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12 Topics in Number Theory

12.1 The Euler Totient Function

Let n be a positive integer. We define ϕ(n) to be the number of integers x
satisfying 0 ≤ x < n that are coprime to n. The function ϕ on the set of
positive integers is referred to as the Euler totient function.

Every integer (including zero) is coprime to 1, and therefore ϕ(1) = 1.
Let p be a prime number. Then ϕ(p) = p− 1, since every positive integer

less than p is coprime to p. Moreover ϕ(pk) = pk − pk−1 for all positive
integers k, since there are pk−1 integers x satisfying 0 ≤ x < pk that are
divisible by p, and the integers coprime to pk are those that are not divisible
by p.

Theorem 12.1 Let m1 and m2 be positive integers. Suppose that m1 and
m2 are coprime. Then ϕ(m1m2) = ϕ(m1)ϕ(m2).
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Proof Let x be an integer satisfying 0 ≤ x < m1 that is coprime to m1,
and let y be an integer satisfying 0 ≤ y < m2 that is coprime to m2. It
follows from the Chinese Remainder Theorem (Theorem 9.16) that there
exists exactly one integer z satisfying 0 ≤ z < m1m2 such that z ≡ x
(modm1) and z ≡ y (modm2). Moreover z must then be coprime to m1

and to m2, and must therefore be coprime to m1m2. Thus every integer z
satisfing 0 ≤ z < m1m2 that is coprime to m1m2 is uniquely determined by
its congruence classes modulo m1 and m2, and the congruence classes of z
modulo m1 and m2 contain integers coprime to m1 and m2 respectively. Thus
the number ϕ(m1m2) of integers z satisfying 0 ≤ z < m1m2 that are coprime
to m1m2 is equal to ϕ(m1)ϕ(m2), since ϕ(m1) is the number of integers x
satisfying 0 ≤ x < m1 that are coprime to m1 and ϕ(m2) is the number of
integers y satisfying 0 ≤ y < m2 that are coprime to m2.

Corollary 12.2 ϕ(n) = n
∏
p|n

(
1− 1

p

)
, for all positive integers n, where

∏
p|n

(
1− 1

p

)
denotes the product of 1 − 1

p
taken over all prime numbers p

that divide n.

Proof Let n = pk1
1 p

k2
2 · · · pkmm , where p1, p2, . . . , pm are prime numbers and

k1, k2, . . . , km are positive integers. Then ϕ(n) = ϕ(pk1
1 )ϕ(pk2

2 ) · · ·ϕ(pkmm ), and

ϕ(pkii ) = pkii (1− (1/pi)) for i = 1, 2, . . . ,m. Thus ϕ(n) = n

m∏
i=1

(
1− 1

pi

)
, as

required.

Let f be any function defined on the set of positive integers, and let n be
a positive integer. We denote the sum of the values of f(d) over all divisors d

of n by
∑
d|n

f(d).

Lemma 12.3 Let n be a positive integer. Then
∑
d|n

ϕ(d) = n.

Proof If x is an integer satisfying 0 ≤ x < n then (x, n) = n/d for some

divisor d of n. It follows that n =
∑
d|n

nd, where nd is the number of integers x

satisfying 0 ≤ x < n for which (x, n) = n/d. Thus it suffices to show that
nd = ϕ(d) for each divisor d of n.

Let d be a divisor of n, and let a = n/d. Given any integer x satisfying
0 ≤ x < n that is divisible by a, there exists an integer y satisfying 0 ≤ y < d
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such that x = ay. Then (x, n) is a multiple of a. Moreover a multiple ae
of a divides both x and n if and only if e divides both y and d. Therefore
(x, n) = a(y, d). It follows that the integers x satisfying 0 ≤ x < n for
which (x, n) = a are those of the form ay, where y is an integer, 0 ≤ y < d
and (y, d) = 1. It follows that there are exactly ϕ(d) integers x satisfying

0 ≤ x < n for which (x, n) = n/d, and thus nd = ϕ(d) and n =
∑
d|n

ϕ(d), as

required.

12.2 Euler’s Theorem

The following theorem of Euler generalizes Fermat’s Theorem (Theorem 9.17).

Theorem 12.4 (Euler) Let m be a positive integer, and let x be an integer
coprime to m. Then xϕ(m) ≡ 1 (modm).

