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12 Topics in Number Theory

12.1 The Euler Totient Function

Let n be a positive integer. We define ¢(n) to be the number of integers x
satisfying 0 < x < n that are coprime to n. The function ¢ on the set of
positive integers is referred to as the Euler totient function.

Every integer (including zero) is coprime to 1, and therefore ¢(1) = 1.

Let p be a prime number. Then ¢(p) = p— 1, since every positive integer
less than p is coprime to p. Moreover ¢(p*) = pF — p*~1 for all positive
integers k, since there are p*~! integers x satisfying 0 < x < p* that are
divisible by p, and the integers coprime to p* are those that are not divisible

by p.

Theorem 12.1 Let my and mo be positive integers. Suppose that my and
me are coprime. Then p(mims) = p(my)e(ms).



Proof Let x be an integer satisfying 0 < x < my that is coprime to my,
and let y be an integer satisfying 0 < y < ms that is coprime to my. It
follows from the Chinese Remainder Theorem (Theorem 9.16) that there
exists exactly one integer z satisfying 0 < z < mymsy such that z = z
(modm;) and z =y (modms). Moreover z must then be coprime to m;
and to ms, and must therefore be coprime to myms. Thus every integer z
satisfing 0 < z < mymy that is coprime to myms is uniquely determined by
its congruence classes modulo m; and my, and the congruence classes of z
modulo m; and ms contain integers coprime to m, and ms respectively. Thus
the number p(mims) of integers z satisfying 0 < z < myms that are coprime
to myms is equal to ¢(mi)p(ms), since p(m;) is the number of integers x
satisfying 0 < z < m; that are coprime to m; and p(msy) is the number of
integers y satisfying 0 < y < ms that are coprime to msy. |}
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Corollary 12.2 p(n) = nH <1 — —), for all positive integers n, where
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H (1 — —) denotes the product of 1 — — taken over all prime numbers p
p p
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that divide n.

Proof Let n = p’flpg2 ---pkmwhere pi,ps,...,pm are prime numbers and
ki, ko, ...,k are positive integers. Then ¢(n) = (pi")p(p52) - - - (pim), and
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o(pF) = pF(1 — (1/p;)) for i = 1,2,...,m. Thus ¢(n) = n | | (1 - —), as
, Di
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required. |

Let f be any function defined on the set of positive integers, and let n be
a positive integer. We denote the sum of the values of f(d) over all divisors d

of n by > f(d).

dln

Lemma 12.3 Let n be a positive integer. Then Z o(d) =n.
dln

Proof If = is an integer satisfying 0 < x < n then (z,n) = n/d for some

divisor d of n. It follows that n = Z ng, where ng is the number of integers x
din
satisfying 0 < x < n for which (z,n) = n/d. Thus it suffices to show that
nq = ¢(d) for each divisor d of n.
Let d be a divisor of n, and let a = n/d. Given any integer z satisfying
0 < z < n that is divisible by a, there exists an integer y satisfying 0 <y < d



such that x = ay. Then (x,n) is a multiple of a. Moreover a multiple ae
of a divides both x and n if and only if e divides both y and d. Therefore
(x,n) = a(y,d). It follows that the integers = satisfying 0 < z < n for
which (z,n) = a are those of the form ay, where y is an integer, 0 < y < d
and (y,d) = 1. It follows that there are exactly ¢(d) integers x satisfying
0 < x < n for which (z,n) = n/d, and thus ng = ¢(d) and n = ng(d), as
dln
required. |

12.2 Euler’s Theorem

The following theorem of Euler generalizes Fermat’s Theorem (Theorem 9.17).

Theorem 12.4 (Euler) Let m be a positive integer, and let x be an integer
coprime to m. Then x#™ =1 (modm).

