Course 2BA1m: Trinity Term 2007 Section 12: Further Number Theory

David R. Wilkins

Copyright © David R. Wilkins 2001–07

Contents

Top	ics in Number Theory	1
12.1	The Euler Totient Function	1
12.2	Euler's Theorem	3
12.3	Solutions of Polynomial Congruences	3
12.4	Primitive Roots	4
12.5	Quadratic Residues	7
12.6	Quadratic Reciprocity	11
12.7	The Jacobi Symbol	13
	12.1 12.2 12.3 12.4 12.5 12.6	Topics in Number Theory12.1 The Euler Totient Function12.2 Euler's Theorem12.3 Solutions of Polynomial Congruences12.4 Primitive Roots12.5 Quadratic Residues12.6 Quadratic Reciprocity12.7 The Jacobi Symbol

12 Topics in Number Theory

12.1 The Euler Totient Function

Let n be a positive integer. We define $\varphi(n)$ to be the number of integers x satisfying $0 \leq x < n$ that are coprime to n. The function φ on the set of positive integers is referred to as the *Euler totient function*.

Every integer (including zero) is coprime to 1, and therefore $\varphi(1) = 1$.

Let p be a prime number. Then $\varphi(p) = p - 1$, since every positive integer less than p is coprime to p. Moreover $\varphi(p^k) = p^k - p^{k-1}$ for all positive integers k, since there are p^{k-1} integers x satisfying $0 \le x < p^k$ that are divisible by p, and the integers coprime to p^k are those that are not divisible by p.

Theorem 12.1 Let m_1 and m_2 be positive integers. Suppose that m_1 and m_2 are coprime. Then $\varphi(m_1m_2) = \varphi(m_1)\varphi(m_2)$.

Proof Let x be an integer satisfying $0 \le x < m_1$ that is coprime to m_1 , and let y be an integer satisfying $0 \le y < m_2$ that is coprime to m_2 . It follows from the Chinese Remainder Theorem (Theorem 9.16) that there exists exactly one integer z satisfying $0 \le z < m_1m_2$ such that $z \equiv x$ $(\mod m_1)$ and $z \equiv y \pmod{m_2}$. Moreover z must then be coprime to m_1 and to m_2 , and must therefore be coprime to m_1m_2 . Thus every integer z satisfing $0 \le z < m_1m_2$ that is coprime to m_1m_2 is uniquely determined by its congruence classes modulo m_1 and m_2 , and the congruence classes of z modulo m_1 and m_2 contain integers coprime to m_1 and m_2 respectively. Thus the number $\varphi(m_1m_2)$ of integers z satisfying $0 \le z < m_1m_2$ that are coprime to m_1m_2 is equal to $\varphi(m_1)\varphi(m_2)$, since $\varphi(m_1)$ is the number of integers x satisfying $0 \le x < m_1$ that are coprime to m_1 and $\varphi(m_2)$ is the number of integers y satisfying $0 \le y < m_2$ that are coprime to m_2 .

Corollary 12.2 $\varphi(n) = n \prod_{p|n} \left(1 - \frac{1}{p}\right)$, for all positive integers n, where $\prod_{p|n} \left(1 - \frac{1}{p}\right)$ denotes the product of $1 - \frac{1}{p}$ taken over all prime numbers p that divide n.

Proof Let $n = p_1^{k_1} p_2^{k_2} \cdots p_m^{k_m}$, where p_1, p_2, \ldots, p_m are prime numbers and k_1, k_2, \ldots, k_m are positive integers. Then $\varphi(n) = \varphi(p_1^{k_1})\varphi(p_2^{k_2})\cdots\varphi(p_m^{k_m})$, and $\varphi(p_i^{k_i}) = p_i^{k_i}(1 - (1/p_i))$ for $i = 1, 2, \ldots, m$. Thus $\varphi(n) = n \prod_{i=1}^m \left(1 - \frac{1}{p_i}\right)$, as required.

Let f be any function defined on the set of positive integers, and let n be a positive integer. We denote the sum of the values of f(d) over all divisors d of n by $\sum_{d|n} f(d)$.

Lemma 12.3 Let n be a positive integer. Then $\sum_{d|n} \varphi(d) = n$.

Proof If x is an integer satisfying $0 \le x < n$ then (x, n) = n/d for some divisor d of n. It follows that $n = \sum_{d|n} n_d$, where n_d is the number of integers x satisfying $0 \le x < n$ for which (x, n) = n/d. Thus it suffices to show that $n_d = \varphi(d)$ for each divisor d of n.

Let d be a divisor of n, and let a = n/d. Given any integer x satisfying $0 \le x < n$ that is divisible by a, there exists an integer y satisfying $0 \le y < d$

such that x = ay. Then (x, n) is a multiple of a. Moreover a multiple ae of a divides both x and n if and only if e divides both y and d. Therefore (x, n) = a(y, d). It follows that the integers x satisfying $0 \le x < n$ for which (x, n) = a are those of the form ay, where y is an integer, $0 \le y < d$ and (y, d) = 1. It follows that there are exactly $\varphi(d)$ integers x satisfying $0 \le x < n$ for which (x, n) = n/d, and thus $n_d = \varphi(d)$ and $n = \sum_{d|n} \varphi(d)$, as

required.

12.2 Euler's Theorem

The following theorem of Euler generalizes Fermat's Theorem (Theorem 9.17).