First Proof of Theorem 12.4 The result is trivially true when m = 1.
Suppose that m > 1. Let I be the set of all positive integers less than m that
are coprime to m. Then ϕ(m) is by definition the number of integers in I. If y
is an integer coprime to m then so is xy. It follows that, to each integer j in I
there exists a unique integer uj in I such that xj ≡ uj (modm). Moreover if
j ∈ I and k ∈ I and j 6= k then uj 6≡ uk. Therefore I = {uj : j ∈ I}. Thus if
we multiply the left hand sides and right hand sides of the congruences xj ≡
uj (modm) for all j ∈ I we obtain the congruence xϕ(m)z ≡ z (modm),
where z is the product of all the integers in I. But z is coprime to m, since
a product of integers coprime to m is itself coprime to m. It follows from
Lemma 9.11 that xϕ(m) ≡ 1 (modm), as required.

2nd Proof of Theorem 12.4 Let m be a positive integer. Then the con-
gruence classes modulo m of integers coprime to m constitute a group of or-
der ϕ(m), where the group operation is multiplication of congruence classes.
Now it follows from Lagrange’s Theorem that that order of any element of
a finite group divides the order of the group. If we apply this result to the
group of congruence classes modulo m of integers coprime to m we find that
xϕ(m) ≡ 1 (modm), as required.

12.3 Solutions of Polynomial Congruences

Let f be a polynomial with integer coefficients, and let m be a positive
integer. If x and x′ are integers, and if x ≡ x′ (modm), then f(x) ≡
f(x′) (modm). It follows that the set consisting of those integers x which
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satisfy the congruence f(x) ≡ 0 (modm) is a union of congruence classes
modulo m. The number of solutions modulo m of the congruence f(x) ≡
0 (modm) is defined to be the number of congruence classes of integers
modulo m such that an integer x satisfies the congruence f(x) ≡ 0 (modm)
if and only if it belongs to one of those congruence classes. Thus a congruence
f(x) ≡ 0 (modm) has n solutions modulo m if and only if there exist n
integers a1, a2, . . . , an satisfying the congruence such that every solution of
the congruence f(x) ≡ 0 (modm) is congruent modulo m to exactly one of
the integers a1, a2, . . . , an.

Note that the number of solutions of the congruence f(x) ≡ 0 (modm)
is equal to the number of integers x satisfying 0 ≤ x < m for which f(x) ≡ 0
(modm). This follows immediately from the fact that each congruence class
of integers modulo m contains exactly one integer x satisfying 0 ≤ x < m.

Theorem 12.5 Let f be a polynomial with integer coefficients, and let p be
a prime number. Suppose that the coefficients of f are not all divisible by p.
Then the number of solutions modulo p of the congruence f(x) ≡ 0 (mod p)
is at most the degree of the polynomial f .

Proof The result is clearly true when f is a constant polynomial. We can
prove the result for non-constant polynomials by induction on the degree of
the polynomial.

First we observe that, given any integer a, there exists a polynomial g with
integer coefficients such that f(x) = f(a) + (x− a)g(x). Indeed f(y+ a) is a
polynomial in y with integer coefficients, and therefore f(y+a) = f(a)+yh(y)
for some polynomial h with integer coefficients. Thus if g(x) = h(x−a) then
g is a polynomial with integer coefficients and f(x) = f(a) + (x− a)g(x).

Suppose that f(a) ≡ 0 (mod p) and f(b) ≡ 0 (mod p). Let f(x) =
f(a) + (x − a)g(x), where g is a polynomial with integer coefficients. The
coefficients of f are not all divisible by p, but f(a) is divisible by p, and
therefore the coefficients of g cannot all be divisible by p.

Now f(a) and f(b) are both divisible by the prime number p, and therefore
(b−a)g(b) is divisible by p. But a prime number divides a product of integers
if and only if it divides one of the factors. Therefore either b− a is divisible
by p or else g(b) is divisible by p. Thus either b ≡ a (mod p) or else
g(b) ≡ 0 (mod p). The required result now follows easily by induction on
the degree of the polynomial f .

12.4 Primitive Roots

Lemma 12.6 Let m be a positive integer, and let x be an integer coprime
to m. Then there exists a positive integer n such that xn ≡ 1 (modm).
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Proof There are only finitely many congruence classes modulo m. Therefore
there exist positive integers j and k with j < k such that xj ≡ xk (modm).
Let n = k− j. Then xjxn ≡ xj (modm). But xj is coprime to m. It follows
from Lemma 9.11 that xn ≡ 1 (modm).

Remark The above lemma also follows directly from Euler’s Theorem (The-
orem 12.4).

Let m be a positive integer, and let x be an integer coprime to m. The
order of the congruence class of x modulo m is by definition the smallest
positive integer d such that xd ≡ 1 (modm).

