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9 Differential Equations

9.1 Examples of Differential Equations

A differential equation is an equation that relates a function y of a variable
x to its derivatives. Such a differential equation can usually be written in
the form

F

(
dpy

dxp
,
dp−1y

dxp−1
, . . .

dy

dx
, y, x

)
= 0,

where p is a positive integer and F is a real-valued (or complex-valued)
function with p+ 2 arguments. If the differential equation can be expressed
in the above form for some positive integer p, but cannot be expressed in this
form with p replaced by any smaller integer, then the differential equation is
said to be of order p.

The following are typical examples of differential equations:

dy

dx
+ 2y = 0; (1)

d2y

dx2
− 4

dy

dx
+ 4y = 0; (2)

dy

dx
− 2xy = 0; (3)(

dy

dx

)2

+ y2 − 1 = 0. (4)

Equation (2) is a 2nd order differential equation. The other three equations
are first order differential equations.

The function y = e−2x is the solution to the differential equation (1),
since

d

dx
e−2x + 2e−2x = −2e−2x + 2e−2x = 0.

It follow easily from this that the function y = Ae−2x solves this differential
equation for any constant A.

The function y = e2x solves the differential equation (2), since

d2

d2x
e2x − 4

d

dx
e2x + 4e2x = 4e2x − 8e2x + 4e2x = 0.

The function y = xe2x also solves this differential equation, since

d2

d2x
(xe2x)− 4

d

dx
(xe2x) + 4xe2x

=
d

dx
((2x+ 1)e2x)− 4(2x+ 1)e2x + 4xe2x

= (4x+ 4)e2x − 4(2x+ 1)e2x + 4xe2x = 0
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Now if y = (Ax+B)e2x then y = Au+Bv, where u = xe2x and v = e2x, and
therefore

d2y

d2x
− 4

dy

dx
+ 4y = A

(
d2u

d2x
− 4

du

dx
+ 4u

)
+B

(
d2v

d2x
− 4

dv

dx
+ 4v

)
= 0.

We conclude that, for any given values of the constants A and B, the function
(Ax+B)e2x solves the differential equation (2).

The function y = ex2
is a solution of the differential equation (3). And the

functions y = sinx and y = cosx are solutions of the differential equation (4).

9.2 Real-Analytic Functions and Power Series

We shall solve certain important types differential equation by representing
the solutions that we are seeking as a power series, and then determining the
constraints on the coefficients of the power series.

Many familiar functions of mathematics may be represented through
power series. Let f :D → R be a function whose domain D is a subset
of the real numbers, and whose values are real numbers, and let s ∈ D. The
function f is said to be real-analytic at s if there exists some positive real
number δ and real numbers a0, a1, a2, a3, . . . such that (s− δ, s+ δ) ⊂ D and

f(s+ h) =
+∞∑
n=0

anh
n

for all real numbers h satisfying −δ < h < δ. The above equation represents
the value of f(s + h) as a power series in the variable h (for values of h
sufficiently close to zero.) The constants a0, a1, a2, . . . that determine this
power series are referred to as the coefficients of the power series. The Nth

partial sum
N−1∑
n=0

anh
n of the power series provides a good approximation to

f(s+ h) for sufficiently large values of N , where

N−1∑
n=0

anh
n = a0 + a1h+ a2h

2 + a3h
3 + · · ·+ aN−1h

N−1,

and the value of this approximation converges on f(s+ h) as the value of N
increases so that

f(s+ h) = lim
N→+∞

N−1∑
n=0

anh
n

for all real numbers h satisfying −δ < h < δ.
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Polynomial functions are real-analytic. Also trigonometrical functions
such as sin and cos are real-analytic everywhere, as is the exponential func-
tion. Other functions such as the logarithm function are real-analytic over
their domains.

A power series representation of a real-analytic function may be differen-
tiated term by term. Thus if f is a real-analytic function, and if

f(s+ h) =
+∞∑
n=0

anh
n

for all real numbers h satisfying −δ < h < δ, where the coefficients

a0, a1, a2, . . .

are real numbers, then the derivative f ′ of the function f satisfies

f ′(s+ h) =
d

dh
f(s+ h) =

+∞∑
n=0

d

dh
(anh

n) =
+∞∑
n=1

nanh
n−1.