Theorem 12.4 (Euler) Let m be a positive integer, and let x be an integer coprime to m. Then $x^{\varphi(m)} \equiv 1 \pmod{m}$.

First Proof of Theorem 12.4 The result is trivially true when m = 1. Suppose that m > 1. Let I be the set of all positive integers less than m that are coprime to m. Then $\varphi(m)$ is by definition the number of integers in I. If y is an integer coprime to m then so is xy. It follows that, to each integer j in I there exists a unique integer u_j in I such that $xj \equiv u_j \pmod{m}$. Moreover if $j \in I$ and $k \in I$ and $j \neq k$ then $u_j \not\equiv u_k$. Therefore $I = \{u_j : j \in I\}$. Thus if we multiply the left hand sides and right hand sides of the congruences $xj \equiv u_j \pmod{m}$ for all $j \in I$ we obtain the congruence $x^{\varphi(m)}z \equiv z \pmod{m}$, where z is the product of all the integers in I. But z is coprime to m, since a product of integers coprime to m is itself coprime to m. It follows from Lemma 9.11 that $x^{\varphi(m)} \equiv 1 \pmod{m}$, as required.

2nd Proof of Theorem 12.4 Let m be a positive integer. Then the congruence classes modulo m of integers coprime to m constitute a group of order $\varphi(m)$, where the group operation is multiplication of congruence classes. Now it follows from Lagrange's Theorem that that order of any element of a finite group divides the order of the group. If we apply this result to the group of congruence classes modulo m of integers coprime to m we find that $x^{\varphi(m)} \equiv 1 \pmod{m}$, as required.

12.3 Solutions of Polynomial Congruences

Let f be a polynomial with integer coefficients, and let m be a positive integer. If x and x' are integers, and if $x \equiv x' \pmod{m}$, then $f(x) \equiv f(x') \pmod{m}$. It follows that the set consisting of those integers x which

satisfy the congruence $f(x) \equiv 0 \pmod{m}$ is a union of congruence classes modulo m. The number of solutions modulo m of the congruence $f(x) \equiv 0 \pmod{m}$ is defined to be the number of congruence classes of integers modulo m such that an integer x satisfies the congruence $f(x) \equiv 0 \pmod{m}$ if and only if it belongs to one of those congruence classes. Thus a congruence $f(x) \equiv 0 \pmod{m}$ has n solutions modulo m if and only if there exist nintegers a_1, a_2, \ldots, a_n satisfying the congruence such that every solution of the congruence $f(x) \equiv 0 \pmod{m}$ is congruent modulo m to exactly one of the integers a_1, a_2, \ldots, a_n .

Note that the number of solutions of the congruence $f(x) \equiv 0 \pmod{m}$ is equal to the number of integers x satisfying $0 \le x < m$ for which $f(x) \equiv 0 \pmod{m}$. This follows immediately from the fact that each congruence class of integers modulo m contains exactly one integer x satisfying $0 \le x < m$.

Theorem 12.5 Let f be a polynomial with integer coefficients, and let p be a prime number. Suppose that the coefficients of f are not all divisible by p. Then the number of solutions modulo p of the congruence $f(x) \equiv 0 \pmod{p}$ is at most the degree of the polynomial f.

Proof The result is clearly true when f is a constant polynomial. We can prove the result for non-constant polynomials by induction on the degree of the polynomial.

First we observe that, given any integer a, there exists a polynomial g with integer coefficients such that f(x) = f(a) + (x-a)g(x). Indeed f(y+a) is a polynomial in y with integer coefficients, and therefore f(y+a) = f(a)+yh(y) for some polynomial h with integer coefficients. Thus if g(x) = h(x-a) then g is a polynomial with integer coefficients and f(x) = f(a) + (x-a)g(x).

Suppose that $f(a) \equiv 0 \pmod{p}$ and $f(b) \equiv 0 \pmod{p}$. Let f(x) = f(a) + (x - a)g(x), where g is a polynomial with integer coefficients. The coefficients of f are not all divisible by p, but f(a) is divisible by p, and therefore the coefficients of g cannot all be divisible by p.

Now f(a) and f(b) are both divisible by the prime number p, and therefore (b-a)g(b) is divisible by p. But a prime number divides a product of integers if and only if it divides one of the factors. Therefore either b-a is divisible by p or else g(b) is divisible by p. Thus either $b \equiv a \pmod{p}$ or else $g(b) \equiv 0 \pmod{p}$. The required result now follows easily by induction on the degree of the polynomial f.

12.4 Primitive Roots

Lemma 12.6 Let m be a positive integer, and let x be an integer coprime to m. Then there exists a positive integer n such that $x^n \equiv 1 \pmod{m}$.

Proof There are only finitely many congruence classes modulo m. Therefore there exist positive integers j and k with j < k such that $x^j \equiv x^k \pmod{m}$. Let n = k - j. Then $x^j x^n \equiv x^j \pmod{m}$. But x^j is coprime to m. It follows from Lemma 9.11 that $x^n \equiv 1 \pmod{m}$.

Remark The above lemma also follows directly from Euler's Theorem (Theorem 12.4).

Let *m* be a positive integer, and let *x* be an integer coprime to *m*. The order of the congruence class of *x* modulo *m* is by definition the smallest positive integer *d* such that $x^d \equiv 1 \pmod{m}$.

