Course 311, Part III: Commutative Algebra Problems

Michaelmas Term 2005

- 1. Let R be a unital commutative ring (i.e., a commutative ring with a non-zero multiplicative identity element, denoted by 1, which satisfies 1x = x = x1 for all $x \in R$). We say that an element x of R is a unit if and only if there exists some element x^{-1} of R satisfying $xx^{-1} = 1 = x^{-1}x$.
 - (a) Show that the set of units of R is a group with respect to the operation of multiplication.
 - (b) Let $x \in R$. Suppose that there exist $s, t \in R$ such that sx = 1 = xt. Prove that x is a unit of R.
 - (c) Show that any proper ideal I of R cannot contain any units of R.
 - (d) Let x be an element of R that is not a unit of R. Show that the set Rx of multiples of x is a proper ideal of R, and that $x \in Rx$.
 - (e) Prove that a unital ring R has a exactly one maximal ideal if and only if the set

$$\{x \in R : X \text{ is not a unit of } R\}$$

is an ideal of R.

2. (a) Let R be a ring. Let \hat{R} be the set of all infinite sequences

$$(r_0, r_1, r_2, \ldots)$$

with $r_i \in R$ for all i, and let operations of addition and multiplication be defined on \hat{R} by the formulae

$$(r_0, r_1, r_2, \ldots) + (s_0, s_1, s_2, \ldots) = (r_0 + s_0, r_1 + s_1, r_2 + s_2, \ldots),$$

 $(r_0, r_1, r_2, \ldots)(s_0, s_1, s_2, \ldots) = (t_0, t_1, t_2, \ldots),$

where $t_0 = r_0 s_0$, $t_1 = r_0 s_1 + s_0 r_1$, and

$$t_i = r_0 s_i + r_1 s_{i-1} + \dots + r_{i-1} s_1 + r_i s_0.$$

Show that \hat{R} , with these algebraic operations, is a ring.

- (b) Explain why the polynomial ring R[t] is isomorphic to the subring of \hat{R} consisting of all sequences $(r_0, r_1, r_2, ...)$ in \hat{R} with the property that $r_i \neq 0$ for at most finitely many values of i.
- (c) Suppose that the ring R has a non-zero multiplicative identity element 1. Show that $(1,0,0,\ldots)$ is a multiplicative identity element for the ring \hat{R} . By examining the formula for the product of two elements of \hat{R} , or otherwise, show that an element of (r_0, r_1, r_2, \ldots) of \hat{R} is a unit of \hat{R} if and only if r_0 is a unit of R.
- (d) Suppose that that R is an integral domain. Prove that \hat{R} is also an integral domain. [Hint: given non-zero elements $(r_0, r_1, r_2, ...)$ and $(s_0, s_1, s_2, ...)$ of \hat{R} with product $(t_0, t_1, t_2, ...)$, consider t_{m+n} , where m and n are the smallest non-negative integers with the property that $r_m \neq 0$ and $s_n \neq 0$.]
- (e) Suppose that R is a field. Prove that \hat{R} has exactly one maximal ideal, and that this maximal ideal consists of all elements $(r_0, r_1, r_2, ...)$ of \hat{R} satisfying $r_0 = 0$.

(We can think of an element $(r_0, r_1, r_2, ...)$) of the ring \hat{R} as representing a formal power series

$$r_0 + r_1 t + r_2 t^2 + \cdots$$

with coefficients in the ring R. Such formal power series are added and multiplied in the obvious fashion. The ring \hat{R} is therefore referred to as the ring of *formal power series* in the indeterminate t with coefficients in the ring R, and is customarily denoted by R[[t]].)