Repetition of this process yields the power series representation of the kth
derivative f (k)(s+ h) of the function f at s+ h:

f (k)(s+ h) =
+∞∑
n=k

n(n− 1) · · · (n− k + 1)anh
n−k =

+∞∑
n=k

n!

(n− k)!
anh

n−k.

(Note that 0! = 1 by definition. This ensures that !n = (n − 1)!n for all
positive integers n.) In particular, we may set h = 0 in the above identity.
Now if h = 0 then h0 = 1, and hn−k = 0 whenever n > k. It follows that all
terms of the power series for f (k)(s + h) after the first term are zero when
h = 0, and therefore

f (k)(s) =
k!

0!
akh

0 = k!ak

for all positive integers k. We see from this that the real coefficients

a0, a2, a3, . . .

are determined by the derivatives of the function f at s. Specifically an =
f (n)

n!
for all non-negative integers n. (Note that f (n)(s) = f(s) and n! = 0

when n = 0.) It follows that

f(s+ h) =
+∞∑
n=0

hn

n!
f (n)(s) = f(s) + hf ′(s) +

h2

2!
f ′′(s) +

h3

3!
f ′′′(s) + · · ·
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for all real numbers h satisfying−δ < h < δ. This power series representation
of the values of f around s is referred to as the Taylor series of the real-
analytic function f .

One can show that a number of important functions are real-analytic
using a theorem of calculus known as Taylor’s Theorem. We now state this
theorem without proof.

Theorem 9.1 (Taylor’s Theorem) Let s and h be real numbers, and let f
be a k times differentiable real-valued function defined on some open interval
containing s and s+ h. Then

f(s+ h) = f(s) +
k−1∑
n=1

hn

n!
f (n)(s) +

hk

k!
f (k)(s+ θh)

for some real number θ satisfying 0 < θ < 1.

Example Consider the exponential function exp, where expx = ex for all
real numbers x. This function has the property that

d

dx
expx = expx

for all real numbers x. Also exp 0 = 1. Therefore, on applying Taylor’s
Theorem (setting s = 0 and h = x in the identity above in the statement of
that theorem), we find that, given any real number x, and given any positive
integer k, there exists some real number θ satisfying 0 < θ < 1 such that

expx =
k−1∑
n=0

xn

n!
+
xk

k!
exp(θx).

The quantity
xk

k!
exp(θx)

then represents the remainder, or error, that results when the exponential
function is approximated by the first k terms of its Taylor series about zero.
Now ∣∣∣∣xk

k!
exp(θx)

∣∣∣∣ ≤ bk(x)

whenever 0 < θ < 1, where

bk(x) =
|x|k

k!
exp(|x|)
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for all real numbers x. Now bk+1(x) = |x|bk(x)/(k + 1). Therefore bk+1(x) ≤
1
2
bk(x) when k > 2|x|. It follows that lim

k→+∞
bk(x) = 0. It follows that

expx =
+∞∑
n=0

xn

n!
= 1 + x+

x2

2!
+
x3

3!
+
x4

4!
+
x5

5!
+ · · ·

= 1 + x+
x2

2
+
x3

6
+
x4

24
+

x5

120
+ · · ·

for all real numbers x.

Example We use Taylor’s Theorem to derive power series representations
of the sine and cosine functions. Now the derivatives of these functions are
as follows:

d

dx
sinx = cosx,

d

dx
cosx = − sinx.

It follows that

d4m

dx4m
sinx = sinx,

d4m+1

dx4m+1
sinx = cosx,

d4m+2

dx4m+2
sinx = − sinx,

d4m+3

dx4m+3
sinx = − cosx,

for all non-negative integers m and real numbers x. Also

dn

dxn
cosx =

dn−1

dxn−1
sinx

for all positive integers n and real numbers x. Thus, if we apply Taylor’s
Theorem to the sine function on the interval between zero and x, we see that
given any real number x, there exists some real number θ satisfying 0 < θ < 1
such that

sin(x) =
N−1∑
m=0

(−1)mx2m+1

(2m+ 1)!
+

(−1)Nx2N+1 cos(θx)

(2N + 1)!
.