Lemma 12.7 Let m be a positive integer, let x be an integer coprime to m,
and let j and k be positive integers. Then xj ≡ xk (modm) if and only if
j ≡ k (mod d), where d is the order of the congruence class of x modulo m.

Proof We may suppose without loss of generality that j < k. If j ≡ k
(mod d) then k− j is divisible by d, and hence xk−j ≡ 1 (modm). But then
xk ≡ xjxk−j ≡ xj (modm). Conversely suppose that xj ≡ xk (modm) and
j < k. Then xjxk−j ≡ xj (modm). But xj is coprime to m. It follows from
Lemma 9.11 that xk−j ≡ 1 (modm). Thus if k − j = qd+ r, where q and r
are integers and 0 ≤ r < d, then xr ≡ 1 (modm). But then r = 0, since d
is the smallest positive integer for which xd ≡ 1 (modm). Therefore k − j
is divisible by d, and thus j ≡ k (mod d).

Lemma 12.8 Let p be a prime number, and let x and y be integers coprime
to p. Suppose that the congruence classes of x and y modulo p have the same
order. Then there exists a non-negative integer k, coprime to the order of
the congruence classes of x and y, such that y ≡ xk (mod p).

Proof Let d be the order of the congruence class of x modulo p. The so-
lutions of the congruence xd ≡ 1 (mod p) include xj with 0 ≤ j < d. But
the congruence xd ≡ 1 (mod p) has at most d solutions modulo p, since
p is prime (Theorem 12.5), and the congruence classes of 1, x, x2, . . . , xd−1

modulo p are distinct (Lemma 12.7). It follows that any solution of the
congruence xd ≡ 1 (mod p) is congruent to xk for some positive integer k.
Thus if y is an integer coprime to p whose congruence class is of order d then
y ≡ xk (mod p) for some positive integer k. Moreover k is coprime to d, for
if e is a common divisor of k and d then yd/e ≡ xd(k/e) ≡ 1 (mod p), and
hence e = 1.
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Let m be a positive integer. An integer g is said to be a primitive root
modulo m if, given any integer x coprime to m, there exists an integer j such
that x ≡ gj (modm).

A primitive root modulo m is necessarily coprime to m. For if g is a
primitive root modulo m then there exists an integer n such that gn ≡ 1
(modm). But then any common divisor of g and m must divide 1, and thus
g and m are coprime.

Theorem 12.9 Let p be a prime number. Then there exists a primitive root
modulo p.

Proof If x is an integer coprime to p then it follows from Fermat’s Theorem
(Theorem 9.17) that xp−1 ≡ 1 (mod p). It then follows from Lemma 12.7
that the order of the congruence class of x modulo p divides p− 1. For each
divisor d of p−1, let ψ(d) denote the number of congruence classes modulo p

of integers coprime to p that are of order d. Clearly
∑
d|p−1

ψ(d) = p− 1.

Let x be an integer coprime to p whose congruence class is of order d,
where d is a divisor of p − 1. If k is coprime to d then the congruence class
of xk is also of order d, for if (xk)n ≡ 1 (mod p) then d divides kn and
hence d divides n (Lemma 9.10). Let y be an integer coprime to p whose
congruence class is also of order d. It follows from Lemma 12.8 that there
exists a non-negative integer k coprime to d such that y ≡ xk (mod p). It
then follows from Lemma 12.7 that there exists a unique integer k coprime to
d such that 0 ≤ k < d and y ≡ xk (mod p). Thus if there exists at least one
integer x coprime to p whose congruence class modulo p is of order d then
the congruence classes modulo p of integers coprime to p that are of order d
are the congruence classes of xk for those integers k satisfying 0 ≤ k < d
that are coprime to d. Thus if ψ(d) > 0 then ψ(d) = ϕ(d), where ϕ(d) is the
number of integers k satisfying 0 ≤ k < d that are coprime to d.

Now 0 ≤ ψ(d) ≤ ϕ(d) for each divisor d of p−1. But
∑
d|p−1

ψ(d) = p−1 and∑
d|p−1

ϕ(d) = p− 1 (Lemma 12.3). Therefore ψ(d) = ϕ(d) for each divisor d of

p− 1. In particular ψ(p− 1) = ϕ(p− 1) ≥ 1. Thus there exists an integer g
whose congruence class modulo p is of order p − 1. The congruence classes
of 1, g, g2, . . . gp−2 modulo p are then distinct. But there are exactly p − 1
congruence classes modulo p of integers coprime to p. It follows that any
integer that is coprime to p must be congruent to gj for some non-negative
integer j. Thus g is a primitive root modulo p.
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Corollary 12.10 Let p be a prime number. Then the group of congruence
classes modulo p of integers coprime to p is a cyclic group of order p− 1.