- 3. Let R be a unital commutative ring.
 - (a) Let I, J and K be ideals of R. Verify that

$$I + J = J + I,$$
 $IJ = JI,$ $(I + J) + K = I + (J + K),$ $(IJ)K = I(JK),$ $(I + J)K = IK + JK,$ $I(J + K) = IJ + IK.$

(Here I+J denotes the ideal of R consisting of all elements of R that are of the form i+j for some $i \in I$ and $j \in J$, and IJ denotes the ideal of R consisting of all elements of R that are of the form $i_1j_1+i_2j_2+\cdots+i_kj_k$ for some elements i_1, i_2, \ldots, i_k of I and j_1, j_2, \ldots, j_k of J.] Explain why the set of ideals of a ring R is not itself a unital commutative ring with respect to these operations of addition and multiplication.

- (b) Let I and J be ideals of R satisfying I + J = R. Show that $(I + J)^n \subset I + J^n$ for all natural numbers n and hence prove that $I + J^n = R$ for all n. Thus show that $I^m + J^n = R$ for all natural numbers m and n. (The ideal J^n is by definition the set of all elements of R that can be expressed as a finite sum of elements of R of the form $a_1 a_2 \cdots a_n$ with $a_i \in J$ for $i = 1, 2, \ldots, n$.)
- (c) Let I and J be ideals of R satisfying I+J=R. By considering the ideal $(I\cap J)(I+J)$, or otherwise, show that $IJ=I\cap J$.
- 4. Let R be a unital commutative ring, and let I be a finitely generated ideal of R. Show that there exists some natural number m such that $I^m \subset \sqrt{I}$, where \sqrt{I} is the radical of I. [Hint: let $\{x_1, x_2, \ldots, x_k\}$ be a finite set that generates the ideal I and let $m = m_1 + m_2 + \cdots + m_k$, where m_1, m_2, \ldots, m_k are chosen such that $x_i^{m_i} \in \sqrt{I}$ for $i = 1, 2, \ldots, k$.]
- 5. (a) Show that the cubic curve $\{(t, t^2, t^3) \in \mathbb{A}^3(\mathbb{R}) : t \in \mathbb{R}\}$ is an algebraic set.
 - (b) Show that the cone $\{(s\cos t, s\sin t, s) \in \mathbb{A}^3(\mathbb{R}) : s, t \in \mathbb{R}\}$ is an algebraic set.
 - (c) Show that the unit sphere $\{(z,w)\in \mathbb{A}^2(\mathbb{C}): |z|^2+|w|^2=1\}$ in $\mathbb{A}^2(\mathbb{C})$ is not an algebraic set.
 - (d) Show that the curve $\{(t\cos t, t\sin t, t) \in \mathbb{A}^3(\mathbb{R}) : t \in \mathbb{R}\}$ is not an algebraic set.
- 6. Let K be a field, and let \mathbb{A}^n denote n-dimensional affine space over the field K.

Let V and W be algebraic sets in \mathbb{A}^m and \mathbb{A}^n respectively. Show that the Cartesian product $V \times W$ of V and W is an algebraic set in \mathbb{A}^{m+n} , where

$$V \times W = \{(x_1, x_2, \dots, x_m, y_1, y_2, \dots, y_n) \in \mathbb{A}^{m+n} : (x_1, x_2, \dots, x_m) \in V \text{ and } (y_1, y_2, \dots, y_n) \in W\}.$$

- 7. Give an example of a proper ideal I in $\mathbb{R}[X]$ with the property that $V[I] = \emptyset$. [Hint: consider quadratic polynomials in X.]
- 8. Show that the ideal I of K[X,Y,Z] generated by the polynomials $X^2 + Y^2 + Z^2$ and XY + YZ + ZX is not a radical ideal.

- 9. Prove that a topological space Z is irreducible if and only if every non-empty open set in Z is connected.
- 10. Let K be a field, and let \mathbb{A}^n denote n-dimensional affine space over the field K.
 - (a) Consider the algebraic set

$$\{(x, y, z) \in \mathbb{A}^3 : xy = yz = zx = 0\}.$$

Is this set irreducible? Is it connected (with respect to the Zariski topology)?

(b) Consider the algebraic set

$$\{(x,y) \in \mathbb{A}^2(K) : (y-x)(y-x^2) = 0\},\$$

where K is a field with at least 3 elements. Is this set irreducible? Is it connected (with respect to the Zariski topology)?