(Note that if f(x) = sinx for all real numbers x then f (n(0) = 0 whenever
n is even, and f (2m+1)(0) = (−1)m for all non-negative integers m.) The
expression

(−1)Nx2N+1 cos(θx)

(2N + 1)!

therefore represents the remainder, or error, that results when we approxi-
mate sinx by the sum of the first m non-zero terms of the Taylor series of
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the sine function about zero. Now the sine and cosine functions take values
between −1 and +1. Therefore∣∣∣∣(−1)Nx2N+1 cos(θx)

(2N + 1)!

∣∣∣∣ ≤ |x|2N+1

(2N + 1)!
.

whenever 0 < θ < 1. Moreover

lim
N→+∞

|x|2N+1

(2N + 1)!
= 0.

Indeed let

bN =
|x|2N+1

(2N + 1)!

for all non-negative integers N . Then

bN+1 =
|x|2

(2N + 2)(2N + 3)
bN

for all non-negative integers N . It follows that bN+1 ≤ 1
4
bN whenever N >

2|x|. This is sufficient to ensure that bN → 0 as n→ +∞.
We conclude therefore that

sin(x) =
+∞∑
m=0

(−1)mx2m+1

(2m+ 1)!
= x− x3

3!
+
x5

5!
− x7

7!
+
x9

9!
− · · ·

for all real numbers x. Similarly

cos(x) =
+∞∑
m=0

(−1)mx2m

(2m)!
= 1− x2

2!
+
x4

4!
− x6

6!
+
x8

8!
− · · ·

for all real numbers x.

Example Let

f(x) =
1

1− x
for all real numbers x satisfying x 6= 1. A straightforward proof by induction
on n, using standard rules such as the Quotient Rule for differentiation, shows
that

f (n)(x) =
n!

(1− x)n+1
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for all non-negative integers n and real numbers x. In particular that f (n)(0) =
n! for all non-negative integers n. One can then apply Taylor’s Theorem to
show that

1

1− x
=

+∞∑
n=0

xn = 1 + x+ x2 + x3 + x4 + · · ·

when −1 < x < 1. The power series on the right hand side of this inequality
fails to converge when x ≥ 1 and when x ≤ −1.

Example The natural logarithm function log satisfies

d

dx
log x =

1

x

for all positive real numbers x. It follows that

dn

dxn
log(1− x) = − dn−1

dxn−1

1

1− x
= − (n− 1)!

(1− x)n

for all positive integers n and for all real numbers x satisfying x < 1. One
can then apply Taylor’s Theorem to show that

log(1− x) = −
+∞∑
n=1

xn

n

when −1 < x < 1.

9.3 The Differential Equation
dy

dx
+ ay = 0

Let a be a non-zero real number, and let us seek solutions to the differential
equation

dy

dx
+ ay = 0. (5)

We suppose that our function y can be represented as a power series in x, of
the form

y =
∞∑

n=0

yn

n!
xn,

where y0, y1, y2, y3, . . . are constants to be determined. Now

y = y0 +
∞∑

n=0

yn+1

(n+ 1)!
xn+1,
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and
d

dx

(
yn+1

(n+ 1)!
xn+1

)
=

(n+ 1)yn+1

(n+ 1)!
xn =

yn+1

n!
xn.

It follows that
dy

dx
=
∞∑

n=0

yn+1

n!
xn.

(Here we have differentiated the power series for the function y term by term.
It can be proved that we are justified in doing so, but we do not attempt
such a proof here.) Therefore

0 =
dy

dx
+ ay =

∞∑
n=0

yn+1 + ayn

n!
xn.

Now if the right hand side is to be the zero function, then the coefficient of
xn must be zero for all non-negative integers n, and therefore yn+1 + ayn = 0
for all non-negative integers n. Thus yn = C(−a)n for all non-negative
integers n, where C = y0. But then

y =
∞∑

n=0

C(−a)nxn

n!
= C

∞∑
n=0

(−ax)n

n!
= Ce−ax.