Lemma 12.7 Let m be a positive integer, let x be an integer coprime to m, and let j and k be positive integers. Then $x^j \equiv x^k \pmod{m}$ if and only if $j \equiv k \pmod{d}$, where d is the order of the congruence class of x modulo m.

Proof We may suppose without loss of generality that j < k. If $j \equiv k \pmod{d}$ then k - j is divisible by d, and hence $x^{k-j} \equiv 1 \pmod{m}$. But then $x^k \equiv x^j x^{k-j} \equiv x^j \pmod{m}$. Conversely suppose that $x^j \equiv x^k \pmod{m}$ and j < k. Then $x^j x^{k-j} \equiv x^j \pmod{m}$. But x^j is coprime to m. It follows from Lemma 9.11 that $x^{k-j} \equiv 1 \pmod{m}$. Thus if k - j = qd + r, where q and r are integers and $0 \le r < d$, then $x^r \equiv 1 \pmod{m}$. But then r = 0, since d is the smallest positive integer for which $x^d \equiv 1 \pmod{m}$. Therefore k - j is divisible by d, and thus $j \equiv k \pmod{d}$.

Lemma 12.8 Let p be a prime number, and let x and y be integers coprime to p. Suppose that the congruence classes of x and y modulo p have the same order. Then there exists a non-negative integer k, coprime to the order of the congruence classes of x and y, such that $y \equiv x^k \pmod{p}$.

Proof Let d be the order of the congruence class of x modulo p. The solutions of the congruence $x^d \equiv 1 \pmod{p}$ include x^j with $0 \leq j < d$. But the congruence $x^d \equiv 1 \pmod{p}$ has at most d solutions modulo p, since p is prime (Theorem 12.5), and the congruence classes of $1, x, x^2, \ldots, x^{d-1}$ modulo p are distinct (Lemma 12.7). It follows that any solution of the congruence $x^d \equiv 1 \pmod{p}$ is congruent to x^k for some positive integer k. Thus if y is an integer coprime to p whose congruence class is of order d then $y \equiv x^k \pmod{p}$ for some positive integer k. Moreover k is coprime to d, for if e is a common divisor of k and d then $y^{d/e} \equiv x^{d(k/e)} \equiv 1 \pmod{p}$, and hence e = 1.

Let *m* be a positive integer. An integer *g* is said to be a *primitive root* modulo *m* if, given any integer *x* coprime to *m*, there exists an integer *j* such that $x \equiv g^j \pmod{m}$.

A primitive root modulo m is necessarily coprime to m. For if g is a primitive root modulo m then there exists an integer n such that $g^n \equiv 1 \pmod{m}$. But then any common divisor of g and m must divide 1, and thus g and m are coprime.

Theorem 12.9 Let p be a prime number. Then there exists a primitive root modulo p.

Proof If x is an integer coprime to p then it follows from Fermat's Theorem (Theorem 9.17) that $x^{p-1} \equiv 1 \pmod{p}$. It then follows from Lemma 12.7 that the order of the congruence class of x modulo p divides p-1. For each divisor d of p-1, let $\psi(d)$ denote the number of congruence classes modulo p of integers coprime to p that are of order d. Clearly $\sum_{d|p-1} \psi(d) = p-1$.

Let x be an integer coprime to p whose congruence class is of order d, where d is a divisor of p-1. If k is coprime to d then the congruence class of x^k is also of order d, for if $(x^k)^n \equiv 1 \pmod{p}$ then d divides kn and hence d divides n (Lemma 9.10). Let y be an integer coprime to p whose congruence class is also of order d. It follows from Lemma 12.8 that there exists a non-negative integer k coprime to d such that $y \equiv x^k \pmod{p}$. It then follows from Lemma 12.7 that there exists a unique integer k coprime to d such that $0 \leq k < d$ and $y \equiv x^k \pmod{p}$. Thus if there exists at least one integer x coprime to p whose congruence class modulo p is of order d then the congruence classes modulo p of integers coprime to p that are of order d are the congruence classes of x^k for those integers k satisfying $0 \leq k < d$ that are coprime to d. Thus if $\psi(d) > 0$ then $\psi(d) = \varphi(d)$, where $\varphi(d)$ is the number of integers k satisfying $0 \leq k < d$ that are coprime to d.

number of integers k satisfying $0 \le k < d$ that are coprime to d. Now $0 \le \psi(d) \le \varphi(d)$ for each divisor d of p-1. But $\sum_{d|p-1} \psi(d) = p-1$ and

 $\sum_{d|p-1} \varphi(d) = p - 1 \text{ (Lemma 12.3). Therefore } \psi(d) = \varphi(d) \text{ for each divisor } d \text{ of }$

p-1. In particular $\psi(p-1) = \varphi(p-1) \ge 1$. Thus there exists an integer g whose congruence class modulo p is of order p-1. The congruence classes of $1, g, g^2, \ldots g^{p-2}$ modulo p are then distinct. But there are exactly p-1 congruence classes modulo p of integers coprime to p. It follows that any integer that is coprime to p must be congruent to g^j for some non-negative integer j. Thus g is a primitive root modulo p.

Corollary 12.10 Let p be a prime number. Then the group of congruence classes modulo p of integers coprime to p is a cyclic group of order p - 1.