Remark It can be shown that there exists a primitive root modulo m if
m = 1, 2 or 4, if m = pk or if m = 2pk, where p is some odd prime number
and k is a positive integer. In all other cases there is no primitive root
modulo m.

12.5 Quadratic Residues

Definition Let p be a prime number, and let x be an integer coprime to p.
The integer x is said to be a quadratic residue of p if there exists an integer y
such that x ≡ y2 (mod p). If x is not a quadratic residue of p then x is said
to be a quadratic non-residue of p.

Proposition 12.11 Let p be an odd prime number, and let a, b and c be
integers, where a is coprime to p. Then there exist integers x satisfying the
congruence ax2 + bx + c ≡ 0 (mod p) if and only if either b2 − 4ac is a
quadratic residue of p or else b2 − 4ac ≡ 0 (mod p).

Proof Let x be an integer. Then ax2 + bx + c ≡ 0 (mod p) if and only if
4a2x2 +4abx+4ac ≡ 0 (mod p), since 4a is coprime to p (Lemma 9.11). But
4a2x2 + 4abx+ 4ac = (2ax+ b)2 − (b2 − 4ac). It follows that ax2 + bx+ c ≡
0 (mod p) if and only if (2ax + b)2 ≡ b2 − 4ac (mod p). Thus if there exist
integers x satisfying the congruence ax2 + bx + c ≡ 0 (mod p) then either
b2 − 4ac is a quadratic residue of p or else b2 − 4ac ≡ 0 (mod p). Conversely
suppose that either b2−4ac is a quadratic residue of p or b2−4ac ≡ 0 (mod p).
Then there exists an integer y such that y2 ≡ b2 − 4ac (mod p). Also there
exists an integer d such that 2ad ≡ 1 (mod p), since 2a is coprime to p
(Lemma 9.12). If x ≡ d(y − b) (mod p) then 2ax + b ≡ y (mod p), and
hence (2ax + b)2 ≡ b2 − 4ac (mod p). But then ax2 + bx + c ≡ 0 (mod p),
as required.

Lemma 12.12 Let p be an odd prime number, and let x and y be integers.
Suppose that x2 ≡ y2 (mod p). Then either x ≡ y (mod p) or else x ≡ −y
(mod p).

Proof x2 − y2 is divisible by p, since x2 ≡ y2 (mod p). But x2 − y2 =
(x− y)(x+ y), and a prime number divides a product of integers if and only
if it divides at least one of the factors. Therefore either x − y is divisible
by p or else x + y is divisible by p. Thus either x ≡ y (mod p) or else
x ≡ −y (mod p).
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Lemma 12.13 Let p be an odd prime number, and let m = (p − 1)/2.
Then there are exactly m congruence classes of integers coprime to p that
are quadratic residues of p. Also there are exactly m congruence classes of
integers coprime to p that are quadratic non-residues of p.

Proof If i and j are integers between 1 and m, and if i 6= j then i 6≡
j (mod p) and i 6≡ −j (mod p). It follows from Lemma 12.12 that if
i and j are integers between 1 and m, and if i 6= j then i2 6≡ j2. Thus
the congruence classes of 12, 22, . . . ,m2 modulo p are distinct. But, given
any integer x coprime to p, there is an integer i such that 1 ≤ i ≤ m and
either x ≡ i (mod p) or x ≡ −i (mod p), and therefore x2 ≡ i2 (mod p).
Thus every quadratic residue of p is congruent to i2 for exactly one integer i
betweeen 1 and m. Thus there are m congruence classes of quadratic residues
of p.

There are 2m congruence classes of integers modulo p that are coprime
to p. It follows that there are m congruence classes of quadratic non-residues
of p, as required.

Theorem 12.14 Let p be an odd prime number, let R be the set of all in-
tegers coprime to p that are quadratic residues of p, and let N be the set of
all integers coprime to p that are quadratic non-residues of p. If x ∈ R and
y ∈ R then xy ∈ R. If x ∈ R and y ∈ N then xy ∈ N . If x ∈ N and y ∈ N
then xy ∈ R.

Proof Let m = (p − 1)/2. Then there are exactly m congruence classes of
integers coprime to p that are quadratic residues of p. Let these congruence
classes be represented by the integers r1, r2, . . . , rm, where ri 6≡ rj (mod p)
when i 6= j. Also there are exactly m congruence classes of integers coprime
to p that are quadratic non-residues modulo p.

The product of two quadratic residues of p is itself a quadratic residue of
p. Therefore xy ∈ R for all x ∈ R and y ∈ R.