We conclude, therefore, that any solution to the differential equation 5 that
can be represented as a power series must be a function y of the variable x
that is given by an equation of the form y = Ce−ax for some constant C.
(There are no other solutions to this differential equation.)

9.4 The Differential Equation
d2y

dx2 − k
2y = 0

We now use the method of power series to find solutions to the equation

d2y

dx2
− k2y = 0, (6)

where k is a real number satisfing k 6= 0. Let

y =
∞∑

n=0

yn

n!
xn.

Then
dy

dx
=
∞∑

n=0

yn+1

n!
xn,
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and hence
d2y

dx2
=
∞∑

n=0

yn+2

n!
xn,

It follows that the function y satisfies the differential equation 6 if and only
if

∞∑
n=0

yn+2 − k2yn

n!
xn = 0,

and thus if and only if
yn+2 − k2yn = 0

for all non-negative integers n. It is then easy to see that the values of
y2, y3, y4, y5, . . . are determined by the values of y0 and y1. Now we can find
constants A and B such that y0 = A+B and y1 = Ak−Bk. (These constants
are given by the formulae A = (ky0+y1)/(2k) and B = (ky0−y1)/(2k).) One
then readily verify that yn = Akn + B(−k)n for all non-negative integers n.
Therefore

y = A
∞∑

n=0

(kx)n

n!
+B

∞∑
n=0

(−kx)n

n!
= Aekx +Be−kx.

One can readily verify that any function of this form satisfies the differential
equation. There are no other solutions.

9.5 The Differential Equation
d2y

dx2 + k2y = 0

Let y be a solution to the differential equation

d2y

dx2
+ k2y = 0, (7)

where k is a real number satisfing k 6= 0, and let

y =
∞∑

n=0

yn

n!
xn.

Then
yn+2 + k2yn = 0

for all non-negative integers n. It is then easy to see that the values of
y2, y3, y4, y5, . . . are determined by the values of y0 and y1. Let A = y0 and
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B = y1/k. Then y2m = (−1)mAk2m and y2m+1 = (−1)mBk2m+1 for all non-
negative integers m. On referring to the Taylor series for the sine and cosine
functions, we find easily that

y = A
∞∑

m=0

(−)m(kx)2m

(2m)!
+B

∞∑
m=0

(−1)m(kx)2m+1

(2m+ 1)!
= A cos kx+B sin kx.

It is then easy to verify that the function A cos kx + B sin kx does indeed
satisfy the differential equation for any values of the constants A and B.
There are no other solutions.

9.6 The Differential Equation
d2y

dx2 + b
dy

dx
+ cy = 0

Let y be a solution to the differential equation

d2y

dx2
+ b

dy

dx
+ cy = 0, (8)

and let u = e
bx
2 y. Then y = e−

bx
2 u, and therefore

dy

dx
= e−

bx
2
du

dx
− 1

2
be−

bx
2 u,

d2y

dx2
= e−

bx
2
d2u

dx2
− be−

bx
2
du

dx
+ 1

4
b2e−

bx
2 u.

On substituting these values into the differential equation, we find that

e−
bx
2

(
d2u

dx2
− 1

4
b2u+ cu

)
= 0.

Thus the function u is a solution to the differential equation

d2u

dx2
− 1

4
(b2 − 4c)u = 0.

If b2 − 4c > 0, then our previous results show that u = Aekx +Be−kx, where
k = 1

2

√
b2 − 4c. It follows that

y = Aepx +Beqx

where

p =
1

2
(−b+

√
b2 − 4c), q =

1

2
(−b−

√
b2 − 4c).
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Note that p and q are roots of the quadratic polynomial s2 + bs+ c.
If b2 − 4c = 0, then the second derivative of the function u vanishes, and

therefore u = Ax+B. But then

y = (Ax+B)e−
bx
2 .

In this case −1
2
b is a repeated root of the quadratic polynomial s2 + bs+ c.