Remark It can be shown that there exists a primitive root modulo m if m = 1, 2 or 4, if $m = p^k$ or if $m = 2p^k$, where p is some odd prime number and k is a positive integer. In all other cases there is no primitive root modulo m.

12.5 Quadratic Residues

Definition Let p be a prime number, and let x be an integer coprime to p. The integer x is said to be a *quadratic residue* of p if there exists an integer y such that $x \equiv y^2 \pmod{p}$. If x is not a quadratic residue of p then x is said to be a *quadratic non-residue* of p.

Proposition 12.11 Let p be an odd prime number, and let a, b and c be integers, where a is coprime to p. Then there exist integers x satisfying the congruence $ax^2 + bx + c \equiv 0 \pmod{p}$ if and only if either $b^2 - 4ac$ is a quadratic residue of p or else $b^2 - 4ac \equiv 0 \pmod{p}$.

Proof Let x be an integer. Then $ax^2 + bx + c \equiv 0 \pmod{p}$ if and only if $4a^2x^2 + 4abx + 4ac \equiv 0 \pmod{p}$, since 4a is coprime to p (Lemma 9.11). But $4a^2x^2 + 4abx + 4ac \equiv (2ax + b)^2 - (b^2 - 4ac)$. It follows that $ax^2 + bx + c \equiv 0 \pmod{p}$ if and only if $(2ax + b)^2 \equiv b^2 - 4ac \pmod{p}$. Thus if there exist integers x satisfying the congruence $ax^2 + bx + c \equiv 0 \pmod{p}$ then either $b^2 - 4ac$ is a quadratic residue of p or else $b^2 - 4ac \equiv 0 \pmod{p}$. Conversely suppose that either $b^2 - 4ac$ is a quadratic residue of p or $b^2 - 4ac \equiv 0 \pmod{p}$. Also there exists an integer d such that $2ad \equiv 1 \pmod{p}$, since 2a is coprime to p (Lemma 9.12). If $x \equiv d(y - b) \pmod{p}$ then $2ax + b \equiv y \pmod{p}$, and hence $(2ax + b)^2 \equiv b^2 - 4ac \pmod{p}$. But then $ax^2 + bx + c \equiv 0 \pmod{p}$, as required.

Lemma 12.12 Let p be an odd prime number, and let x and y be integers. Suppose that $x^2 \equiv y^2 \pmod{p}$. Then either $x \equiv y \pmod{p}$ or else $x \equiv -y \pmod{p}$.

Proof $x^2 - y^2$ is divisible by p, since $x^2 \equiv y^2 \pmod{p}$. But $x^2 - y^2 = (x - y)(x + y)$, and a prime number divides a product of integers if and only if it divides at least one of the factors. Therefore either x - y is divisible by p or else x + y is divisible by p. Thus either $x \equiv y \pmod{p}$ or else $x \equiv -y \pmod{p}$.

Lemma 12.13 Let p be an odd prime number, and let m = (p - 1)/2. Then there are exactly m congruence classes of integers coprime to p that are quadratic residues of p. Also there are exactly m congruence classes of integers coprime to p that are quadratic non-residues of p.

Proof If *i* and *j* are integers between 1 and *m*, and if $i \neq j$ then $i \not\equiv j \pmod{p}$ and $i \not\equiv -j \pmod{p}$. It follows from Lemma 12.12 that if *i* and *j* are integers between 1 and *m*, and if $i \neq j$ then $i^2 \not\equiv j^2$. Thus the congruence classes of $1^2, 2^2, \ldots, m^2$ modulo *p* are distinct. But, given any integer *x* coprime to *p*, there is an integer *i* such that $1 \leq i \leq m$ and either $x \equiv i \pmod{p}$ or $x \equiv -i \pmod{p}$, and therefore $x^2 \equiv i^2 \pmod{p}$. Thus every quadratic residue of *p* is congruence classes of quadratic residues of *p*.

There are 2m congruence classes of integers modulo p that are coprime to p. It follows that there are m congruence classes of quadratic non-residues of p, as required.

Theorem 12.14 Let p be an odd prime number, let R be the set of all integers coprime to p that are quadratic residues of p, and let N be the set of all integers coprime to p that are quadratic non-residues of p. If $x \in R$ and $y \in R$ then $xy \in R$. If $x \in R$ and $y \in N$ then $xy \in N$. If $x \in N$ and $y \in N$ then $xy \in R$.

Proof Let m = (p-1)/2. Then there are exactly *m* congruence classes of integers coprime to *p* that are quadratic residues of *p*. Let these congruence classes be represented by the integers r_1, r_2, \ldots, r_m , where $r_i \not\equiv r_j \pmod{p}$ when $i \neq j$. Also there are exactly *m* congruence classes of integers coprime to *p* that are quadratic non-residues modulo *p*.

The product of two quadratic residues of p is itself a quadratic residue of p. Therefore $xy \in R$ for all $x \in R$ and $y \in R$.

Suppose that $x \in R$. Then $xr_i \in R$ for i = 1, 2, ..., m, and $xr_i \not\equiv xr_j$ when $i \neq j$. It follows that the congruence classes of $xr_1, xr_2, ..., xr_m$ are distinct, and consist of quadratic residues of p. But there are exactly mcongruence classes of quadratic residues of p. It follows that every quadratic residue of p is congruent to exactly one of the integers $xr_1, xr_2, ..., xr_m$. But if $y \in N$ then $y \not\equiv r_i$ and hence $xy \not\equiv xr_i$ for i = 1, 2, ..., m. It follows that $xy \in N$ for all $x \in R$ and $y \in N$.