Suppose that x ∈ R. Then xri ∈ R for i = 1, 2, . . . ,m, and xri 6≡ xrj
when i 6= j. It follows that the congruence classes of xr1, xr2, . . . , xrm are
distinct, and consist of quadratic residues of p. But there are exactly m
congruence classes of quadratic residues of p. It follows that every quadratic
residue of p is congruent to exactly one of the integers xr1, xr2, . . . , xrm. But
if y ∈ N then y 6≡ ri and hence xy 6≡ xri for i = 1, 2, . . . ,m. It follows that
xy ∈ N for all x ∈ R and y ∈ N .

Now suppose that x ∈ N . Then xri ∈ N for i = 1, 2, . . . ,m, and xri 6≡ xrj
when i 6= j. It follows that the congruence classes of xr1, xr2, . . . , xrm are
distinct, and consist of quadratic non-residues modulo p. But there are

8



exactly m congruence classes of quadratic non-residues modulo p. It follows
that every quadratic non-residue of p is congruent to exactly one of the
integers xr1, xr2, . . . , xrm. But if y ∈ N then y 6≡ ri and hence xy 6≡ xri for
i = 1, 2, . . . ,m. It follows that xy ∈ R for all x ∈ N and y ∈ N .

Let p be an odd prime number. The Legendre symbol
(x
p

)
is defined for

integers x as follows: if x is coprime to p and x is a quadratic residue of p

then
(x
p

)
= +1; if x is coprime to p and x is a quadratic non-residue of p

then
(x
p

)
= −1; if x is divisible by p then

(x
p

)
= 0.

The following result follows directly from Theorem 12.14.

Corollary 12.15 Let p be an odd prime number. Then(x
p

)(y
p

)
=
(xy
p

)
for all integers x and y.

Lemma 12.16 (Euler) Let p be an odd prime number, and let x be an integer
coprime to p. Then x is a quadratic residue of p if and only if x(p−1)/2 ≡ 1
(mod p). Also x is a quadratic non-residue of p if and only if x(p−1)/2 ≡ −1
(mod p).

Proof Letm = (p−1)/2. If x is a quadratic residue of p then x ≡ y2 (mod p)
for some integer y coprime to p. Then xm = yp−1, and yp−1 ≡ 1 (mod p) by
Fermat’s Theorem (Theorem 9.17), and thus xm ≡ 1 (mod p).

It follows from Theorem 12.5 that there are at most m congruence classes
of integers x satisfying xm ≡ 1 (mod p). However all quadratic residues
modulo p satisfy this congruence, and there are exactly m congruence classes
of quadratic residues modulo p. It follows that an integer x coprime to p
satisfies the congruence xm ≡ 1 (mod p) if and only if x is a quadratic
residue of p.

Now let x be a quadratic non-residue of p and let u = xm. Then u2 ≡
1 (mod p) but u 6≡ 1 (mod p). It follows from Lemma 12.12 that u ≡ −1
(mod p). It follows that an integer x coprime to p is a quadratic non-residue
of p if and only if xm ≡ −1 (mod p).

Corollary 12.17 Let p be an odd prime number. Then

x(p−1)/2 ≡
(x
p

)
(mod p)

for all integers x.
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Proof If x is coprime to p then the result follows from Lemma 12.16. If x
is divisible by p then so is x(p−1)/2. In that case x(p−1)/2 ≡ 0 (mod p) and(x
p

)
= 0 (mod p).

Corollary 12.18
(−1

p

)
= (−1)(p−1)/2 for all odd prime numbers p.

Proof It follows from Corollary 12.17 that
(−1

p

)
≡ (−1)(p−1)/2 (mod p) for

all odd prime numbers p. But
(−1

p

)
= ±1, by the definition of the Legendre

symbol. Therefore
(−1

p

)
= (−1)(p−1)/2, as required.

Remark Let p be an odd prime number. It follows from Theorem 12.9 that
there exists a primitive root g modulo p. Moreover the congruence class of
g modulo p is of order p − 1. It follows that gj ≡ gk (mod p), where j and
k are positive integers, if and only if j − k is divisible by p− 1. But p− 1 is
even. Thus if gj ≡ gk then j − k is even. It follows easily from this that an
integer x is a quadratic residue of p if and only if x ≡ gk (mod p) for some
even integer k. The results of Theorem 12.14 and Lemma 12.16 follow easily
from this fact.

Let p be an odd prime number, and let m = (p−1)/2. Then each integer
not divisible by p is congruent to exactly one of the integers ±1,±2, . . . ,±m.