If b2 − 4c < 0, then u = A cos kx + B sin kx, where k = 1
2

√
4c− b2. It

follows that

y = e−
bx
2 (A cos kx+B sin kx) (k =

1

2

√
4c− b2)

In this case −1
2
b± ik are the roots of the quadratic polynomial s2 + bs+ c.

From these observations, we see that the solutions of the differential equa-
tion

d2y

dx2
+ b

dy

dx
+ cy = 0

can be found from the roots of the associated auxiliary polynomial s2 +bs+c,
as described in the following theorem.

Theorem 9.2 Let b and c be real numbers. Then the solutions of the differ-
ential equation

d2y

dx2
+ b

dy

dx
+ cy = 0,

are determined by the roots of the auxiliary polynomial

s2 + bs+ c

as follows:—

(i) if b2 > 4c then the auxiliary polynomial s2 + bs+ c has two real roots r1
and r2, and the general solution of the differential equation is given by

y = Aer1x +Ber2x,

where A and B are constants;

(ii) if b2 = 4c then the auxiliary polynomial s2 +bs+c has a repeated root r,
and the general solution of the differential equation is given by

y = (Ax+B)erx,

where A and B are constants;
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(iii) if b2 < 4c then the auxiliary polynomial s2 + bs + c has two non-real
roots p+iq and p−iq (where p and q are real numbers), and the general
solution of the differential equation is given by

y = epx (A sin qx+B cos qx) ,

where A and B are constants.

Example Consider the differential equation

d2y

dx2
− 11

dy

dx
+ 24y = 0.

The auxiliary polynomial associated to this equation is the quadratic poly-
nomial s2 − 11s+ 24. This polynomial has two real roots with values 3 and
8. The general solution of this differential equation is therefore of the form

y = Ae3x +Be8x,

where A and B are arbitrary real constants.

Example Consider the differential equation

d2y

dx2
+ 4

dy

dx
+ 4y = 0.

The auxiliary polynomial associated to this equation is the quadratic poly-
nomial s2 + 4s+ 4. This polynomial has a repeated real root with value −2.
The general solution of this differential equation is therefore of the form

y = (Ax+B)e−2x,

where A and B are arbitrary real constants.

Example Consider the differential equation

d2y

dx2
− 4

dy

dx
+ 5y = 0.

The auxiliary polynomial associated to this equation is the quadratic poly-
nomial s2−4s+5. This polynomial has a a pair of non-real roots with values
2 + i and 2− i. The general solution of this differential equation is therefore
of the form

y = Ae2x sinx+Be2x cosx,

where A and B are arbitrary real constants.
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9.7 Inhomogeneous Linear Differential Equations of
the Second Order with Constant Coefficients

We now discuss the general solution of an inhomogenous linear differential
equation of the second order with constant coefficients. Such a differential
equation is of the form

d2y

dx2
+ b

dy

dx
+ cy = f(x),

where b and c are real numbers.
Suppose that yP is some function of the variable x which satisfies this

differential equation. Let y be any twice-differentiable function of the vari-
able x, and let yC = y − yP . Then

a
d2yC

dx2
+ b

dyC

dx
+ cyC = a

d2y

dx2
+ b

dy

dx
+ cy − ad

2yP

dx2
− bdyP

dx
− cyP

= a
d2y

dx2
+ b

dy

dx
+ cy − f(x).

It follows that the function y satisfies the inhomogeneous differential equation

d2y

dx2
+ b

dy

dx
+ cy = f(x),

if and only if yC satisfies the corresponding homogeneous differential equation

d2yC

dx2
+ b

dyC

dx
+ cyC = 0,

We see therefore that, once a particular solution yP of the inhomogeneous
differential equation has been found, any other solution of the inhomogeneous
differential equation may be obtained by adding to yP a solution yC of the
corresponding homogeneous differential equation. The function yP is referred
to as a particular integral of the inhomogeneous differential equation, and the
function yC is referred to as the complementary function. Any solution y of
the given inhomogeneous differential equation

d2y

dx2
+ b

dy

dx
+ cy = f(x),

is the sum of the particular integral yP , which satisfies the same differential
equation, and a complementary function yC , which satisfies the corresponding
homogeneous linear differential equation

d2yC

dx2
+ b

dyC

dx
+ cyC = 0.
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Example Let us find the general solution of the differential equation

d2y

dx2
+ 7

dy

dx
+ 10y = x2.