Now suppose that $x \in N$. Then $xr_i \in N$ for i = 1, 2, ..., m, and $xr_i \not\equiv xr_j$ when $i \neq j$. It follows that the congruence classes of $xr_1, xr_2, ..., xr_m$ are distinct, and consist of quadratic non-residues modulo p. But there are exactly *m* congruence classes of quadratic non-residues modulo *p*. It follows that every quadratic non-residue of *p* is congruent to exactly one of the integers xr_1, xr_2, \ldots, xr_m . But if $y \in N$ then $y \not\equiv r_i$ and hence $xy \not\equiv xr_i$ for $i = 1, 2, \ldots, m$. It follows that $xy \in R$ for all $x \in N$ and $y \in N$.

Let p be an odd prime number. The Legendre symbol $\left(\frac{x}{p}\right)$ is defined for integers x as follows: if x is coprime to p and x is a quadratic residue of p then $\left(\frac{x}{p}\right) = +1$; if x is coprime to p and x is a quadratic non-residue of p then $\left(\frac{x}{p}\right) = -1$; if x is divisible by p then $\left(\frac{x}{p}\right) = 0$.

The following result follows directly from Theorem 12.14.

Corollary 12.15 Let p be an odd prime number. Then

$$\left(\frac{x}{p}\right)\left(\frac{y}{p}\right) = \left(\frac{xy}{p}\right)$$

for all integers x and y.

Lemma 12.16 (Euler) Let p be an odd prime number, and let x be an integer coprime to p. Then x is a quadratic residue of p if and only if $x^{(p-1)/2} \equiv 1 \pmod{p}$. Also x is a quadratic non-residue of p if and only if $x^{(p-1)/2} \equiv -1 \pmod{p}$.

Proof Let m = (p-1)/2. If x is a quadratic residue of p then $x \equiv y^2 \pmod{p}$ for some integer y coprime to p. Then $x^m = y^{p-1}$, and $y^{p-1} \equiv 1 \pmod{p}$ by Fermat's Theorem (Theorem 9.17), and thus $x^m \equiv 1 \pmod{p}$.

It follows from Theorem 12.5 that there are at most m congruence classes of integers x satisfying $x^m \equiv 1 \pmod{p}$. However all quadratic residues modulo p satisfy this congruence, and there are exactly m congruence classes of quadratic residues modulo p. It follows that an integer x coprime to psatisfies the congruence $x^m \equiv 1 \pmod{p}$ if and only if x is a quadratic residue of p.

Now let x be a quadratic non-residue of p and let $u = x^m$. Then $u^2 \equiv 1 \pmod{p}$ but $u \not\equiv 1 \pmod{p}$. It follows from Lemma 12.12 that $u \equiv -1 \pmod{p}$. It follows that an integer x coprime to p is a quadratic non-residue of p if and only if $x^m \equiv -1 \pmod{p}$.

Corollary 12.17 Let p be an odd prime number. Then

$$x^{(p-1)/2} \equiv \left(\frac{x}{p}\right) \pmod{p}$$

for all integers x.

Proof If x is coprime to p then the result follows from Lemma 12.16. If x is divisible by p then so is $x^{(p-1)/2}$. In that case $x^{(p-1)/2} \equiv 0 \pmod{p}$ and $\left(\frac{x}{p}\right) = 0 \pmod{p}$.

Corollary 12.18 $\left(\frac{-1}{p}\right) = (-1)^{(p-1)/2}$ for all odd prime numbers p.

Proof It follows from Corollary 12.17 that $\left(\frac{-1}{p}\right) \equiv (-1)^{(p-1)/2} \pmod{p}$ for all odd prime numbers p. But $\left(\frac{-1}{p}\right) = \pm 1$, by the definition of the Legendre symbol. Therefore $\left(\frac{-1}{p}\right) = (-1)^{(p-1)/2}$, as required.

Remark Let p be an odd prime number. It follows from Theorem 12.9 that there exists a primitive root g modulo p. Moreover the congruence class of g modulo p is of order p-1. It follows that $g^j \equiv g^k \pmod{p}$, where j and k are positive integers, if and only if j-k is divisible by p-1. But p-1 is even. Thus if $g^j \equiv g^k$ then j-k is even. It follows easily from this that an integer x is a quadratic residue of p if and only if $x \equiv g^k \pmod{p}$ for some even integer k. The results of Theorem 12.14 and Lemma 12.16 follow easily from this fact.

Let p be an odd prime number, and let m = (p-1)/2. Then each integer not divisible by p is congruent to exactly one of the integers $\pm 1, \pm 2, \ldots, \pm m$.

The following lemma was proved by Gauss.

Lemma 12.19 Let p be an odd prime number, let m = (p-1)/2, and let x be an integer that is not divisible by p. Then $\left(\frac{x}{p}\right) = (-1)^r$, where r is the number of pairs (j, u) of integers satisfying $1 \le j \le m$ and $1 \le u \le m$ for which $xj \equiv -u \pmod{p}$.

Proof For each integer j satisfying $1 \leq j \leq m$ there is a unique integer u_j satisfying $1 \leq u_j \leq m$ such that $xj \equiv e_ju_j \pmod{p}$ with $e_j = \pm 1$. Then $e_1e_2\cdots e_m = (-1)^r$.