The following lemma was proved by Gauss.

Lemma 12.19 Let p be an odd prime number, let m = (p− 1)/2, and let x

be an integer that is not divisible by p. Then
(x
p

)
= (−1)r, where r is the

number of pairs (j, u) of integers satisfying 1 ≤ j ≤ m and 1 ≤ u ≤ m for
which xj ≡ −u (mod p).

Proof For each integer j satisfying 1 ≤ j ≤ m there is a unique integer uj
satisfying 1 ≤ uj ≤ m such that xj ≡ ejuj (mod p) with ej = ±1. Then
e1e2 · · · em = (−1)r.

If j and k are integers between 1 and m and if j 6= k, then j 6≡ k (mod p)
and j 6≡ −k (mod p). But then xj 6≡ xk (mod p) and xj 6≡ −xk (mod p)
since x is not divisible by p. Thus if 1 ≤ j ≤ m, 1 ≤ k ≤ m and j 6= k
then uj 6= uk. It follows that each integer between 1 and m occurs exactly
once in the list u1, u2, . . . , um, and therefore u1u2 · · ·um = m!. Thus if we
multiply the congruences xj ≡ ejuj (mod p) for j = 1, 2, . . . ,m we obtain
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the congruence xmm! ≡ (−1)rm! (mod p). But m! is not divisible by p,
since p is prime and m < p. It follows that xm ≡ (−1)r (mod p). But

xm ≡
(x
p

)
(mod p) by Lemma 12.16. Therefore

(x
p

)
≡ (−1)r (mod p), and

hence
(x
p

)
= (−1)r, as required.

Let n be an odd integer. Then n = 2k + 1 for some integer k. Then
n2 = 4(k2 + k) + 1, and k2 + k is an even integer. It follows that if n is an
odd integer then n2 ≡ 1 (mod 8), and hence (−1)(n2−1)/8 = ±1.

Theorem 12.20 Let p be an odd prime number. Then
(2

p

)
= (−1)(p2−1)/8.

Proof The value of (−1)(p2−1)/8 is determined by the congruence class of p
modulo 8. Indeed (−1)(p2−1)/8 = 1 when p ≡ 1 (mod 8) or p ≡ −1 (mod 8),
and (−1)(p2−1)/8 = −1 when p ≡ 3 (mod 8) or p ≡ −3 (mod 8).

Let m = (p − 1)/2. It follows from Lemma 12.19 that
(2

p

)
= (−1)r,

where r is the number of integers x between 1 and m for which 2x is not
congruent modulo p to any integer between 1 and m. But the integers x with
this property are those for which m/2 < x ≤ m. Thus r = m/2 if m is even,
and r = (m+ 1)/2 if m is odd.

If p ≡ 1 (mod 8) then m is divisible by 4 and hence r is even. If p ≡
3 (mod 8) then m ≡ 1 (mod 4) and hence r is odd. If p ≡ 5 (mod 8) then
m ≡ 2 (mod 4) and hence r is odd. If p ≡ 7 (mod 8) then m ≡ 3 (mod 4)

and hence r is even. Therefore
(2

p

)
= 1 when p ≡ 1 (mod 8) and when

p ≡ 7 (mod 8), and
(2

p

)
= −1 when p ≡ 3 (mod 8) and p ≡ 5 (mod 8).

Thus
(2

p

)
= (−1)(p2−1)/8 for all odd prime numbers p, as required.

12.6 Quadratic Reciprocity

Theorem 12.21 (Quadratic Reciprocity Law) Let p and q be distinct odd
prime numbers. Then (p

q

)(q
p

)
= (−1)(p−1)(q−1)/4

Proof Let S be the set of all ordered pairs (x, y) of integers x and y satisfying
1 ≤ x ≤ m and 1 ≤ y ≤ n, where p = 2m + 1 and q = 2n + 1. We must

prove that
(p
q

)(q
p

)
= (−1)mn.
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First we show that
(p
q

)
= (−1)a, where a is the number of pairs (x, y)

of integers in S satisfying −n ≤ py − qx ≤ −1. If (x, y) is a pair of integers
in S satisfying −n ≤ py − qx ≤ −1, and if z = qx − py, then 1 ≤ y ≤ n,
1 ≤ z ≤ n and py ≡ −z (mod q). On the other hand, if (y, z) is a pair of
integers such that 1 ≤ y ≤ n, 1 ≤ z ≤ n and py ≡ −z (mod q) then there is
a unique positive integer x such that z = qx− py. Moreover qx = py + z ≤
(p + 1)n = 2n(m + 1) and q > 2n, and therefore x < m + 1. It follows that
the pair (x, y) of integers is in S, and −n ≤ py − qx ≤ −1. We deduce that
the number a of pairs (x, y) of integers in S satisfying −n ≤ py− qx ≤ −1 is
equal to the number of pairs (y, z) of integers satisfying 1 ≤ y ≤ n, 1 ≤ z ≤ n

and py ≡ −z (mod q). It now follows from Lemma 12.19 that
(p
q

)
= (−1)a.