First Proof of Theorem 12.4 The result is trivially true when m = 1.
Suppose that m > 1. Let I be the set of all positive integers less than m that
are coprime to m. Then ¢(m) is by definition the number of integers in I. If y
is an integer coprime to m then so is zy. It follows that, to each integer j in 1
there exists a unique integer u; in I such that xj = u; (modm). Moreover if
j€landk eI and j# k then u; # ug. Therefore I = {u; : j € I'}. Thus if
we multiply the left hand sides and right hand sides of the congruences zj =
u; (modm) for all j € I we obtain the congruence z#™z = z (modm),
where z is the product of all the integers in I. But z is coprime to m, since
a product of integers coprime to m is itself coprime to m. It follows from
Lemma 9.11 that 9™ =1 (modm), as required. [

2nd Proof of Theorem 12.4 Let m be a positive integer. Then the con-
gruence classes modulo m of integers coprime to m constitute a group of or-
der p(m), where the group operation is multiplication of congruence classes.
Now it follows from Lagrange’s Theorem that that order of any element of
a finite group divides the order of the group. If we apply this result to the
group of congruence classes modulo m of integers coprime to m we find that
29M =1 (modm), as required. [

12.3 Solutions of Polynomial Congruences

Let f be a polynomial with integer coefficients, and let m be a positive
integer. If x and 2’ are integers, and if x = 2/ (modm), then f(z) =
f(2") (modm). It follows that the set consisting of those integers x which



satisfy the congruence f(z) =0 (modm) is a union of congruence classes
modulo m. The number of solutions modulo m of the congruence f(z) =
0 (modm) is defined to be the number of congruence classes of integers
modulo m such that an integer x satisfies the congruence f(z) =0 (modm)
if and only if it belongs to one of those congruence classes. Thus a congruence
f(z) = 0 (modm) has n solutions modulo m if and only if there exist n
integers aq, as, ..., a, satisfying the congruence such that every solution of
the congruence f(z) =0 (modm) is congruent modulo m to exactly one of
the integers ay, as, ..., a,.

Note that the number of solutions of the congruence f(z) =0 (modm)
is equal to the number of integers x satisfying 0 < z < m for which f(z) =0
(modm). This follows immediately from the fact that each congruence class
of integers modulo m contains exactly one integer x satisfying 0 < x < m.

Theorem 12.5 Let f be a polynomial with integer coefficients, and let p be
a prime number. Suppose that the coefficients of f are not all divisible by p.
Then the number of solutions modulo p of the congruence f(x) =0 (modp)
1s at most the degree of the polynomial f.

Proof The result is clearly true when f is a constant polynomial. We can
prove the result for non-constant polynomials by induction on the degree of
the polynomial.

First we observe that, given any integer a, there exists a polynomial g with
integer coefficients such that f(x) = f(a) + (x —a)g(z). Indeed f(y+a)is a
polynomial in y with integer coefficients, and therefore f(y+a) = f(a)+yh(y)
for some polynomial h with integer coefficients. Thus if g(z) = h(z —a) then
g is a polynomial with integer coefficients and f(z) = f(a) + (x — a)g(x).

Suppose that f(a) = 0 (modp) and f(b) = 0 (modp). Let f(z) =
f(a) + (x — a)g(x), where g is a polynomial with integer coefficients. The
coefficients of f are not all divisible by p, but f(a) is divisible by p, and
therefore the coefficients of g cannot all be divisible by p.

Now f(a) and f(b) are both divisible by the prime number p, and therefore
(b—a)g(b) is divisible by p. But a prime number divides a product of integers
if and only if it divides one of the factors. Therefore either b — a is divisible
by p or else g(b) is divisible by p. Thus either b = a (modp) or else
g(b) =0 (modp). The required result now follows easily by induction on
the degree of the polynomial f. |}

12.4 Primitive Roots

Lemma 12.6 Let m be a positive integer, and let x be an integer coprime
to m. Then there exists a positive integer n such that 2" =1 (modm).
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Proof There are only finitely many congruence classes modulo m. Therefore

there exist positive integers j and k with j < k such that 27 = 2% (modm).
Let n =k —j. Then 272" = 27 (modm). But 27 is coprime to m. It follows
from Lemma 9.11 that 2" =1 (modm). |}

Remark The above lemma also follows directly from Euler’s Theorem (The-
orem 12.4).

Let m be a positive integer, and let x be an integer coprime to m. The
order of the congruence class of x modulo m is by definition the smallest
positive integer d such that % =1 (modm).