We first find a particular integral of this equation. Examination of this
equation shows that it might be sensible to look for a particular integral
which is a quadratic polynomial in x of the form px2 + qx + r, where the
coefficients p, q and r are chosen appropriately. Now if y = px2 + qx+ r then

d2y

dx2
+ 7

dy

dx
+ 10y = 10px2 + (10q + 14p)x+ 10r + 7q + 2p.

If the right hand side of this equation is to equal x2, then p, q and r must be
chosen so as to satisfy the equations

10p = 1, 10q + 14p = 0, 10r + 7q + 2p = 0.

The solution of these equations is given by

p =
1

10
, q = − 7

50
, r = − 39

500
.

We conclude that a particular integral yP of the differential equation is given
by

yP =
1

10
x2 − 7

50
x− 39

500
.

The complementary function yC must satisfy the differential equation

d2yC

dx2
+ 7

dyC

dx
+ 10yC = 0.

The roots of auxiliary polynomial s2 + 7s+ 10 associated to this differential
equation are −2 and −5. The complementary function yC is then of the form

yC = Ae−2x +Be−5x.

where A and B are arbitrary real constants. The general solution of the
differential equation

d2y

dx2
+ 7

dy

dx
+ 10y = x2

is then

y =
1

10
x2 − 7

50
x− 39

500
+ Ae−2x +Be−5x.
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Remark Suppose that one is seeking a particular integral of an inhomoge-
neous differential equation of the form

a
d2y

dx2
+ b

dy

dx
+ cy = f(x),

where f(x) is a polynomial in x, and c 6= 0. There will exist a particular
integral yP of the form yP = g(x), where g(x) is a polynomial in x of the
same degree as f(x). Let

f(x) = p0 + p1x+ p2x
2 + · · ·+ pnx

n, g(x) = q0 + q1x+ q2x
2 + · · ·+ qnx

n,

If we equate coefficients of powers of x on both sides of the differential equa-
tion

a
d2

dx2
g(x) + b

d

dx
g(x) + cg(x) = f(x),

we obtain a system of simultaneous linear equations which determine the
coefficients q0, q1, . . . , qn of the polynomial g(x) in terms of the coefficients
p0, p1, . . . , pn of the polynomial f(x). This enables us to find a particular
integral of the differential equation.

Example Let us find the general solution of the differential equation

d2y

dx2
− 6

dy

dx
+ 9y = sinx.

First we seek a particular integral of this equation. Now

if y = sinx then y′′ − 6y′ + 9y = 8 sin x− 6 cosx,

if y = cosx then y′′ − 6y′ + 9y = 8 cos x+ 6 sinx.

Thus if

yP =
1

50
(4 sinx+ 3 cosx)

then y′′P − 6y′P + 9yP = sin x, and thus yP is a particular integral of the
inhomogeneous differential equation

d2y

dx2
− 6

dy

dx
+ 9y = sinx.

The complementary function yC is then a solution of the corresponding ho-
mogeneous differential equation y′′C − 6y′C + 9y = 0. The associated auxiliary
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polynomial s2 − 6s + 9 has a repeated root, whose value is 3. The comple-
mentary function yC is then given by yC = (Ax+B)e3x, where A and B are
real constants. The general solution of the differential equation

d2y

dx2
− 6

dy

dx
+ 9y = sinx

is then given by

y =
1

50
(4 sinx+ 3 cosx) + (Ax+B)e3x.

Example Let us find the general solution of the differential equation

d2y

dx2
− 2

dy

dx
+ 5y = xe3x.

Examination of this differential equation suggests that it might be sensible
to look for a particular integral of the form yP = (p+ qx)e3x, where p and q
are appropriately chosen real constants. Now if yP = (p+ qx)e3x then

y′P = (3p+ q + 3qx)e3x, y′′P = (9p+ 6q + 9qx)e3x,

and thus
y′′P − 2y′P + 5yP = (8p+ 4q + 8qx)e3x.