If j and k are integers between 1 and m and if $j \neq k$, then $j \not\equiv k \pmod{p}$ and $j \not\equiv -k \pmod{p}$. But then $xj \not\equiv xk \pmod{p}$ and $xj \not\equiv -xk \pmod{p}$ since x is not divisible by p. Thus if $1 \leq j \leq m$, $1 \leq k \leq m$ and $j \neq k$ then $u_j \neq u_k$. It follows that each integer between 1 and m occurs exactly once in the list u_1, u_2, \ldots, u_m , and therefore $u_1u_2 \cdots u_m = m!$. Thus if we multiply the congruences $xj \equiv e_ju_j \pmod{p}$ for $j = 1, 2, \ldots, m$ we obtain the congruence $x^m m! \equiv (-1)^r m! \pmod{p}$. But m! is not divisible by p, since p is prime and m < p. It follows that $x^m \equiv (-1)^r \pmod{p}$. But $x^m \equiv \left(\frac{x}{p}\right) \pmod{p}$ by Lemma 12.16. Therefore $\left(\frac{x}{p}\right) \equiv (-1)^r \pmod{p}$, and hence $\left(\frac{x}{p}\right) = (-1)^r$, as required.

Let n be an odd integer. Then n = 2k + 1 for some integer k. Then $n^2 = 4(k^2 + k) + 1$, and $k^2 + k$ is an even integer. It follows that if n is an odd integer then $n^2 \equiv 1 \pmod{8}$, and hence $(-1)^{(n^2-1)/8} = \pm 1$.

Theorem 12.20 Let p be an odd prime number. Then $\left(\frac{2}{p}\right) = (-1)^{(p^2-1)/8}$.

Proof The value of $(-1)^{(p^2-1)/8}$ is determined by the congruence class of p modulo 8. Indeed $(-1)^{(p^2-1)/8} = 1$ when $p \equiv 1 \pmod{8}$ or $p \equiv -1 \pmod{8}$, and $(-1)^{(p^2-1)/8} = -1$ when $p \equiv 3 \pmod{8}$ or $p \equiv -3 \pmod{8}$.

Let m = (p-1)/2. It follows from Lemma 12.19 that $\left(\frac{2}{p}\right) = (-1)^r$, where r is the number of integers x between 1 and m for which 2x is not congruent modulo p to any integer between 1 and m. But the integers x with this property are those for which $m/2 < x \le m$. Thus r = m/2 if m is even, and r = (m+1)/2 if m is odd.

If $p \equiv 1 \pmod{8}$ then *m* is divisible by 4 and hence *r* is even. If $p \equiv 3 \pmod{8}$ then $m \equiv 1 \pmod{4}$ and hence *r* is odd. If $p \equiv 5 \pmod{8}$ then $m \equiv 2 \pmod{4}$ and hence *r* is odd. If $p \equiv 7 \pmod{8}$ then $m \equiv 3 \pmod{4}$ and hence *r* is even. Therefore $\left(\frac{2}{p}\right) = 1$ when $p \equiv 1 \pmod{8}$ and when $p \equiv 7 \pmod{8}$, and $\left(\frac{2}{p}\right) = -1$ when $p \equiv 3 \pmod{8}$ and $p \equiv 5 \pmod{8}$. Thus $\left(\frac{2}{p}\right) = (-1)^{(p^2-1)/8}$ for all odd prime numbers *p*, as required.

12.6 Quadratic Reciprocity

Theorem 12.21 (Quadratic Reciprocity Law) Let p and q be distinct odd prime numbers. Then

$$\left(\frac{p}{q}\right)\left(\frac{q}{p}\right) = (-1)^{(p-1)(q-1)/4}$$

Proof Let S be the set of all ordered pairs (x, y) of integers x and y satisfying $1 \le x \le m$ and $1 \le y \le n$, where p = 2m + 1 and q = 2n + 1. We must prove that $\left(\frac{p}{q}\right)\left(\frac{q}{p}\right) = (-1)^{mn}$.

First we show that $\left(\frac{p}{q}\right) = (-1)^a$, where *a* is the number of pairs (x, y) of integers in *S* satisfying $-n \leq py - qx \leq -1$. If (x, y) is a pair of integers in *S* satisfying $-n \leq py - qx \leq -1$, and if z = qx - py, then $1 \leq y \leq n$, $1 \leq z \leq n$ and $py \equiv -z \pmod{q}$. On the other hand, if (y, z) is a pair of integers such that $1 \leq y \leq n$, $1 \leq z \leq n$ and $py \equiv -z \pmod{q}$ then there is a unique positive integer *x* such that z = qx - py. Moreover $qx = py + z \leq (p+1)n = 2n(m+1)$ and q > 2n, and therefore x < m+1. It follows that the pair (x, y) of integers is in *S*, and $-n \leq py - qx \leq -1$. We deduce that the number *a* of pairs (y, z) of integers in *S* satisfying $1 \leq y \leq n$, $1 \leq z \leq n$ and $py \equiv -z \pmod{q}$. Statisfying $1 \leq y \leq n$, $1 \leq z \leq n$ and $py \equiv -z \pmod{q}$. It now follows from Lemma 12.19 that $\left(\frac{p}{q}\right) = (-1)^a$. Similarly $\left(\frac{q}{p}\right) = (-1)^b$, where *b* is the number of pairs (x, y) in *S* satisfying $1 \leq py - qx \leq m$.