Lemma 12.7 Let m be a positive integer, let x be an integer coprime to m,
and let j and k be positive integers. Then 9 = x* (modm) if and only if
j =k (modd), where d is the order of the congruence class of x modulo m.

Proof We may suppose without loss of generality that j < k. If j = k

(mod d) then k — j is divisible by d, and hence 277 =1 (modm). But then
xF = 27277 = 27 (modm). Conversely suppose that 27 = 2* (modm) and
j < k. Then 2/2%=9 = 27 (modm). But 2/ is coprime to m. It follows from
Lemma 9.11 that 2=9 = 1 (modm). Thus if £ — j = qd + r, where ¢ and r
are integers and 0 < r < d, then 2" =1 (modm). But then r = 0, since d

is the smallest positive integer for which ¢ = 1 (modm). Therefore k — j
is divisible by d, and thus j = k (modd). |}

Lemma 12.8 Let p be a prime number, and let x and y be integers coprime
to p. Suppose that the congruence classes of x and y modulo p have the same
order. Then there exists a non-negative integer k, coprime to the order of
the congruence classes of x and y, such that y = ¥ (modp).

Proof Let d be the order of the congruence class of £ modulo p. The so-
lutions of the congruence z¢ = 1 (modp) include 27 with 0 < j < d. But
the congruence ¥ = 1 (modp) has at most d solutions modulo p, since
p is prime (Theorem 12.5), and the congruence classes of 1,z, 2%, ... 29}
modulo p are distinct (Lemma 12.7). It follows that any solution of the
congruence ¢ = 1 (modp) is congruent to z* for some positive integer k.
Thus if y is an integer coprime to p whose congruence class is of order d then
y = 2 (mod p) for some positive integer k. Moreover k is coprime to d, for
if e is a common divisor of k¥ and d then y¥¢ = 2%*/9 = 1 (modp), and
hencee=1. |}



Let m be a positive integer. An integer ¢ is said to be a primitive root
modulo m if, given any integer x coprime to m, there exists an integer j such
that x = ¢/ (modm).

A primitive root modulo m is necessarily coprime to m. For if ¢ is a
primitive root modulo m then there exists an integer n such that ¢" =
(modm). But then any common divisor of g and m must divide 1, and thus
g and m are coprime.

Theorem 12.9 Let p be a prime number. Then there exists a primitive root
modulo p.

Proof If x is an integer coprime to p then it follows from Fermat’s Theorem
(Theorem 9.17) that 277! =1 (modp). It then follows from Lemma 12.7
that the order of the congruence class of x modulo p divides p — 1. For each
divisor d of p—1, let ¥)(d) denote the number of congruence classes modulo p

of integers coprime to p that are of order d. Clearly Z P(d)=p—1.
djp—1

Let x be an integer coprime to p whose congruerllce class is of order d,
where d is a divisor of p — 1. If k£ is coprime to d then the congruence class
of z* is also of order d, for if (z¥)* = 1 (modp) then d divides kn and
hence d divides n (Lemma 9.10). Let y be an integer coprime to p whose
congruence class is also of order d. It follows from Lemma 12.8 that there
exists a non-negative integer k coprime to d such that y = z¥ (modp). It
then follows from Lemma 12.7 that there exists a unique integer k coprime to
d such that 0 < k < d and y = 2% (mod p). Thus if there exists at least one
integer x coprime to p whose congruence class modulo p is of order d then
the congruence classes modulo p of integers coprime to p that are of order d
are the congruence classes of z* for those integers k satisfying 0 < k < d
that are coprime to d. Thus if ¢(d) > 0 then ¥(d) = ¢(d), where p(d) is the
number of integers k satisfying 0 < k < d that are coprime to d.

Now 0 < ¢h(d) < ¢(d) for each divisor d of p—1. But » _ ¥(d) = p—1and

dlp—1

Z ©(d) = p—1 (Lemma 12.3). Therefore ¢/(d) = ¢(d) for each divisor d of
dlp—1
p — 1. In particular ¢»(p — 1) = ¢(p — 1) > 1. Thus there exists an integer ¢
whose congruence class modulo p is of order p — 1. The congruence classes
of 1,g,9%,...¢° 2 modulo p are then distinct. But there are exactly p — 1
congruence classes modulo p of integers coprime to p. It follows that any
integer that is coprime to p must be congruent to ¢’ for some non-negative
integer 7. Thus ¢ is a primitive root modulo p. |}



Corollary 12.10 Let p be a prime number. Then the group of congruence
classes modulo p of integers coprime to p is a cyclic group of order p — 1.