Thus y′′P − 2y′P + 5yP = xe3x if and only if p = − 1
16

and q = 1
8
. A particular

integral yP of the differential equation is thus given by

yP =
1

16
(2x− 1)e3x.

The complementary function yC satisfies the differential equation y′′C−2y′C +
5yC = 0. The roots of the associated auxiliary polynomial s2 − 2s + 5 are
1 + 2i and 1− 2i. The complementary function yC is therefore of the form

yC = Aex sin 2x+Bex cos 2x.

where A and B are arbitrary real constants. The general solution of the
differential equation

d2y

dx2
− 2

dy

dx
+ 5y = xe3x

is thus given by

y =
1

16
(2x− 1)e3x + Aex sin 2x+Bex cos 2x.
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9.8 Homogeneous and Inhomogeneous Linear Differ-
ential Equations of the First Order

We shall describe a method for solving differential equations of the form

dy

dx
+ p(x)y = r(x).

Such an equation is a homogeneous linear first order differential equation if
r(x) = 0 for all x. It is inhomogeneous if the function r is not everywhere
zero.

Consider the function q(x) where

q(x) = exp

(∫
p(x) dx

)
.

(Here expu = eu for all real numbers u, and
∫
p(x) dx denotes some indefinite

integral of the function p.) On applying the Chain Rule and the Fundamental
Theorem of Calculus, we find that

d

dx
q(x) = exp

(∫
p(x) dx

)
d

dx

∫
p(x) dx = q(x)p(x).

Thus

p(x) =
q′(x)

q(x)
,

where

q′(x) =
dq(x)

dx
.

It follows that a function y of x is a solution of the differential equation

y′(x) + p(x)y(x) = r(x).

if and only if
q(x)y′(x) + q′(x)y(x) = q(x)r(x).

But

q(x)y′(x) + q′(x)y(x) =
d

dx
(q(x)y(x)) .

It follows that the function y satisfies the differential equation

y′(x) + p(x)y(x) = r(x)

if and only if

q(x)y(x) =

∫
q(x)r(x) dx+ C,

where C is a constant of integration. The general solution of the differential
equation. On dividing this equation by q(x), we obtain the following result:
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Theorem 9.3 The general solution of the differential equation

dy

dx
+ p(x)y = r(x).

is thus given by

y(x) =
1

q(x)

∫
q(x)r(x) dx+

C

q(x)
,

where

q(x) = exp

(∫
p(x) dx

)
,

and where C is some constant.

The function q is referred to as an integrating factor for the differential
equation.

Example Consider the differential equation

dy

dx
+ cy = x.

The general solution then has the form

y(x) =
1

q(x)

∫
q(x)r(x) dx+

C

q(x)
,

where

q(x) = exp

(∫
c dx

)
= ecx

and r(x) = x. Using the method of Integration by Parts, we find that∫ x

0

q(s)r(s) ds =

∫ x

0

secs ds =

[
1

c
secs

]x

0

− 1

c

∫ x

0

ecs ds

=
x

c
ecx − 1

c2
(ecx − 1).

Using this function as an indefinite integral of q(x)r(x), we find that the
general solution of the differential equation is given by

y(x) =
1

ecx

(
x

c
ecx − 1

c2
(ecx − 1)

)
+

C

ecx

=
x

c
− 1

c2
(1− e−cx) + Ce−cx.
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where C is an arbitrary constant. We may write this general solution in the
simpler form

y(x) =
x

c
− 1

c2
+ Ae−cx,

where A is an arbitrary constant. The constants A and C in these two forms
of the general solution are related by the equation

A = C +
1

c2
.

Remark The solution to the differential equation

dy

dx
+ cy = x.

is of the form yP + yC , where yP is a particular integral given by

yP (x) =
x

c
− 1

c2
,

and yC is the complementary function, given by yC = Ae−cx.

Example Consider the differential equation

dy

dx
+ 2xy = 0.

The integrating factor q(x) is given by

q(x) = exp

(∫
2x dx

)
= ex2

.

The solution to the differential equation therefore takes the form

y(x) =
C

q(x)
= Ce−x2

.
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