Similarly
(q
p

)
= (−1)b, where b is the number of pairs (x, y) in S satisfying

1 ≤ py − qx ≤ m.
If x and y are integers satisfying py− qx = 0 then x is divisible by p and

y is divisible by q. It follows from this that py− qx 6= 0 for all pairs (x, y) in
S. The total number of pairs (x, y) in S is mn. Therefore mn = a+b+c+d,
where c is the number of pairs (x, y) in S satisfying py − qx < −n and d is
the number of pairs (x, y) in S satisfying py − qx > m.

Let (x, y) be a pair of integers in S, and let and let x′ = m + 1 − x and
y′ = n + 1 − y. Then the pair (x′, y′) also belongs to S, and py′ − qx′ =
m−n− (py− qx). It follows that py− qx > m if and only if py′− qx′ < −n.
Thus there is a one-to-one correspondence between pairs (x, y) in S satisfying
py− qx > m and pairs (x′, y′) in S satisfying py′− qx′ < −n, where (x′, y′) =
(m+ 1− x, n+ 1− y) and (x, y) = (m+ 1− x′, n+ 1− y′). Therefore c = d,

and thus mn = a + b + 2c. But then (−1)mn = (−1)a(−1)b =
(p
q

)(q
p

)
, as

required.

Corollary 12.22 Let p and q be distinct odd prime numbers. If p ≡ 1

(mod 4) or q ≡ 1 (mod 4) then
(p
q

)
=
(q
p

)
. If p ≡ 3 (mod 4) and

q ≡ 3 (mod 4) then
(p
q

)
= −

(q
p

)
.

Example We wish to determine whether or not 654 is a quadratic residue
modulo the prime number 239. Now 654 = 2 × 239 + 176 and thus 654 ≡
176 (mod 239). Also 176 = 16× 11. Therefore(654

239

)
=
(176

239

)
=
( 16

239

)( 11

239

)
=
( 4

239

)2( 11

239

)
=
( 11

239

)
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But
( 11

239

)
= −

(239

11

)
by the Law of Quadratic Reciprocity. Also 239 ≡ 8

(mod 11). Therefore(239

11

)
=
( 8

11

)
=
( 2

11

)3

= (−1)3 = −1

It follows that
(654

239

)
= +1 and thus 654 is a quadratic residue of 239, as

required.

12.7 The Jacobi Symbol

Let s be an odd positive integer. If s > 1 then s = p1p2 · · · pm, where
p1, p2, . . . , pm are odd prime numbers. For each integer x we define the Jacobi

symbol
(x
s

)
by (x

s

)
=

m∏
i=1

( x
pi

)
(i.e.,

(x
s

)
is the product of the Legendre symbols

( x
pi

)
for i = 1, 2, . . . ,m.)

We define
(x

1

)
= 1.

Note that the Jacobi symbol can have the values 0, +1 and −1.

Lemma 12.23 Let s be an odd positive integer, and let x be an integer.

Then
(x
s

)
6= 0 if and only if x is coprime to s.

Proof Let s = p1p2 · · · pm, where p1, p2, . . . , pm are odd prime numbers. Sup-
pose that x is coprime to s. Then x is coprime to each prime factor of s, and

hence
( x
pi

)
= ±1 for i = 1, 2, . . . ,m. It follows that

(x
s

)
= ±1 and thus(x

s

)
6= 0.

Next suppose that x is not coprime to s. Let p be a prime factor of the

greatest common divisor of x and s. Then p = pi, and hence
( x
pi

)
= 0 for

some integer i between 1 and m. But then
(x
s

)
= 0.

Lemma 12.24 Let s be an odd positive integer, and let x and x′ be integers.

Suppose that x ≡ x′ (mod s). Then
(x
s

)
=
(x′
s

)
.
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Proof If x ≡ x′ (mod s) then x ≡ x′ (mod p) for each prime factor p of

s, and therefore
(x
p

)
=
(x′
p

)
for each prime factor of s. Therefore

(x
s

)
=(x′

s

)
.

Lemma 12.25 Let x and y be integers, and let s and t be odd positive inte-

gers. Then
(xy
s

)
=
(x
s

)(y
s

)
and

( x
st

)
=
(x
s

)(x
t

)
.