Remark It can be shown that there exists a primitive root modulo m if
m =1, 2 or 4, if m = p¥ or if m = 2p*, where p is some odd prime number
and k is a positive integer. In all other cases there is no primitive root
modulo m.

12.5 Quadratic Residues

Definition Let p be a prime number, and let  be an integer coprime to p.
The integer x is said to be a quadratic residue of p if there exists an integer y
such that x = y* (modp). If x is not a quadratic residue of p then x is said
to be a quadratic non-residue of p.

Proposition 12.11 Let p be an odd prime number, and let a, b and c be
integers, where a 1s coprime to p. Then there exist integers x satisfying the
congruence ax* + bx +c = 0 (modp) if and only if either b* — 4ac is a
quadratic residue of p or else b*> — 4ac =0 (mod p).

Proof Let x be an integer. Then az? + bz + ¢ = 0 (modp) if and only if
4a*z* 4+ 4abr +4ac = 0 (mod p), since 4a is coprime to p (Lemma 9.11). But
4a’z? + dabz + 4ac = (2ax + b)? — (b? — 4ac). It follows that az® + bx + ¢ =
0 (modp) if and only if (2ax + b)?> = b? — 4ac (mod p). Thus if there exist
integers x satisfying the congruence az® + bx +c¢ = 0 (modp) then either
b* — 4ac is a quadratic residue of p or else b* —4ac =0 (mod p). Conversely
suppose that either b —4ac is a quadratic residue of p or b*—4ac = 0 (mod p).
Then there exists an integer y such that y*> = b? — 4ac (mod p). Also there
exists an integer d such that 2ad = 1 (modp), since 2a is coprime to p
(Lemma 9.12). If 2 = d(y —b) (modp) then 2az +b =y (modp), and
hence (2az + b)? = b* — 4ac (mod p). But then az? + bz + ¢ =0 (modp),
as required.  |j

Lemma 12.12 Let p be an odd prime number, and let x and y be integers.
Suppose that x* = y* (modp). Then either x =y (modp) or else v = —y
(mod p).

Proof z? — y? is divisible by p, since 22 = y* (modp). But z? — y? =

(x —y)(z +y), and a prime number divides a product of integers if and only

if it divides at least one of the factors. Therefore either x — y is divisible

by p or else x + y is divisible by p. Thus either z = y (modp) or else
= —y (modp).



Lemma 12.13 Let p be an odd prime number, and let m = (p — 1)/2.
Then there are exactly m congruence classes of integers coprime to p that
are quadratic residues of p. Also there are exactly m congruence classes of
integers coprime to p that are quadratic non-residues of p.

Proof If ¢ and j are integers between 1 and m, and if ¢ # j then i #
j (modp) and i Z —j (modp). It follows from Lemma 12.12 that if
i and j are integers between 1 and m, and if i # j then > # j2. Thus

the congruence classes of 12,22, ..., m? modulo p are distinct. But, given
any integer x coprime to p, there is an integer ¢ such that 1 < i < m and
either z =i (modp) or x = —i (modp), and therefore z? = i* (mod p).

Thus every quadratic residue of p is congruent to 2 for exactly one integer 4
betweeen 1 and m. Thus there are m congruence classes of quadratic residues
of p.

There are 2m congruence classes of integers modulo p that are coprime
to p. It follows that there are m congruence classes of quadratic non-residues
of p, as required. |}

Theorem 12.14 Let p be an odd prime number, let R be the set of all in-
tegers coprime to p that are quadratic residues of p, and let N be the set of
all integers coprime to p that are quadratic non-residues of p. If x € R and
ye Rthenxye R. Ifxr € Randy € N thenxzy € N. Ifx € N andy € N
then xy € R.