If x and y are integers satisfying py - qx = 0 then x is divisible by p and y is divisible by q. It follows from this that $py - qx \neq 0$ for all pairs (x, y) in S. The total number of pairs (x, y) in S is mn. Therefore mn = a + b + c + d, where c is the number of pairs (x, y) in S satisfying py - qx < -n and d is the number of pairs (x, y) in S satisfying py - qx < m.

Let (x, y) be a pair of integers in S, and let and let x' = m + 1 - x and y' = n + 1 - y. Then the pair (x', y') also belongs to S, and py' - qx' = m - n - (py - qx). It follows that py - qx > m if and only if py' - qx' < -n. Thus there is a one-to-one correspondence between pairs (x, y) in S satisfying py - qx > m and pairs (x', y') in S satisfying py' - qx' < -n, where (x', y') = (m + 1 - x, n + 1 - y) and (x, y) = (m + 1 - x', n + 1 - y'). Therefore c = d, and thus mn = a + b + 2c. But then $(-1)^{mn} = (-1)^a (-1)^b = \left(\frac{p}{q}\right) \left(\frac{q}{p}\right)$, as required.

Corollary 12.22 Let p and q be distinct odd prime numbers. If $p \equiv 1 \pmod{4}$ or $q \equiv 1 \pmod{4}$ then $\left(\frac{p}{q}\right) = \left(\frac{q}{p}\right)$. If $p \equiv 3 \pmod{4}$ and $q \equiv 3 \pmod{4}$ then $\left(\frac{p}{q}\right) = -\left(\frac{q}{p}\right)$.

Example We wish to determine whether or not 654 is a quadratic residue modulo the prime number 239. Now $654 = 2 \times 239 + 176$ and thus $654 \equiv 176 \pmod{239}$. Also $176 = 16 \times 11$. Therefore

$$\left(\frac{654}{239}\right) = \left(\frac{176}{239}\right) = \left(\frac{16}{239}\right) \left(\frac{11}{239}\right) = \left(\frac{4}{239}\right)^2 \left(\frac{11}{239}\right) = \left(\frac{11}{239}\right)$$

But $\left(\frac{11}{239}\right) = -\left(\frac{239}{11}\right)$ by the Law of Quadratic Reciprocity. Also $239 \equiv 8 \pmod{11}$. Therefore

$$\left(\frac{239}{11}\right) = \left(\frac{8}{11}\right) = \left(\frac{2}{11}\right)^3 = (-1)^3 = -1$$

It follows that $\left(\frac{654}{239}\right) = +1$ and thus 654 is a quadratic residue of 239, as required.

12.7 The Jacobi Symbol

Let s be an odd positive integer. If s > 1 then $s = p_1 p_2 \cdots p_m$, where p_1, p_2, \ldots, p_m are odd prime numbers. For each integer x we define the *Jacobi* symbol $\left(\frac{x}{s}\right)$ by

$$\left(\frac{x}{s}\right) = \prod_{i=1}^{m} \left(\frac{x}{p_i}\right)$$

(i.e., $\left(\frac{x}{s}\right)$ is the product of the Legendre symbols $\left(\frac{x}{p_i}\right)$ for $i = 1, 2, \dots, m$.) We define $\left(\frac{x}{1}\right) = 1$.

Note that the Jacobi symbol can have the values 0, +1 and -1.

Lemma 12.23 Let s be an odd positive integer, and let x be an integer. Then $\left(\frac{x}{s}\right) \neq 0$ if and only if x is coprime to s.

Proof Let $s = p_1 p_2 \cdots p_m$, where p_1, p_2, \ldots, p_m are odd prime numbers. Suppose that x is coprime to s. Then x is coprime to each prime factor of s, and hence $\left(\frac{x}{p_i}\right) = \pm 1$ for $i = 1, 2, \ldots, m$. It follows that $\left(\frac{x}{s}\right) = \pm 1$ and thus $\left(\frac{x}{s}\right) \neq 0$.

Next suppose that x is not coprime to s. Let p be a prime factor of the greatest common divisor of x and s. Then $p = p_i$, and hence $\left(\frac{x}{p_i}\right) = 0$ for some integer i between 1 and m. But then $\left(\frac{x}{s}\right) = 0$.

Lemma 12.24 Let s be an odd positive integer, and let x and x' be integers. Suppose that $x \equiv x' \pmod{s}$. Then $\left(\frac{x}{s}\right) = \left(\frac{x'}{s}\right)$. **Proof** If $x \equiv x' \pmod{s}$ then $x \equiv x' \pmod{p}$ for each prime factor p of s, and therefore $\left(\frac{x}{p}\right) = \left(\frac{x'}{p}\right)$ for each prime factor of s. Therefore $\left(\frac{x}{s}\right) = \left(\frac{x'}{s}\right)$.

Lemma 12.25 Let x and y be integers, and let s and t be odd positive integers. Then $\left(\frac{xy}{s}\right) = \left(\frac{x}{s}\right) \left(\frac{y}{s}\right)$ and $\left(\frac{x}{st}\right) = \left(\frac{x}{s}\right) \left(\frac{x}{t}\right)$.

