f:|K| — |L|
and g: |K| — |L| be continuous maps from |K| to |L|. Suppose that f and g
are homotopic. Then the induced homomorphisms f. and g, from H,(K) to
H,(L) are equal for all q.

Proof Let F:|K| x [0,1] — |L| be a homotopy with F(x,0) = f(x) and
F(x,1) = g(x), and let € > 0 be given. Using the well-known fact that con-
tinuous functions defined on compact metric spaces are uniformly continuous
(which is easily proved using the Lebesgue Lemma), we see that there exists
some & > 0 such that if |s — ¢| < 4 then the distance from F(x,s) to F(x,t)
is less than €. Let f;(x) = F(x,t;) fori =0,1,...,r, where to,11,...,t,. have
been chosen such that 0 = tg < t; < --- < t, = 1 and t; — t;_1 < ¢ for
all 3. Then f;_1(x) is within a distance € of f;(x) for all x € |K|. Using
Lemma 7.9, we see that the maps f;_ and f; from | K| to |L| have a common
simplicial approximation, and thus f;_; and f; induce the same homomor-
phisms of homology groups, provided that ¢ > 0 has been chosen sufficiently
small. It follows that the maps f and ¢ induce the same homomorphisms of
homology groups, as required. |

25



7.4 Homotopy Equivalence

Definition Let X and Y be topological spaces. A continuous map f: X —
Y is said to be a homotopy equivalence if there exists a continuous map
g:Y — X such that g o f is homotopic to the identity map of X and fog
is homotopic to the identity map of Y. The spaces X and Y are said to be
homotopy equivalent if there exists a homotopy equivalence from X to Y.

Lemma 7.11 A composition of homotopy equivalences is itself a homotopy
equivalence.

Proof Let X, Y and Z be topological spaces, and let f: X — Y and h:Y —
Z be homotopy equivalences. Then there exist continuous maps g: Y — X
and k: Z — Y such that go f ~ iy, fog~iy, koh ~iy and hok ~ iy,
where iy, iy and iz denote the identity maps of the spaces X, Y, Z. Then
(gok)o(hof)=go(koh)ofgoiyof=gof=ixand(hof)o(gok)=
ho(fog)ok~hoiyok=hok~iyz Thus ho f: X — Z is a homotopy
equivalence from X to Z. |}

Lemma 7.12 Let f:|K| — |L| be a homotopy equivalence between the poly-
hedra of simplicial complexes K and L. Then, for each non-negative inte-
ger q, the induced homomorphism f.: H,(K) — H,(L) of homology groups is
an isomorphism.

Proof There exists a continuous map ¢: |L| — | K| such that g o f is homo-
topic to the identity map of |K| and f o g is homotopic to the identity map
of |L|. It follows that the induced homomorphisms (go f).: Hy(K) — H,(K)
and (f o g).«: H,(L) — H,(L) are the identity automorphisms of H,(K') and
H,(L) for each q. But (go f). = g.o fi and (fog). = f.0g.. It follows that
fer Hy(K) — H,(L) is an isomorphism with inverse g.: H,(L) — H,(K). |

Definition A subset A of a topological space X is said to be a deformation
retract of X if there exists a continuous map H: X x [0,1] — X such that
H(z,0) =z and H(z,1) € A for all z € X and H(a,1) =a for all a € A.

Thus a subset A of a topological space X is a deformation retract of X if
and only if there exists a function r: X — A such that r(a) = a for alla € A
and r is homotopic in X to the identity map of X.

Example The unit sphere S"! in R” is a deformation retract of R™\ {0}.
For if H(x,t) = (1 —t + t/|x|)x for all x € R"\ {0} and ¢ € [0, 1] then
H(x,0) =x and H(x,1) € S"! for all x € R"\ {0} and H(x,1) = x when
x e SnL
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If A is a deformation retract of a topological space X then the inclusion
map 7: A — X is a homotopy equivalence.

Theorem 7.13 The spaces R™ and R™ are not homeomorphic if m # n.

Proof Let S™ ! and S" ! denote the unit spheres in R™ and R” respectively.
Then S™ 1 and S™! are homeomorphic to the polyhedra of simplicial com-
plexes K and L respectively. Let i,,: S™' — R™\ {0} be the inclusion map
and let r,,: R"\ {0} — S"! be the map that sends x € R"\ {0} to (1/|x])x.
Then both i,,: S™ 1 — R™\ {0} and r,:R"\ {0} — S™! are homotopy
equivalences.

Suppose that there were to exist a homeomorphism h:R™ — R™. Let
f(x) = h(x)—h(0) for all x € R™\ {0}. Then f:R™\ {0} — R"\ {0} would
also be a homeomorphism, and therefore r, o f 0i,,: S™ 1 — S"~! would be
a homotopy equivalence. Thus if R™ and R" were homeomorphic then S™*
and S™ 1 would be homotopy equivalent, and therefore the homology groups
of the simplicial complexes K and L would be isomorphic. But H,(K) = Z
when ¢ =0 and ¢ = m — 1 and H,(K) = 0 for all other values of ¢, whereas
H,(L) =2 Z when ¢ = 0 and ¢ = n—1 and H,(L) = 0 for all other values of ¢.
Thus if m # n then the homology groups of the simplicial complexes K and
L are not isomorphic, and therefore R™ and R™ are not homeomorphic. |}
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