Proof Let m = (p — 1)/2. Then there are exactly m congruence classes of
integers coprime to p that are quadratic residues of p. Let these congruence
classes be represented by the integers 71,79, ..., 1y, where r; #Z r; (modp)
when 7 # j. Also there are exactly m congruence classes of integers coprime
to p that are quadratic non-residues modulo p.

The product of two quadratic residues of p is itself a quadratic residue of
p. Therefore xy € R for all xt € R and y € R.

Suppose that z € R. Then zr; € R for i = 1,2,...,m, and 2r; # zr;
when i # j. It follows that the congruence classes of xry, xrs, ..., o1, are
distinct, and consist of quadratic residues of p. But there are exactly m
congruence classes of quadratic residues of p. It follows that every quadratic
residue of p is congruent to exactly one of the integers xry, xrs, ..., xr,,. But
if y € N then y # r; and hence zy # xr; for i = 1,2,...,m. It follows that
xy € N forallz € Rand y € N.

Now suppose that z € N. Then zr; € N fori =1,2,...,m, and zr; # zr;
when ¢ # j. It follows that the congruence classes of xry, xry, ..., xr,, are
distinct, and consist of quadratic non-residues modulo p. But there are



exactly m congruence classes of quadratic non-residues modulo p. It follows
that every quadratic non-residue of p is congruent to exactly one of the
integers xry, xry, ..., xry,. But if y € N then y # r; and hence xy # xr; for
i=1,2,...,m. It follows that zy € R forall x € N and y ¢ N. |}

Let p be an odd prime number. The Legendre symbol <£> is defined for
p

integers = as follows: if x is coprime to p and z is a quadratic residue of p

x
then <—> = +1; if x is coprime to p and x is a quadratic non-residue of p
p

then <£> = —1; if x is divisible by p then <£> =0.
p P
The following result follows directly from Theorem 12.14.

Corollary 12.15 Let p be an odd prime number. Then

GG -G
for all integers x and y.

Lemma 12.16 (Euler) Let p be an odd prime number, and let x be an integer
coprime to p. Then x is a quadratic residue of p if and only if P~/ =1

(modp). Also x is a quadratic non-residue of p if and only if zP~V/2 = —1

(modp).

Proof Let m = (p—1)/2. If z is a quadratic residue of p then x = y? (mod p)
for some integer y coprime to p. Then 2™ = y?~! and y»~! =1 (modp) by
Fermat’s Theorem (Theorem 9.17), and thus 2™ =1 (mod p).

It follows from Theorem 12.5 that there are at most m congruence classes
of integers x satisfying ™ = 1 (modp). However all quadratic residues
modulo p satisfy this congruence, and there are exactly m congruence classes
of quadratic residues modulo p. It follows that an integer z coprime to p
satisfies the congruence 2™ = 1 (modp) if and only if z is a quadratic
residue of p.

Now let = be a quadratic non-residue of p and let v = 2™. Then u? =
1 (modp) but w Z1 (modp). It follows from Lemma 12.12 that u = —1
(mod p). It follows that an integer x coprime to p is a quadratic non-residue
of p if and only if 2™ = —1 (modp). |}

Corollary 12.17 Let p be an odd prime number. Then
p

for all integers x.



Proof If z is coprime to p then the result follows from Lemma 12.16. If x
is divisible by p then so is #®~1/2, In that case z®~1/2 = 0 (modp) and

(%) =0 (modp). |}

—1
Corollary 12.18 (—) = (=1)®=Y72 for all odd prime numbers p.
p

-1
Proof It follows from Corollary 12.17 that <—) = (—1)® Y2 (modp) for
p

-1
all odd prime numbers p. But (—> = =1, by the definition of the Legendre
p

—1
symbol. Therefore (—> = (—=1)?®"V/2 as required. |
p

Remark Let p be an odd prime number. It follows from Theorem 12.9 that
there exists a primitive root ¢ modulo p. Moreover the congruence class of
g modulo p is of order p — 1. It follows that ¢/ = ¢* (mod p), where j and
k are positive integers, if and only if j — k is divisible by p — 1. But p — 1 is
even. Thus if ¢/ = ¢* then j — k is even. It follows easily from this that an
integer x is a quadratic residue of p if and only if # = ¢* (mod p) for some
even integer k. The results of Theorem 12.14 and Lemma 12.16 follow easily
from this fact.