Proof $\left(\frac{xy}{p}\right) = \left(\frac{x}{p}\right) \left(\frac{y}{p}\right)$ for all prime numbers p (Corollary 12.15). The required result therefore follows from the definition of the Jacobi symbol.

Lemma 12.26 $\left(\frac{x^2}{s}\right) = 1$ and $\left(\frac{x}{s^2}\right) = 1$ for for all odd positive integers s and all integers x that are coprime to s.

Proof This follows directly from Lemma 12.25 and Lemma 12.23.

Theorem 12.27 $\left(\frac{-1}{s}\right) = (-1)^{(s-1)/2}$ for all odd positive integers s.

Proof Let $f(s) = (-1)^{(s-1)/2} \left(\frac{-1}{s}\right)$ for each odd positive integer s. We must prove that f(s) = 1 for all odd positive integers s. If s and t are odd positive integers then

$$(st-1) - (s-1) - (t-1) = st - s - t + 1 = (s-1)(t-1)$$

But (s-1)(t-1) is divisible by 4, since s and t are odd positive integers. Therefore $(st-1)/2 \equiv (s-1)/2 + (t-1)/2 \pmod{2}$, and hence $(-1)^{(st-1)/2} = (-1)^{(s-1)/2}(-1)^{(t-1)/2}$. It now follows from Lemma 12.25 that f(st) = f(s)f(t) for all odd numbers s and t. But f(p) = 1 for all prime numbers p, since $\left(\frac{-1}{p}\right) = (-1)^{(p-1)/2}$ (Lemma 12.18). It follows that f(s) = 1 for all odd positive integers s, as required.

Theorem 12.28 $\left(\frac{2}{s}\right) = (-1)^{(s^2-1)/8}$ for all odd positive integers s.

Proof Let $g(s) = (-1)^{(s^2-1)/8} \left(\frac{2}{s}\right)$ for each odd positive integer s. We must prove that g(s) = 1 for all odd positive integers s. If s and t are odd positive integers then

$$(s^{2}t^{2}-1) - (s^{2}-1) - (t^{2}-1) = s^{2}t^{2} - s^{2} - t^{2} + 1 = (s^{2}-1)(t^{2}-1).$$

But $(s^2 - 1)(t^2 - 1)$ is divisible by 64, since $s^2 \equiv 1 \pmod{8}$ and $t^2 \equiv 1 \pmod{8}$. Therefore $(s^2t^2 - 1)/8 \equiv (s^2 - 1)/8 + (t^2 - 1)/8 \pmod{8}$, and hence $(-1)^{(s^2t^2-1)/8} = (-1)^{(s^2-1)/8}(-1)^{(t^2-1)/8}$. It now follows from Lemma 12.25 that g(st) = g(s)g(t) for all odd numbers s and t. But g(p) = 1 for all prime numbers p, since $\left(\frac{2}{p}\right) = (-1)^{(p^2-1)/8}$ (Lemma 12.20). It follows that g(s) = 1 for all odd positive integers, as required.

Theorem 12.29 $\left(\frac{s}{t}\right)\left(\frac{t}{s}\right) = (-1)^{(s-1)(t-1)/4}$ for all odd positive integers s and t.

Proof Let $h(s,t) = (-1)^{(s-1)(t-1)/4} \left(\frac{s}{t}\right) \left(\frac{t}{s}\right)$. We must prove that h(s,t) = 1 for all odd positive integers s and t. Now $h(s_1s_2,t) = h(s_1,t)h(s_2,t)$ and $h(s,t_1)h(s,t_2) = h(s,t_1t_2)$ for all odd positive integers s, s_1, s_2, t, t_1 and t_2 . Also h(s,t) = 1 when s and t are prime numbers by the Law of Quadratic Reciprocity (Theorem 12.21). It follows from this that h(s,t) = 1 when s is an odd positive integer and t is a prime number, since any odd positive integer is a product of odd prime numbers. But then h(s,t) = 1 for all odd positive integers s and t, as required.

The results proved above can be used to calculate Jacobi symbols, as in the following example.

Example We wish to determine whether or not 442 is a quadratic residue modulo the prime number 751. Now $\left(\frac{442}{751}\right) = \left(\frac{2}{751}\right) \left(\frac{221}{751}\right)$. Also $\left(\frac{2}{751}\right) = 1$, since $751 \equiv 7 \pmod{8}$ (Theorem 12.20). Also $\left(\frac{221}{751}\right) = \left(\frac{751}{221}\right)$ (Theorem 12.29), and $751 \equiv 88 \pmod{221}$. Thus

$$\left(\frac{442}{751}\right) = \left(\frac{751}{221}\right) = \left(\frac{88}{221}\right) = \left(\frac{2}{221}\right)^3 \left(\frac{11}{221}\right).$$

Now $\left(\frac{2}{221}\right) = -1$, since $221 \equiv 5 \pmod{8}$ (Theorem 12.28). Also it follows from Theorem 12.29 that

$$\left(\frac{11}{221}\right) = \left(\frac{221}{11}\right) = \left(\frac{1}{11}\right) = 1,$$

since $221 \equiv 1 \pmod{4}$ and $221 \equiv 1 \pmod{11}$. Therefore $\binom{442}{751} = -1$, and thus 442 is a quadratic non-residue of 751. The number 221 is not prime, since $221 = 13 \times 17$. Thus the above calculation made use of Jacobi symbols that are not Legendre symbols.