Proof
(xy
p

)
=
(x
p

)(y
p

)
for all prime numbers p (Corollary 12.15). The

required result therefore follows from the definition of the Jacobi symbol.

Lemma 12.26
(x2

s

)
= 1 and

( x
s2

)
= 1 for for all odd positive integers s

and all integers x that are coprime to s.

Proof This follows directly from Lemma 12.25 and Lemma 12.23.

Theorem 12.27
(−1

s

)
= (−1)(s−1)/2 for all odd positive integers s.

Proof Let f(s) = (−1)(s−1)/2
(−1

s

)
for each odd positive integer s. We must

prove that f(s) = 1 for all odd positive integers s. If s and t are odd positive
integers then

(st− 1)− (s− 1)− (t− 1) = st− s− t+ 1 = (s− 1)(t− 1)

But (s − 1)(t − 1) is divisible by 4, since s and t are odd positive inte-
gers. Therefore (st − 1)/2 ≡ (s − 1)/2 + (t − 1)/2 (mod 2), and hence
(−1)(st−1)/2 = (−1)(s−1)/2(−1)(t−1)/2. It now follows from Lemma 12.25 that
f(st) = f(s)f(t) for all odd numbers s and t. But f(p) = 1 for all prime num-

bers p, since
(−1

p

)
= (−1)(p−1)/2 (Lemma 12.18). It follows that f(s) = 1

for all odd positive integers s, as required.

Theorem 12.28
(2

s

)
= (−1)(s2−1)/8 for all odd positive integers s.

Proof Let g(s) = (−1)(s2−1)/8
(2

s

)
for each odd positive integer s. We must

prove that g(s) = 1 for all odd positive integers s. If s and t are odd positive
integers then

(s2t2 − 1)− (s2 − 1)− (t2 − 1) = s2t2 − s2 − t2 + 1 = (s2 − 1)(t2 − 1).

14



But (s2 − 1)(t2 − 1) is divisible by 64, since s2 ≡ 1 (mod 8) and t2 ≡ 1
(mod 8). Therefore (s2t2−1)/8 ≡ (s2−1)/8 + (t2−1)/8 (mod 8), and hence
(−1)(s2t2−1)/8 = (−1)(s2−1)/8(−1)(t2−1)/8. It now follows from Lemma 12.25
that g(st) = g(s)g(t) for all odd numbers s and t. But g(p) = 1 for all prime

numbers p, since
(2

p

)
= (−1)(p2−1)/8 (Lemma 12.20). It follows that g(s) = 1

for all odd positive integers, as required.

Theorem 12.29
(s
t

)( t
s

)
= (−1)(s−1)(t−1)/4 for all odd positive integers s

and t.

Proof Let h(s, t) = (−1)(s−1)(t−1)/4
(s
t

)( t
s

)
. We must prove that h(s, t) = 1

for all odd positive integers s and t. Now h(s1s2, t) = h(s1, t)h(s2, t) and
h(s, t1)h(s, t2) = h(s, t1t2) for all odd positive integers s, s1, s2, t, t1 and t2.
Also h(s, t) = 1 when s and t are prime numbers by the Law of Quadratic
Reciprocity (Theorem 12.21). It follows from this that h(s, t) = 1 when s
is an odd positive integer and t is a prime number, since any odd positive
integer is a product of odd prime numbers. But then h(s, t) = 1 for all odd
positive integers s and t, as required.

The results proved above can be used to calculate Jacobi symbols, as in
the following example.

Example We wish to determine whether or not 442 is a quadratic residue

modulo the prime number 751. Now
(442

751

)
=
( 2

751

)(221

751

)
. Also

( 2

751

)
=

1, since 751 ≡ 7 (mod 8) (Theorem 12.20). Also
(221

751

)
=
(751

221

)
(Theo-

rem 12.29), and 751 ≡ 88 (mod 221). Thus(442

751

)
=
(751

221

)
=
( 88

221

)
=
( 2

221

)3( 11

221

)
.

Now
( 2

221

)
= −1, since 221 ≡ 5 (mod 8) (Theorem 12.28). Also it follows

from Theorem 12.29 that( 11

221

)
=
(221

11

)
=
( 1

11

)
= 1,

since 221 ≡ 1 (mod 4) and 221 ≡ 1 (mod 11). Therefore
(442

751

)
= −1, and

thus 442 is a quadratic non-residue of 751. The number 221 is not prime,
since 221 = 13× 17. Thus the above calculation made use of Jacobi symbols
that are not Legendre symbols.
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