Let p be an odd prime number, and let m = (p—1)/2. Then each integer
not divisible by p is congruent to exactly one of the integers £1,£2,..., +m.
The following lemma was proved by Gauss.

Lemma 12.19 Let p be an odd prime number, let m = (p —1)/2, and let x
be an integer that is not divisible by p. Then (f) = (=1)", where r is the
p

number of pairs (j,u) of integers satisfying 1 < 7 < m and 1 < u < m for
which xj = —u (modp).

Proof For each integer j satisfying 1 < j < m there is a unique integer u;
satisfying 1 < w; < m such that zj = e;u; (modp) with e; = £1. Then
ey ey = (—1)".

If j and k are integers between 1 and m and if j # k, then j #Z k£ (mod p)
and j #Z —k (modp). But then zj # zk (modp) and zj # —zk (modp)
since x is not divisible by p. Thusif 1 < j7 < m, 1 <k <mand j # k
then u; # wy. It follows that each integer between 1 and m occurs exactly
once in the list wuy,us, ..., u,,, and therefore wjusg---u,, = m!. Thus if we
multiply the congruences zj = eju; (modp) for j = 1,2,...,m we obtain

10



the congruence z™m! = (—=1)"m! (modp). But m! is not divisible by p,
since p is prime and m < p. It follows that 2™ = (—1)" (modp). But

™ = (E) (mod p) by Lemma 12.16. Therefore <£> = (—1)" (modp), and
p p

hence <£> = (—1)", as required. |}
p
Let n be an odd integer. Then n = 2k + 1 for some integer k. Then
n? = 4(k* + k) + 1, and k* + k is an even integer. It follows that if n is an
odd integer then n2 =1 (mod8), and hence (—1)""~1/8 = 41,

2 2
Theorem 12.20 Let p be an odd prime number. Then (—) = (—1)P"b/8,
p

Proof The value of (—1)(1’2*1)/ 8 is determined by the congruence class of p
modulo 8. Indeed (—1)®*~1/8 =1 when p=1 (mod8) or p = —1 (mod8),
and (—1)®*~1/8 = _1 when p =3 (mod8) or p= —3 (mod8).

2
Let m = (p — 1)/2. It follows from Lemma 12.19 that (}—9) = (—1)",

where 7 is the number of integers x between 1 and m for which 2z is not
congruent modulo p to any integer between 1 and m. But the integers x with
this property are those for which m/2 < x < m. Thus r = m/2 if m is even,
and 7 = (m + 1)/2 if m is odd.

If p=1 (mod8) then m is divisible by 4 and hence r is even. If p =
3 (mod8) then m =1 (mod4) and hence r is odd. If p =5 (mod8) then
m =2 (mod4) and hence r is odd. If p =7 (mod8) then m =3 (mod4)

2
and hence r is even. Therefore (—) =1 when p =1 (mod8) and when
p

2
p =7 (mod8), and (};) = —1 when p =3 (mod8) and p =5 (mod38).

2
Thus (—> = (—1)(”2’1)/8 for all odd prime numbers p, as required. |}
p

12.6 Quadratic Reciprocity
Theorem 12.21 (Quadratic Reciprocity Law) Let p and q be distinct odd

prime numbers. Then
(B) (ﬂ) — (—1)P~Dla-/4
q’/ \p

Proof Let S be the set of all ordered pairs (x, y) of integers x and y satisfying
l1<z<mand 1<y <n, where p=2m+1 and ¢ = 2n + 1. We must

prove that <§> (%) = (=1)m™".
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First we show that (Z—)> = (—1)%, where a is the number of pairs (x,¥)
q

of integers in S satisfying —n < py — qx < —1. If (z,y) is a pair of integers
in S satisfying —n < py — qr < —1, and if z = gx — py, then 1 < y < n,
1 <z<nand py =—2z (modgq). On the other hand, if (y, z) is a pair of
integers such that 1 <y <n, 1 <z <nand py =—2 (modgq) then there is
a unique positive integer x such that z = gx — py. Moreover gx = py + 2z <
(p+ 1)n =2n(m + 1) and ¢ > 2n, and therefore x < m + 1. It follows that
the pair (x,y) of integers is in S, and —n < py — gz < —1. We deduce that
the number a of pairs (z,y) of integers in S satisfying —n < py —qz < —1 is
equal to the number of pairs (y, z) of integers satisfying 1 <y <n,1 <z<mn

and py = —z (mod g). It now follows from Lemma 12.19 that (12) =(-1)~
q

Similarly (Q) = (—1)°, where b is the number of pairs (z,y) in S satisfying
D

L <py—qzr<m.

If z and y are integers satisfying py — g = 0 then z is divisible by p and
y is divisible by ¢. It follows from this that py — gz # 0 for all pairs (z,y) in
S. The total number of pairs (z,y) in S is mn. Therefore mn = a+b+c+d,
where ¢ is the number of pairs (z,y) in S satisfying py — gz < —n and d is
the number of pairs (x,y) in S satisfying py — gz > m.

Let (z,y) be a pair of integers in S, and let and let ' = m + 1 — x and
y' = n+1—y. Then the pair (2/,y') also belongs to S, and py’ — ¢z’ =
m—n— (py — qx). It follows that py — gz > m if and only if py’ — ¢z’ < —n.
Thus there is a one-to-one correspondence between pairs (x,y) in S satisfying
py —qz > m and pairs (2/,y') in S satisfying py’ — gz’ < —n, where (2/,y) =
(m+1—z,n+1—y)and (z,y) = (m+1—2, n+1—1y'). Therefore c = d,
and thus mn = a + b+ 2¢. But then (—1)™ = (=1)*(—1)" = (Z—?> <g>, as

' q/ \p
required. |

Corollary 12.22 Let p and q be distinct odd prime numbers. If p = 1
(mod4) or ¢ = 1 (mod4) then (Q) = (ﬂ) If p =3 (mod4) and
q

p
q =3 (mod4) then (S) = —(%)

Example We wish to determine whether or not 654 is a quadratic residue
modulo the prime number 239. Now 654 = 2 x 239 4+ 176 and thus 654 =
176 (mod 239). Also 176 = 16 x 11. Therefore

() = () = () (3) = () (&) = (o)

12



11 239
But <@) =— (H) by the Law of Quadratic Reciprocity. Also 239 = 8

(mod 11). Therefore

()= () () ==

654
It follows that <@> = +1 and thus 654 is a quadratic residue of 239, as

required.

12.7 The Jacobi Symbol

Let s be an odd positive integer. If s > 1 then s = pips- - pm, Where
P1, D2, - - -, Pm are odd prime numbers. For each integer x we define the Jacobi

() -11()

i=1

symbol (f) by

(i.e., (f) is the product of the Legendre symbols (f

)fori:1,2,...,m.)
s

1

We define (%) =1.
Note that the Jacobi symbol can have the values 0, +1 and —1.

Lemma 12.23 Let s be an odd positive integer, and let x be an integer.
x

Then <—> # 0 if and only if x is coprime to s.
s

Proof Let s = pips - - - ppm, where py, po, . . ., p are odd prime numbers. Sup-

pose that x is coprime to s. Then x is coprime to each prime factor of s, and

hence (£> =41 for¢s=1,2,...,m. It follows that <§> = 41 and thus
Di

()0

Next suppose that x is not coprime to s. Let p be a prime factor of the

S

x
greatest common divisor of x and s. Then p = p;, and hence <—> = 0 for
bi

x
some integer ¢ between 1 and m. But then (—) =0. |
s

Lemma 12.24 Let s be an odd positive integer, and let x and x’ be integers.
/

Suppose that v = 2’ (mod s). Then (%) = <%)

13



Proof If z = 2/ (mods) then x = 2’ (modp) for each prime factor p of
x/

s, and therefore <£> - <_

) for each prime factor of s. Therefore (f) =
p p

S
/

x
(5) 1
s
Lemma 12.25 Let x and y be integers, and let s and t be odd positive inte-

s ton (2) = () (B (5 () 2)

Proof <ﬁ) = (f) <g> for all prime numbers p (Corollary 12.15). The
p b/ \p
required result therefore follows from the definition of the Jacobi symbol. |}

2
Lemma 12.26 (x_) =1 and ( ) = 1 for for all odd positive integers s

and all integers x that are coprime to s.

Proof This follows directly from Lemma 12.25 and Lemma 12.23. |}

—1
Theorem 12.27 (—) = (=1)Y2 for all odd positive integers s.
s

—1
Proof Let f(s) = (—1)¢1/2 (—) for each odd positive integer s. We must
s

prove that f(s) =1 for all odd positive integers s. If s and t are odd positive
integers then

(st—1)—(s—1)—(t—1)=st—s—t+1=(s—1)(t—1)

But (s — 1)(t — 1) is divisible by 4, since s and ¢ are odd positive inte-
gers. Therefore (st —1)/2 = (s —1)/2+ (t — 1)/2 (mod?2), and hence
(—1)6t=1/2 = (—1)=D/2(—1)ED/2 | Tt now follows from Lemma 12.25 that
f(st) = f(s)f(t) for all odd numbers s and ¢t. But f(p) = 1 for all prime num-

—1
bers p, since (—> = (—1)®Y/2 (Lemma 12.18). It follows that f(s) =
p

for all odd positive integers s, as required. |

2
Theorem 12.28 (—> = (=178 for all odd positive integers s.
s

2
Proof Let g(s) = (_1)(52_1)/8<—> for each odd positive integer s. We must

s
prove that g(s) = 1 for all odd positive integers s. If s and ¢ are odd positive
integers then

(22— 1) — (s> = 1) = (= 1) =&t — s> —t? + 1= (s = 1)(t* — 1).

14



But (s> — 1)(t? — 1) is divisible by 64, since s> = 1 (mod8) and * = 1

(mod 8). Therefore (s?t> —1)/8 = (s> —1)/8+ (t*—1)/8 (mod8), and hence
(—1)E*P=D/8 — (1) =D/8(_1)(*=D/8 Tt now follows from Lemma 12.25
that g(st) = g(s)g(t) for all odd numbers s and ¢. But g(p) = 1 for all prime

2

numbers p, since (—) — (=1)@*~V/% (Lemma 12.20). It follows that g(s) = 1
p

for all odd positive integers, as required. |}

t

Theorem 12.29 (;) <—> = (=1)E=DEDA for all odd positive integers s
s

and t.

Proof Let h(s,t) = (—1)(871)(’6’1)/4(;) (é) We must prove that h(s,t) =1
for all odd positive integers s and t. Now h(sise,t) = h(sy,t)h(s2,t) and
h(s,t1)h(s,t2) = h(s,tits) for all odd positive integers s, sq, So, t, t; and to.
Also h(s,t) = 1 when s and ¢ are prime numbers by the Law of Quadratic
Reciprocity (Theorem 12.21). It follows from this that h(s,t) = 1 when s
is an odd positive integer and t is a prime number, since any odd positive
integer is a product of odd prime numbers. But then h(s,t) = 1 for all odd
positive integers s and ¢, as required. |

The results proved above can be used to calculate Jacobi symbols, as in
the following example.

Example We wish to determine whether or not 442 is a quadratic residue

) 442 2 221 2
modulo the prime number 751. Now (ﬁ) = (ﬁ) (ﬁ) Also (ﬁ) =

, B 221V /751
1, since 751 = 7 (mod8) (Theorem 12.20). Also (751> = <221> (Theo-
rem 12.29), and 751 = 88 (mod 221). Thus

(1) = (1) = () = (o) ()

Now (ﬁ) = —1, since 221 =5 (mod8) (Theorem 12.28). Also it follows
from Theorem 12.29 that

() = (1) = (70) =1

4
since 221 =1 (mod4) and 221 =1 (mod 11). Therefore (ﬁ) = —1, and

thus 442 is a quadratic non-residue of 751. The number 221 is not prime,
since 221 = 13 x 17. Thus the above calculation made use of Jacobi symbols
that are not Legendre symbols.
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